2 scorpio1027 Scorpio1027 于 2014.08.01 11:13 提问

初学adaboost算法,求指教

新手,初学adaboost算法,从网上找了一些资料和文献,有些地方没有看懂,请各位老师们指点。

adaboost算法的基本原理是将在不同的样本分布下训练“弱分类器”,将多个“弱分类器”集成为一个“强分类器”,其关键是在每一轮的样本权重更新中,提高上一轮识别错误的样本权重,降低上一轮识别正确的样本权重。

我想问的是,在我找的资料和文献中,给出的算法流程都没有说明怎样根据样本分布进行下一轮的训练,样本的权重是体现在什么地方?

请各位老师赐教,谢谢

3个回答

wyattdenise
wyattdenise   2015.01.19 17:16

弱分类器算法,原文中并未指定。样本的权重最初是一样的,然后根据每次迭带,正确分类的样本权重减小,未正确分类的样本权重加大。体现在权重的变化上,即D(t+1)与D(t)的变化上,原文看下。Yoav Freund,Experiments with a New Boosting Algorithm

YC_andy
YC_andy   2015.04.16 16:56

分类器选取的依据是分类误差最小化,权重直接体现在分类误差上,而上一次错分的样本权重较大,所以本次分类器的选取会偏重于能正确分类权重较大样本。

u013162243
u013162243   2017.04.01 09:27

迭代次数就是分类器个数吗?

Csdn user default icon
上传中...
上传图片
插入图片
准确详细的回答,更有利于被提问者采纳,从而获得C币。复制、灌水、广告等回答会被删除,是时候展现真正的技术了!