安装tensorflow-gpu后运行程序出现An error ocurred while starting the kernel问题

tensorflow2.0,cuda10.2,cudnn7.6,使用improt语句没有问题,
但是在执行model.add()语句时报错

2019-12-29 17:01:21.546770: F .\tensorflow/core/kernels/random_op_gpu.h:227] Non-OK-status: GpuLaunchKernel(FillPhiloxRandomKernelLaunch, num_blocks, block_size, 0, d.stream(), gen, data, size, dist) status: Internal: invalid device function

没有找到合适的解决方法,在此求助!感谢!

1个回答

可以指定gpu编号,如果只有一个gpu的话,序号为-1

Csdn user default icon
上传中...
上传图片
插入图片
抄袭、复制答案,以达到刷声望分或其他目的的行为,在CSDN问答是严格禁止的,一经发现立刻封号。是时候展现真正的技术了!
其他相关推荐
tensorflow-gpu:Faild to load tensorflow native runtime
linux系统下,安装好了cuda9.0+cudnn7.5+tensorflow-gpu1.11.0,运行代码时出现f![图片说明](https://img-ask.csdn.net/upload/201905/23/1558602428_698955.png), 但是如果将tensorflow-gpu版本换成对于的tensorflow cpu版本时可以运行的,咋回事???
tensorflow-gpu为何无法调用GPU进行运算?
如题,本人是小白级别的爱好者,使用的是联想台式机,win10系统,有一块GeForce GT730的独立显卡,想尝试安装tensorflow-gpu 进行加速。 在参考官网方法后,升级了显卡驱动,安装了CUDA9.0 及配套的cudnn7 并添加了环境变量。然后pip 安装tensorflow-gpu 安装成功后,import tensorflow as tf 不报错,但是运行如下代码时,始终显示GPU使用率为0 ``` import tensorflow as tf with tf.device('/cpu:0'): a=tf.constant([1.0,2.0,3.0,4.0,5.0,6.0],shape=[2,3],name='a') b=tf.constant([1.0,2.0,3.0,4.0,5.0,6.0],shape=[3,2],name='b') c=tf.matmul(a, b) sess=tf.Session(config=tf.ConfigProto(allow_soft_placement=False, log_device_placement=True)) print(sess.run(c)) ``` 试用如下代码检查是否有GPU可以被使用: ``` import os from tensorflow.python.client import device_lib os.environ["TF_CPP_MIN_LOG_LEVEL"] = "99" if __name__ == "__main__": print(device_lib.list_local_devices()) ``` 显示 只有一个CPU可以被调用 ``` [name: "/device:CPU:0" device_type: "CPU" memory_limit: 268435456 locality { } incarnation: 15723487639721858299 ] ``` 那么问题来了。。既然已经成功安装了tensorflow-gpu,为什么仍然无法调用gpu进行计算呢。。 而且,装好tensorflow-gpu之后,双击程序会闪退,但是从IDLE中run是可以运行的,也不报错,但就是不分配给GPU运算。 查看了一下cuda,显示GPU not supported ![图片说明](https://img-ask.csdn.net/upload/201811/08/1541662095_841538.jpg) 这就愈发郁闷了。。。。。。 深知肯定是自己还有什么地方没设置好,但是网上也找不到对应的教程了,只好在此想各位大了!!!! 万望赐教!!!! 感激不尽!!!!
tensorflow-gpu为何无法调用GPU进行运算???
如题,本人是小白级别的爱好者,使用的是联想台式机,win10系统,有一块GeForce GT730的独立显卡,想尝试安装tensorflow-gpu 进行加速。 在参考官网方法后,升级了显卡驱动,安装了CUDA9.0 及配套的cudnn7 并添加了环境变量。然后pip 安装tensorflow-gpu 安装成功后,import tensorflow as tf 不报错,但是运行如下代码时,始终显示GPU使用率为0 ``` import tensorflow as tf with tf.device('/cpu:0'): a=tf.constant([1.0,2.0,3.0,4.0,5.0,6.0],shape=[2,3],name='a') b=tf.constant([1.0,2.0,3.0,4.0,5.0,6.0],shape=[3,2],name='b') c=tf.matmul(a, b) sess=tf.Session(config=tf.ConfigProto(allow_soft_placement=False, log_device_placement=True)) print(sess.run(c)) ``` 试用如下代码检查是否有GPU可以被使用: ``` import os from tensorflow.python.client import device_lib os.environ["TF_CPP_MIN_LOG_LEVEL"] = "99" if __name__ == "__main__": print(device_lib.list_local_devices()) ``` 显示 只有一个CPU可以被调用 ``` [name: "/device:CPU:0" device_type: "CPU" memory_limit: 268435456 locality { } incarnation: 15723487639721858299 ] ``` 那么问题来了。。既然已经成功安装了tensorflow-gpu,为什么仍然无法调用gpu进行计算呢。。 而且,装好tensorflow-gpu之后,双击程序会闪退,但是从IDLE中run是可以运行的,也不报错,但就是不分配给GPU运算。 查看了一下cuda,显示GPU not supported ![图片说明](https://img-ask.csdn.net/upload/201811/08/1541663479_238541.jpg) 这就愈发郁闷了。。。。。。 深知肯定是自己还有什么地方没设置好,但是网上也找不到对应的教程了,只好在此想各位大了!!!! 万望赐教!!!! 感激不尽!!!!
tensorflow-gpu跑训练时GPU的compute0使用率90%多,compute1使用率却为0%
如题,tensorflow-gpu跑训练时,Windows的任务管理器显示GPU的compute0使用率90%多,compute1使用率却为0%,截图如下,请问是什么原因? ![图片说明](https://img-ask.csdn.net/upload/201909/22/1569145936_781691.png)
怎样正确在pycharm运行tensorflow-gpu
我在网上尝试寻找正确安装与运行tensorflow-gpu的方法。 最终卡在了无法导入tensorflow,但是却可以.出联想方法,求助。 ![图片说明](https://img-ask.csdn.net/upload/201909/27/1569546276_565168.png) 全部报错如下: Traceback (most recent call last): File "C:\Users\machenike\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow.py", line 58, in <module> from tensorflow.python.pywrap_tensorflow_internal import * File "C:\Users\machenike\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 28, in <module> _pywrap_tensorflow_internal = swig_import_helper() File "C:\Users\machenike\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 24, in swig_import_helper _mod = imp.load_module('_pywrap_tensorflow_internal', fp, pathname, description) File "C:\Users\machenike\Anaconda3\lib\imp.py", line 242, in load_module return load_dynamic(name, filename, file) File "C:\Users\machenike\Anaconda3\lib\imp.py", line 342, in load_dynamic return _load(spec) ImportError: DLL load failed: 找不到指定的模块。 During handling of the above exception, another exception occurred: Traceback (most recent call last): File "D:/PycharmProjects/DeepLearning2/demo.py", line 1, in <module> import tensorflow File "C:\Users\machenike\Anaconda3\lib\site-packages\tensorflow\__init__.py", line 28, in <module> from tensorflow.python import pywrap_tensorflow # pylint: disable=unused-import File "C:\Users\machenike\Anaconda3\lib\site-packages\tensorflow\python\__init__.py", line 49, in <module> from tensorflow.python import pywrap_tensorflow File "C:\Users\machenike\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow.py", line 74, in <module> raise ImportError(msg) ImportError: Traceback (most recent call last): File "C:\Users\machenike\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow.py", line 58, in <module> from tensorflow.python.pywrap_tensorflow_internal import * File "C:\Users\machenike\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 28, in <module> _pywrap_tensorflow_internal = swig_import_helper() File "C:\Users\machenike\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 24, in swig_import_helper _mod = imp.load_module('_pywrap_tensorflow_internal', fp, pathname, description) File "C:\Users\machenike\Anaconda3\lib\imp.py", line 242, in load_module return load_dynamic(name, filename, file) File "C:\Users\machenike\Anaconda3\lib\imp.py", line 342, in load_dynamic return _load(spec) ImportError: DLL load failed: 找不到指定的模块。 Failed to load the native TensorFlow runtime. See https://www.tensorflow.org/install/errors for some common reasons and solutions. Include the entire stack trace above this error message when asking for help.
关于tensorflow-gpu的一些问题
我已经成功安装了tensorflow-gpu,CUDA版本9.0,也按照要求配置好了cuDNN相关文件,环境变量也已添加 但是在pycharm中仍然报错,python里面运行正常。如图: ![![![![图片说明](https://img-ask.csdn.net/upload/201809/17/1537192313_707897.png)图片说明](https://img-ask.csdn.net/upload/201809/17/1537192308_765.png)图片说明](https://img-ask.csdn.net/upload/201809/17/1537192300_286821.png)图片说明](https://img-ask.csdn.net/upload/201809/17/1537192050_43709.png) 实在不知道怎么办了,希望大佬能帮帮我这个小白吧,万分感谢!
pycharm中如何用tensoflow-gpu运行文件
pycharm中安装了tensorflow与tensorflow-gpu,如何用tensorflow-gpu运行文件 当我只安装tensorflow时文件可以以cpu运行,但是如果配置两个都安装的时候就不可以运行了,为什么啊,求各位大佬解答。 ![图片说明](https://img-ask.csdn.net/upload/201909/25/1569424897_25493.png) 最后也没有报错,不知道什么原因 ![图片说明](https://img-ask.csdn.net/upload/201909/25/1569424976_365833.png) tensorflow都已安装
利用conda install TensorFlow-gpu在win7上conda3.7版本上安装tensorflow后,测试时出现下面的问题
在测试import TensorFlow as tf print('hello'),出现下列问题,请问这是什么原因造成的,如何改? ``` Traceback (most recent call last): File "D:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow.py", line 58, in <module> from tensorflow.python.pywrap_tensorflow_internal import * File "D:\Program Files\JetBrains\PyCharm 2019.1.3\helpers\pydev\_pydev_bundle\pydev_import_hook.py", line 21, in do_import module = self._system_import(name, *args, **kwargs) File "D:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 28, in <module> _pywrap_tensorflow_internal = swig_import_helper() File "D:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 24, in swig_import_helper _mod = imp.load_module('_pywrap_tensorflow_internal', fp, pathname, description) File "D:\ProgramData\Anaconda3\lib\imp.py", line 242, in load_module return load_dynamic(name, filename, file) File "D:\ProgramData\Anaconda3\lib\imp.py", line 342, in load_dynamic return _load(spec) ImportError: DLL load failed: 找不到指定的程序。 During handling of the above exception, another exception occurred: Traceback (most recent call last): File "D:\ProgramData\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py", line 3296, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "<ipython-input-2-d1ce02c95f3b>", line 1, in <module> runfile('C:/Users/jianjiu17/Desktop/deep-learning-from-scratch-master/uittle.py', wdir='C:/Users/jianjiu17/Desktop/deep-learning-from-scratch-master') File "D:\Program Files\JetBrains\PyCharm 2019.1.3\helpers\pydev\_pydev_bundle\pydev_umd.py", line 197, in runfile pydev_imports.execfile(filename, global_vars, local_vars) # execute the script File "D:\Program Files\JetBrains\PyCharm 2019.1.3\helpers\pydev\_pydev_imps\_pydev_execfile.py", line 18, in execfile exec(compile(contents+"\n", file, 'exec'), glob, loc) File "C:/Users/jianjiu17/Desktop/deep-learning-from-scratch-master/uittle.py", line 1, in <module> import tensorflow as tf File "D:\Program Files\JetBrains\PyCharm 2019.1.3\helpers\pydev\_pydev_bundle\pydev_import_hook.py", line 21, in do_import module = self._system_import(name, *args, **kwargs) File "D:\ProgramData\Anaconda3\lib\site-packages\tensorflow\__init__.py", line 24, in <module> from tensorflow.python import pywrap_tensorflow # pylint: disable=unused-import File "D:\Program Files\JetBrains\PyCharm 2019.1.3\helpers\pydev\_pydev_bundle\pydev_import_hook.py", line 21, in do_import module = self._system_import(name, *args, **kwargs) File "D:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\__init__.py", line 49, in <module> from tensorflow.python import pywrap_tensorflow File "D:\Program Files\JetBrains\PyCharm 2019.1.3\helpers\pydev\_pydev_bundle\pydev_import_hook.py", line 21, in do_import module = self._system_import(name, *args, **kwargs) File "D:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow.py", line 74, in <module> raise ImportError(msg) ImportError: Traceback (most recent call last): File "D:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow.py", line 58, in <module> from tensorflow.python.pywrap_tensorflow_internal import * File "D:\Program Files\JetBrains\PyCharm 2019.1.3\helpers\pydev\_pydev_bundle\pydev_import_hook.py", line 21, in do_import module = self._system_import(name, *args, **kwargs) File "D:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 28, in <module> _pywrap_tensorflow_internal = swig_import_helper() File "D:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 24, in swig_import_helper _mod = imp.load_module('_pywrap_tensorflow_internal', fp, pathname, description) File "D:\ProgramData\Anaconda3\lib\imp.py", line 242, in load_module return load_dynamic(name, filename, file) File "D:\ProgramData\Anaconda3\lib\imp.py", line 342, in load_dynamic return _load(spec) ImportError: DLL load failed: 找不到指定的程序。 Failed to load the native TensorFlow runtime. See https://www.tensorflow.org/install/errors for some common reasons and solutions. Include the entire stack trace above this error message when asking for help. ```
tensorflow-gpu Failed to get convolution algorithm.
成功安装了gpu版的tensorflow之后,尝试跑两个神经网 第一个:全连接的DNN 关键代码如下: ``` xs=tf.placeholder(tf.float32,[None,10]) ys=tf.placeholder(tf.float32,[None,7]) 'layer1:ful connect' W_fc1=weight_variable([10,5000],name_data=None) b_fc1=bias_variable([5000],name_data=None) h_fc1=tf.nn.relu(tf.matmul(xs,W_fc1)+b_fc1) 'layer2:ful connect' W_fc2=weight_variable([5000,5000],name_data=None) b_fc2=bias_variable([5000],name_data=None) h_fc2=tf.nn.relu(tf.matmul(h_fc1,W_fc2)+b_fc2) 'layer3:ful connect' W_fc3=weight_variable([5000,5000],name_data=None) b_fc3=bias_variable([5000],name_data=None) h_fc3=tf.nn.relu(tf.matmul(h_fc2,W_fc3)+b_fc3) 'output layer::ful connect,maxsoft' W_fc4=weight_variable([5000,7],name_data=None) b_fc4=bias_variable([7],name_data=None) output=tf.nn.sigmoid(tf.matmul(h_fc3,W_fc4)+b_fc4) ``` 能够顺利的利用gpu加速,确实比cpu的计算速度快不少。 然而,在跑cnn的时候(部分代码如下) ``` 'def weights' def weight_variable(shape,name_data): initial=tf.truncated_normal(shape,stddev=0.1) return tf.Variable(initial,dtype=tf.float32,name=name_data) 'def biases' def bias_variable(shape,name_data): initial=tf.constant(0.1,shape=shape) return tf.Variable(initial,dtype=tf.float32,name=name_data) 'def conv2d layer' def conv2d(x,W): return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME') 'def pooling layer as max_pool' def max_pool_2x2_v(x): return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='VALID') 'def pooling layer as max_pool' def max_pool_2x2_s(x): return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,1,1,1],padding='SAME') #input layer 'placeholder xs & ys' xs=tf.placeholder(tf.float32,[None,64]) ys=tf.placeholder(tf.float32,[None,1]) 'reshape the xs as x_image,which shape is 10*10' x_image=tf.reshape(xs,[-1,8,8,1]) print('red input::',x_image) #layer2:conv layer 2 patches 'patch1' W_conv_r_1_1=weight_variable([3,3,1,20],name_data='W_conv_r_1_1') b_conv_r_1_1=bias_variable([20],name_data='b_conv_r_1_1') h_conv_r_1_1=tf.nn.relu6(conv2d(x_image,W_conv_r_1_1)+b_conv_r_1_1) 'patch2' W_conv_r_1_2=weight_variable([3,3,1,10],name_data='W_conv_r_1_2') b_conv_r_1_2=bias_variable([10],name_data='b_conv_r_1_2') h_conv_r_1_2=tf.nn.relu6(conv2d(x_image,W_conv_r_1_2)+b_conv_r_1_2) 'concat to layer2' h_conv_r_1=tf.concat([h_conv_r_1_1,h_conv_r_1_2],3) print("red layer2::",h_conv_r_1) #layer3:conv layer:1 patch add with h_conv_r_1_2 'patch1' W_conv_r_2_1=weight_variable([5,5,30,30],name_data='W_conv_r_2_1') b_conv_r_2_1=bias_variable([30],name_data='b_conv_r_2_1') h_conv_r_2_1=tf.nn.elu(conv2d(h_conv_r_1,W_conv_r_2_1)+b_conv_r_2_1) 'patch for next layer' W_conv_r_2_2=weight_variable([5,5,30,15],name_data='W_conv_r_2_2') b_conv_r_2_2=bias_variable([15],name_data='b_conv_r_2_2') h_conv_r_2_2=tf.nn.elu(conv2d(h_conv_r_1,W_conv_r_2_2)+b_conv_r_2_2) 'concat for layer3' h_conv_r_2=tf.concat([h_conv_r_2_1,h_conv_r_1_2],3) print('red layer3;:',h_conv_r_2) ``` 上述代码是一个利用cnn训练黑白棋的程序,可以在CPU环境下顺利的运行,但是在gpu环境下,运行时会报错:Failed to get convolution algorithm (无法获得卷积算法) 完整的报错信息如下: ``` Traceback (most recent call last): File "C:\Users\fengg\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\client\session.py", line 1334, in _do_call return fn(*args) File "C:\Users\fengg\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\client\session.py", line 1319, in _run_fn options, feed_dict, fetch_list, target_list, run_metadata) File "C:\Users\fengg\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\client\session.py", line 1407, in _call_tf_sessionrun run_metadata) tensorflow.python.framework.errors_impl.UnknownError: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above. [[{{node Conv2D}} = Conv2D[T=DT_FLOAT, data_format="NHWC", dilations=[1, 1, 1, 1], padding="SAME", strides=[1, 1, 1, 1], use_cudnn_on_gpu=true, _device="/job:localhost/replica:0/task:0/device:GPU:0"](Reshape, W_conv_r_1_1/read)]] [[{{node Sigmoid/_75}} = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_105_Sigmoid", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]] During handling of the above exception, another exception occurred: Traceback (most recent call last): File "C:\Users\fengg\Desktop\Othello with ResNet 3\Othello with ResNet-large\Othello with ResNet-large\train_ResNet.py", line 326, in <module> try_point=sess.run(prediction_r, feed_dict={xs:board_try,ys:[[0.0001]]}) File "C:\Users\fengg\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\client\session.py", line 929, in run run_metadata_ptr) File "C:\Users\fengg\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\client\session.py", line 1152, in _run feed_dict_tensor, options, run_metadata) File "C:\Users\fengg\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\client\session.py", line 1328, in _do_run run_metadata) File "C:\Users\fengg\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\client\session.py", line 1348, in _do_call raise type(e)(node_def, op, message) tensorflow.python.framework.errors_impl.UnknownError: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above. [[node Conv2D (defined at C:\Users\fengg\Desktop\Othello with ResNet 3\Othello with ResNet-large\Othello with ResNet-large\train_ResNet.py:31) = Conv2D[T=DT_FLOAT, data_format="NHWC", dilations=[1, 1, 1, 1], padding="SAME", strides=[1, 1, 1, 1], use_cudnn_on_gpu=true, _device="/job:localhost/replica:0/task:0/device:GPU:0"](Reshape, W_conv_r_1_1/read)]] [[{{node Sigmoid/_75}} = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_105_Sigmoid", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]] Caused by op 'Conv2D', defined at: File "<string>", line 1, in <module> File "C:\Users\fengg\AppData\Local\Programs\Python\Python35\lib\idlelib\run.py", line 130, in main ret = method(*args, **kwargs) File "C:\Users\fengg\AppData\Local\Programs\Python\Python35\lib\idlelib\run.py", line 357, in runcode exec(code, self.locals) File "C:\Users\fengg\Desktop\Othello with ResNet 3\Othello with ResNet-large\Othello with ResNet-large\train_ResNet.py", line 57, in <module> h_conv_r_1_1=tf.nn.relu6(conv2d(x_image,W_conv_r_1_1)+b_conv_r_1_1) File "C:\Users\fengg\Desktop\Othello with ResNet 3\Othello with ResNet-large\Othello with ResNet-large\train_ResNet.py", line 31, in conv2d return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME') File "C:\Users\fengg\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\ops\gen_nn_ops.py", line 1044, in conv2d data_format=data_format, dilations=dilations, name=name) File "C:\Users\fengg\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 787, in _apply_op_helper op_def=op_def) File "C:\Users\fengg\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\util\deprecation.py", line 488, in new_func return func(*args, **kwargs) File "C:\Users\fengg\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\framework\ops.py", line 3274, in create_op op_def=op_def) File "C:\Users\fengg\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\framework\ops.py", line 1770, in __init__ self._traceback = tf_stack.extract_stack() UnknownError (see above for traceback): Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above. [[node Conv2D (defined at C:\Users\fengg\Desktop\Othello with ResNet 3\Othello with ResNet-large\Othello with ResNet-large\train_ResNet.py:31) = Conv2D[T=DT_FLOAT, data_format="NHWC", dilations=[1, 1, 1, 1], padding="SAME", strides=[1, 1, 1, 1], use_cudnn_on_gpu=true, _device="/job:localhost/replica:0/task:0/device:GPU:0"](Reshape, W_conv_r_1_1/read)]] [[{{node Sigmoid/_75}} = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_105_Sigmoid", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]] ``` 请问这个问题该如何解决,谢谢了!
求助啊,tensorflow-gpu的配置,4天没搞出来,崩溃了
大佬们求助,小弟用win7 64位+tensorflow-1.2.0rc0--gp+cuda8.0.61+cudnn5.1+gtx1080来配置深度学习的环境。 结果搞了4天,pycharm控制台一直出现 can not cuInit: CUDA_NO_DEVICE_ERROR......的错误,gpu也启动不了,只能用cpu。 而且更糟糕的是,nvdia的控制面板也打不开,总是出错,停止工作。因此,刚开始怀疑是驱动的问题,从官网上下载了最新的驱动,结果两个问题都没解决。 后来,我发现cuda的测试例子中的deviceQuery和bandwidthTest都运行失败,说明我连cuda都没装成功,简直吐血。对了,cuda自带的驱动是375.61. 重装驱动也没用 实在没办,法,谁来救救我
用tensorflow-gpu跑SSD-Mobilenet模型GPU使用率很低这是为什么
![这是GPU运行情况](https://img-ask.csdn.net/upload/201903/16/1552742279_678606.png) 这是GPU运行情况 ![这是训练过程](https://img-ask.csdn.net/upload/201903/16/1552742314_282445.png) 这是训练过程
Tensorflow-gpu 显存不会自动释放?
在jupyter上跑with tf.Session() as sess语句结束后,电脑变得很卡,打开任务管理器 显存占用3.2G,点了restart显存才能释放,我显存4G的,这是什么原因?为什么教学视频中用cpu 没这个问题
求教,跑tensorflow-gpu测试代码时报错cudaGetDevice() failed. Status: cudaGetErrorString symbol not found
![图片说明](https://img-ask.csdn.net/upload/201911/20/1574255233_540412.png) cuda版本![图片说明](https://img-ask.csdn.net/upload/201911/20/1574255339_304467.png) python版本3.7
tensorflow-gpu 训练启动的时候内存炸了 显存没有消耗
为啥啊 难道我用GPU跑也需要内存达到要求吗 本来想着只用显存 内存没有消耗的 这下又跑不起来了
关于Ubuntu16.04上tensorflow-gpu 的cudnn安装问题
跑了下 MNIST卷积神经网络的例子,出现了如图错误,说我cudnn版本安装错误。可我从来没有安装过cudnn7的版本啊,而且我安装cudnn5.1.10一直出现 不是连接符号的问题,求解啊![图片说明](https://img-ask.csdn.net/upload/201712/01/1512102517_6601.jpg)
为什么我的tensorflow2.0.0报错找不到cuda9.0?
上个月成功跑出了一个图像识别的py脚本,这个月开始鼓捣服务器,结果服务器没弄好,原本的脚本也不知为何开始报错了,原代码一个字没改过... 上网搜了几个方法更新了tensorflow-gpu之后,开始报莫名其妙的错误了: ![图片说明](https://img-ask.csdn.net/upload/202002/16/1581844664_325945.png) <br>CMD报错结果如上 <br>可是问题是原先的配置便是tensorflow2.0.0+tensorflow-gpu1.9.0+CUDA10.0.0 环境变量里配的PATH也没改过 球球各位带神、带牛们帮小弟我看看
用tensorflow-gpu跑SSD-Mobilenet模型隔一段时间就会出现以下内容
![图片说明](https://img-ask.csdn.net/upload/201903/16/1552739746_369680.png) 我用的以下命令python object____detection/train.py --train_dir object_detection/train --pipeline_config_path object__detection/ssd__model/ssd_mobilenet_v1_pets.config___ 然后在object_detection 目录下没有见到train文件夹 这正常吗,我之前用CPU跑的时候很快就创建了train文件夹
基于tensorflow的多GPU并行DCGAN程序
想请问下基于tensorflow的DCGAN多GPU并行程序的案例,或者tensorflow的多GPU并行程序的其他案例程序
tensorboard提示错误cannot import name 'dump_age'
最开始使用tensorboard的时候是没有问题的,但是不知道为什么,用了几次之后就变成了这样,每次都是提示cannot import name 'dump age',之前没有遇到过这种错误,希望有大佬可以帮忙解答一下。非常感谢 代码是没有问题的,我用最开始用过的代码提示也是这样,想在相当于整个tensorboard不能用了。 图片我就不上传了,截的图一直没办法上传,有点蛋疼! CMD中执行的命令如下: C:\Users\Lenovo>e: E:\>cd E:\Python\Jupyter notebook\Tensorflow-study\inception_log E:\Python\Jupyter notebook\Tensorflow-study\inception_log>tensorboard --host=127.0.0.1 Traceback (most recent call last): File "e:\anaconda3\envs\tensorflow-gpu\lib\runpy.py", line 193, in _run_module_as_main "__main__", mod_spec) File "e:\anaconda3\envs\tensorflow-gpu\lib\runpy.py", line 85, in _run_code exec(code, run_globals) File "E:\Anaconda3\envs\tensorflow-gpu\Scripts\tensorboard.exe\__main__.py", line 5, in <module> File "e:\anaconda3\envs\tensorflow-gpu\lib\site-packages\tensorboard\main.py", line 45, in <module> from tensorboard import default File "e:\anaconda3\envs\tensorflow-gpu\lib\site-packages\tensorboard\default.py", line 37, in <module> from tensorboard.plugins.audio import audio_plugin File "e:\anaconda3\envs\tensorflow-gpu\lib\site-packages\tensorboard\plugins\audio\audio_plugin.py", line 23, in <module> from werkzeug import wrappers File "e:\anaconda3\envs\tensorflow-gpu\lib\site-packages\werkzeug\__init__.py", line 151, in <module> __import__('werkzeug.exceptions') File "e:\anaconda3\envs\tensorflow-gpu\lib\site-packages\werkzeug\exceptions.py", line 71, in <module> from werkzeug.wrappers import Response File "e:\anaconda3\envs\tensorflow-gpu\lib\site-packages\werkzeug\wrappers\__init__.py", line 26, in <module> from .common_descriptors import CommonRequestDescriptorsMixin File "e:\anaconda3\envs\tensorflow-gpu\lib\site-packages\werkzeug\wrappers\common_descriptors.py", line 6, in <module> from ..http import dump_age ImportError: cannot import name 'dump_age' E:\Python\Jupyter notebook\Tensorflow-study\inception_log>
终于明白阿里百度这样的大公司,为什么面试经常拿ThreadLocal考验求职者了
点击上面↑「爱开发」关注我们每晚10点,捕获技术思考和创业资源洞察什么是ThreadLocalThreadLocal是一个本地线程副本变量工具类,各个线程都拥有一份线程私有的数
程序员必须掌握的核心算法有哪些?
由于我之前一直强调数据结构以及算法学习的重要性,所以就有一些读者经常问我,数据结构与算法应该要学习到哪个程度呢?,说实话,这个问题我不知道要怎么回答你,主要取决于你想学习到哪些程度,不过针对这个问题,我稍微总结一下我学过的算法知识点,以及我觉得值得学习的算法。这些算法与数据结构的学习大多数是零散的,并没有一本把他们全部覆盖的书籍。下面是我觉得值得学习的一些算法以及数据结构,当然,我也会整理一些看过...
《奇巧淫技》系列-python!!每天早上八点自动发送天气预报邮件到QQ邮箱
此博客仅为我业余记录文章所用,发布到此,仅供网友阅读参考,如有侵权,请通知我,我会删掉。 补充 有不少读者留言说本文章没有用,因为天气预报直接打开手机就可以收到了,为何要多此一举发送到邮箱呢!!!那我在这里只能说:因为你没用,所以你没用!!! 这里主要介绍的是思路,不是天气预报!不是天气预报!!不是天气预报!!!天气预报只是用于举例。请各位不要再刚了!!! 下面是我会用到的两个场景: 每日下
面试官问我:什么是消息队列?什么场景需要他?用了会出现什么问题?
你知道的越多,你不知道的越多 点赞再看,养成习惯 GitHub上已经开源 https://github.com/JavaFamily 有一线大厂面试点脑图、个人联系方式,欢迎Star和完善 前言 消息队列在互联网技术存储方面使用如此广泛,几乎所有的后端技术面试官都要在消息队列的使用和原理方面对小伙伴们进行360°的刁难。 作为一个在互联网公司面一次拿一次Offer的面霸,打败了无数
8年经验面试官详解 Java 面试秘诀
    作者 | 胡书敏 责编 | 刘静 出品 | CSDN(ID:CSDNnews) 本人目前在一家知名外企担任架构师,而且最近八年来,在多家外企和互联网公司担任Java技术面试官,前后累计面试了有两三百位候选人。在本文里,就将结合本人的面试经验,针对Java初学者、Java初级开发和Java开发,给出若干准备简历和准备面试的建议。   Java程序员准备和投递简历的实
究竟你适不适合买Mac?
我清晰的记得,刚买的macbook pro回到家,开机后第一件事情,就是上了淘宝网,花了500元钱,找了一个上门维修电脑的师傅,上门给我装了一个windows系统。。。。。。 表砍我。。。 当时买mac的初衷,只是想要个固态硬盘的笔记本,用来运行一些复杂的扑克软件。而看了当时所有的SSD笔记本后,最终决定,还是买个好(xiong)看(da)的。 已经有好几个朋友问我mba怎么样了,所以今天尽量客观
程序员一般通过什么途径接私活?
二哥,你好,我想知道一般程序猿都如何接私活,我也想接,能告诉我一些方法吗? 上面是一个读者“烦不烦”问我的一个问题。其实不止是“烦不烦”,还有很多读者问过我类似这样的问题。 我接的私活不算多,挣到的钱也没有多少,加起来不到 20W。说实话,这个数目说出来我是有点心虚的,毕竟太少了,大家轻喷。但我想,恰好配得上“一般程序员”这个称号啊。毕竟苍蝇再小也是肉,我也算是有经验的人了。 唾弃接私活、做外
大学四年自学走来,这些珍藏的「实用工具/学习网站」我全贡献出来了
知乎高赞:文中列举了互联网一线大厂程序员都在用的工具集合,涉及面非常广,小白和老手都可以进来看看,或许有新收获。
《阿里巴巴开发手册》读书笔记-编程规约
Java编程规约命名风格 命名风格 类名使用UpperCamelCase风格 方法名,参数名,成员变量,局部变量都统一使用lowerCamelcase风格 常量命名全部大写,单词间用下划线隔开, 力求语义表达完整清楚,不要嫌名字长 ...
Python爬虫爬取淘宝,京东商品信息
小编是一个理科生,不善长说一些废话。简单介绍下原理然后直接上代码。 使用的工具(Python+pycharm2019.3+selenium+xpath+chromedriver)其中要使用pycharm也可以私聊我selenium是一个框架可以通过pip下载 pip install selenium -i https://pypi.tuna.tsinghua.edu.cn/simple/ 
阿里程序员写了一个新手都写不出的低级bug,被骂惨了。
你知道的越多,你不知道的越多 点赞再看,养成习惯 本文 GitHub https://github.com/JavaFamily 已收录,有一线大厂面试点思维导图,也整理了很多我的文档,欢迎Star和完善,大家面试可以参照考点复习,希望我们一起有点东西。 前前言 为啥今天有个前前言呢? 因为你们的丙丙啊,昨天有牌面了哟,直接被微信官方推荐,知乎推荐,也就仅仅是还行吧(心里乐开花)
Java工作4年来应聘要16K最后没要,细节如下。。。
前奏: 今天2B哥和大家分享一位前几天面试的一位应聘者,工作4年26岁,统招本科。 以下就是他的简历和面试情况。 基本情况: 专业技能: 1、&nbsp;熟悉Sping了解SpringMVC、SpringBoot、Mybatis等框架、了解SpringCloud微服务 2、&nbsp;熟悉常用项目管理工具:SVN、GIT、MAVEN、Jenkins 3、&nbsp;熟悉Nginx、tomca
Python爬虫精简步骤1 获取数据
爬虫的工作分为四步: 1.获取数据。爬虫程序会根据我们提供的网址,向服务器发起请求,然后返回数据。 2.解析数据。爬虫程序会把服务器返回的数据解析成我们能读懂的格式。 3.提取数据。爬虫程序再从中提取出我们需要的数据。 4.储存数据。爬虫程序把这些有用的数据保存起来,便于你日后的使用和分析。 这一篇的内容就是:获取数据。 首先,我们将会利用一个强大的库——requests来获取数据。 在电脑上安装
Python绘图,圣诞树,花,爱心 | Turtle篇
1.画圣诞树 import turtle screen = turtle.Screen() screen.setup(800,600) circle = turtle.Turtle() circle.shape('circle') circle.color('red') circle.speed('fastest') circle.up() square = turtle.Turtle()
作为一个程序员,CPU的这些硬核知识你必须会!
CPU对每个程序员来说,是个既熟悉又陌生的东西? 如果你只知道CPU是中央处理器的话,那可能对你并没有什么用,那么作为程序员的我们,必须要搞懂的就是CPU这家伙是如何运行的,尤其要搞懂它里面的寄存器是怎么一回事,因为这将让你从底层明白程序的运行机制。 随我一起,来好好认识下CPU这货吧 把CPU掰开来看 对于CPU来说,我们首先就要搞明白它是怎么回事,也就是它的内部构造,当然,CPU那么牛的一个东
破14亿,Python分析我国存在哪些人口危机!
2020年1月17日,国家统计局发布了2019年国民经济报告,报告中指出我国人口突破14亿。 猪哥的朋友圈被14亿人口刷屏,但是很多人并没有看到我国复杂的人口问题:老龄化、男女比例失衡、生育率下降、人口红利下降等。 今天我们就来分析一下我们国家的人口数据吧! 更多有趣分析教程,扫描下方二维码关注vx公号「裸睡的猪」 即可查看! 一、背景 1.人口突破14亿 2020年1月17日,国家统计局发布
听说想当黑客的都玩过这个Monyer游戏(1~14攻略)
第零关 进入传送门开始第0关(游戏链接) 请点击链接进入第1关: 连接在左边→ ←连接在右边 看不到啊。。。。(只能看到一堆大佬做完的留名,也能看到菜鸡的我,在后面~~) 直接fn+f12吧 &lt;span&gt;连接在左边→&lt;/span&gt; &lt;a href="first.php"&gt;&lt;/a&gt; &lt;span&gt;←连接在右边&lt;/span&gt; o
在家远程办公效率低?那你一定要收好这个「在家办公」神器!
相信大家都已经收到国务院延长春节假期的消息,接下来,在家远程办公可能将会持续一段时间。 但是问题来了。远程办公不是人在电脑前就当坐班了,相反,对于沟通效率,文件协作,以及信息安全都有着极高的要求。有着非常多的挑战,比如: 1在异地互相不见面的会议上,如何提高沟通效率? 2文件之间的来往反馈如何做到及时性?如何保证信息安全? 3如何规划安排每天工作,以及如何进行成果验收? ......
作为一个程序员,内存和磁盘的这些事情,你不得不知道啊!!!
截止目前,我已经分享了如下几篇文章: 一个程序在计算机中是如何运行的?超级干货!!! 作为一个程序员,CPU的这些硬核知识你必须会! 作为一个程序员,内存的这些硬核知识你必须懂! 这些知识可以说是我们之前都不太重视的基础知识,可能大家在上大学的时候都学习过了,但是嘞,当时由于老师讲解的没那么有趣,又加上这些知识本身就比较枯燥,所以嘞,大家当初几乎等于没学。 再说啦,学习这些,也看不出来有什么用啊!
别低估自己的直觉,也别高估自己的智商
所有群全部吵翻天,朋友圈全部沦陷,公众号疯狂转发。这两周没怎么发原创,只发新闻,可能有人注意到了。我不是懒,是文章写了却没发,因为大家的关注力始终在这次的疫情上面,发了也没人看。当然,我...
这个世界上人真的分三六九等,你信吗?
偶然间,在知乎上看到一个问题 一时间,勾起了我深深的回忆。 以前在厂里打过两次工,做过家教,干过辅导班,做过中介。零下几度的晚上,贴过广告,满脸、满手地长冻疮。   再回首那段岁月,虽然苦,但让我学会了坚持和忍耐。让我明白了,在这个世界上,无论环境多么的恶劣,只要心存希望,星星之火,亦可燎原。   下文是原回答,希望能对你能有所启发。   如果我说,这个世界上人真的分三六九等,
为什么听过很多道理,依然过不好这一生?
记录学习笔记是一个重要的习惯,不希望学习过的东西成为过眼云烟。做总结的同时也是一次复盘思考的过程。 本文是根据阅读得到 App上《万维钢·精英日课》部分文章后所做的一点笔记和思考。学习是一个系统的过程,思维模型的建立需要相对完整的学习和思考过程。以下观点是在碎片化阅读后总结的一点心得总结。
B 站上有哪些很好的学习资源?
哇说起B站,在小九眼里就是宝藏般的存在,放年假宅在家时一天刷6、7个小时不在话下,更别提今年的跨年晚会,我简直是跪着看完的!! 最早大家聚在在B站是为了追番,再后来我在上面刷欧美新歌和漂亮小姐姐的舞蹈视频,最近两年我和周围的朋友们已经把B站当作学习教室了,而且学习成本还免费,真是个励志的好平台ヽ(.◕ฺˇд ˇ◕ฺ;)ノ 下面我们就来盘点一下B站上优质的学习资源: 综合类 Oeasy: 综合
如何优雅地打印一个Java对象?
你好呀,我是沉默王二,一个和黄家驹一样身高,和刘德华一样颜值的程序员。虽然已经写了十多年的 Java 代码,但仍然觉得自己是个菜鸟(请允许我惭愧一下)。 在一个月黑风高的夜晚,我思前想后,觉得再也不能这么蹉跎下去了。于是痛下决心,准备通过输出的方式倒逼输入,以此来修炼自己的内功,从而进阶成为一名真正意义上的大神。与此同时,希望这些文章能够帮助到更多的读者,让大家在学习的路上不再寂寞、空虚和冷。 ...
雷火神山直播超两亿,Web播放器事件监听是怎么实现的?
Web播放器解决了在手机浏览器和PC浏览器上播放音视频数据的问题,让视音频内容可以不依赖用户安装App,就能进行播放以及在社交平台进行传播。在视频业务大数据平台中,播放数据的统计分析非常重要,所以Web播放器在使用过程中,需要对其内部的数据进行收集并上报至服务端,此时,就需要对发生在其内部的一些播放行为进行事件监听。 那么Web播放器事件监听是怎么实现的呢? 01 监听事件明细表 名
3万字总结,Mysql优化之精髓
本文知识点较多,篇幅较长,请耐心学习 MySQL已经成为时下关系型数据库产品的中坚力量,备受互联网大厂的青睐,出门面试想进BAT,想拿高工资,不会点MySQL优化知识,拿offer的成功率会大大下降。 为什么要优化 系统的吞吐量瓶颈往往出现在数据库的访问速度上 随着应用程序的运行,数据库的中的数据会越来越多,处理时间会相应变慢 数据是存放在磁盘上的,读写速度无法和内存相比 如何优化 设计
Linux 命令(122)—— watch 命令
1.命令简介 2.命令格式 3.选项说明 4.常用示例 参考文献 [1] watch(1) manual
Linux 命令(121)—— cal 命令
1.命令简介 2.命令格式 3.选项说明 4.常用示例 参考文献 [1] cal(1) manual
记jsp+servlet+jdbc实现的新闻管理系统
1.工具:eclipse+SQLyog 2.介绍:实现的内容就是显示新闻的基本信息,然后一个增删改查的操作。 3.数据库表设计 列名 中文名称 数据类型 长度 非空 newsId 文章ID int 11 √ newsTitle 文章标题 varchar 20 √ newsContent 文章内容 text newsStatus 是否审核 varchar 10 news...
Python新型冠状病毒疫情数据自动爬取+统计+发送报告+数据屏幕(三)发送篇
今天介绍的项目是使用 Itchat 发送统计报告 项目功能设计: 定时爬取疫情数据存入Mysql 进行数据分析制作疫情报告 使用itchat给亲人朋友发送分析报告(本文) 基于Django做数据屏幕 使用Tableau做数据分析 来看看最终效果 目前已经完成,预计2月12日前更新 使用 itchat 发送数据统计报告 itchat 是一个基于 web微信的一个框架,但微信官方并不允
相关热词 c#如何定义数组列表 c#倒序读取txt文件 java代码生成c# c# tcp发送数据 c#解决时间格式带星期 c#类似hashmap c#设置istbox的值 c#获取多线程返回值 c# 包含数字 枚举 c# timespan
立即提问

相似问题

0
用tensorflow-gpu跑SSD-Mobilenet模型隔一段时间就会出现以下内容
1
用tensorflow-gpu跑SSD-Mobilenet模型GPU使用率很低这是为什么
1
tensorflow-gpu 训练启动的时候内存炸了 显存没有消耗
4
tensorboard提示错误cannot import name 'dump_age'
1
Tensorflow-gpu 显存不会自动释放?
0
tensorflow-gpu:Faild to load tensorflow native runtime
2
为什么我在gpu上训练模型但是gpu利用率为0且运行速度还是很慢?
2
tensorflow 的gpu利用率很低
1
利用conda install TensorFlow-gpu在win7上conda3.7版本上安装tensorflow后,测试时出现下面的问题
1
代码用tensorflow-CPU运行时没有错误,用GPU运行时每次到51%报错
3
tensorflow-gpu跑训练时GPU的compute0使用率90%多,compute1使用率却为0%
1
pycharm中如何用tensoflow-gpu运行文件
1
为什么TensorFlow GPU的代码会比Google开源的C代码运行效率低
1
怎样正确在pycharm运行tensorflow-gpu
1
在jupyter notebook上运行tensorflow目标识别官方测试代码object_detection_tutorial.ipynb,每次都是最后一个模块运行时出现“服务器挂了”,如何解决?
1
tensorflow安装后不能import
0
求教,跑tensorflow-gpu测试代码时报错cudaGetDevice() failed. Status: cudaGetErrorString symbol not found
2
一个关于tensorflow和CUDA安装的问题
0
tensorflow gpu训练objectdetectionapi 卡住不动了 gpu占满利用率0是什么原因
1
用conda安装pytorch时出现以下错误,该怎么改吖