编程介的小学生 2019-09-21 21:57 采纳率: 20.5%
浏览 121

Random Walking

Problem Description
The Army of Coin-tossing Monkeys (ACM) is in the business of producing randomness. Good random numbers are important for many applications, such as cryptography, online gambling, randomized algorithms and panic attempts at solutions in the last few seconds of programming competitions.

Recently, one of the best monkeys has had to retire. However, before he left, he invented a new, cheaper way to generate randomness compared to directly using the randomness generated by coin-tossing monkeys. The method starts by taking an undirected graph with 2n nodes labelled 0, 1, …, 2n - 1. To generate k random n-bit numbers, they will let the monkeys toss n coins to decide where on the graph to start. This node number is the first number output. The monkeys will then pick a random edge from this node, and jump to the node that this edge connects to. This new node will be the second random number output. They will then select a random edge from this node (possibly back to the node they arrived from in the last step), follow it and output the number of the node they landed on. This walk will continue until k numbers have been output.

During experiments, the ACM has noticed that different graphs give different output distributions, some of them not very random. So, they have asked for your help testing the graphs to see if the randomness is of good enough quality to sell.

They consider a graph good if, for each of the n bits in each of the k numbers generated, the probability that this bit is output as 1 is greater than 25% and smaller than 75%.

Input
The input will consist of several data sets. Each set will start with a line consisting of three numbers k, n, e separated by single spaces, where k is the number of n-bit numbers to be generated and e is the number of edges in the graph (1 ≤ k ≤ 100, 1 ≤ n ≤ 10 and 1 ≤ e ≤ 2000). The next e lines will consist of two space-separated integers v1, v2 where 0 ≤ v1, v2 < 2n and v1 ≠ v2. Edges are undirected and each node is guaranteed to have at least one edge. There may be multiple edges between the same pair of nodes.
The last test case will be followed by a line with k = n = e = 0, which should not be processed.

Output
For each input case, output a single line consisting of the word Yes if the graph is good, and No otherwise.

Sample Input
10 2 3
0 3
1 3
2 3
5 2 4
0 1
0 3
1 2
2 3
0 0 0

Sample Output
No
Yes

  • 写回答

0条回答 默认 最新

    报告相同问题?

    悬赏问题

    • ¥15 求差集那个函数有问题,有无佬可以解决
    • ¥15 【提问】基于Invest的水源涵养
    • ¥20 微信网友居然可以通过vx号找到我绑的手机号
    • ¥15 寻一个支付宝扫码远程授权登录的软件助手app
    • ¥15 解riccati方程组
    • ¥15 display:none;样式在嵌套结构中的已设置了display样式的元素上不起作用?
    • ¥15 使用rabbitMQ 消息队列作为url源进行多线程爬取时,总有几个url没有处理的问题。
    • ¥15 Ubuntu在安装序列比对软件STAR时出现报错如何解决
    • ¥50 树莓派安卓APK系统签名
    • ¥65 汇编语言除法溢出问题