2 shunfurh shunfurh 于 2017.09.13 09:59 提问

Pseudoprime numbers

Problem Description
Fermat's theorem states that for any prime number p and for any integer a > 1, a^p == a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but not very many) non-prime values of p, known as base-a pseudoprimes, have this property for some a. (And some, known as Carmichael Numbers, are base-a pseudoprimes for all a.)
Given 2 < p ≤ 1,000,000,000 and 1 < a < p, determine whether or not p is a base-a pseudoprime.

Input
Input contains several test cases followed by a line containing "0 0". Each test case consists of a line containing p and a.

Output
For each test case, output "yes" if p is a base-a pseudoprime; otherwise output "no".

Sample Input
3 2
10 3
341 2
341 3
1105 2
1105 3
0 0

Sample Output
no
no
yes
no
yes
yes

1个回答

caozhy
caozhy   Ds   Rxr 2017.09.28 23:55
已采纳
Csdn user default icon
上传中...
上传图片
插入图片