Python中如何将时间格式转为字符串?

例如 :
11:30:00 (11点30分00秒)是'datetime.timedelta 格式

想转化为字符串模式1130,后面的秒省去不显示

2个回答

前面都不对,应该是 str(timedelta.hours) + str(timedelta.minutes)

问题解决的话,请点一个采纳

weixin_43939455
weixin_43939455 完整的代码怎么写呢
2 个月之前 回复
td = datetime.timedelta(hours=11.5)
dt = datetime.datetime.utcfromtimestamp( td.seconds )
dt.strftime("%H%M"   )

timedelta 表示的两个 datetime 的差异, 内部是以 秒数来保存的

输出
'1130'

Csdn user default icon
上传中...
上传图片
插入图片
抄袭、复制答案,以达到刷声望分或其他目的的行为,在CSDN问答是严格禁止的,一经发现立刻封号。是时候展现真正的技术了!
其他相关推荐
python中,字符串怎么转为字典?
比如:ty=ad103a95a9732; _mmk=96cfcd6e8c499b; nntk_enc=1e5652f1b1689b9c4425 要将等号左边的转成键,右边的转成值,怎么实现呢?
萌新关于python3数据爬取结果的list、字节和字符串转换问题
先附上代码 ![图片说明](https://img-ask.csdn.net/upload/201905/27/1558921783_731728.png) 我想爬取网页上地区、时间等要素,现在这个程序是可以运行的,问题在result1、2、3上。因为这三个都是字节的匹配,所以结果也是字节。但因为compile得到的结果是list格式,所以结果都是[b'\xe5\x8c\x97\xe4\xba\xac\xe5\xb8\x82']这样的格式,请问各位大佬有什么方法直接把他转为字符串吗?就像是上面这个直接转为他对应的汉字“北京市”。感谢大佬们
C#和python传输数据,时间性能要求高
不同进程,C#发送一个byte数组,python端接收数据并转为矩阵或者数组。目前使用socket,但是接收后字符串转矩阵花费时间太多(因为byte数组极大50W),有没有共享内存,能直接访问内存地址获取数据的方法。
最近突发奇想用java去请求python写的接口结果出问题了
python代码如下: ``` import tornado from wtforms_tornado import Form import sys class hello(tornado.web.RequestHandler): def get(self): self.render("hello.html") class ajaxtest(tornado.web.RequestHandler): def set_default_headers(self): print("setting headers!!!") self.set_header("Access-Control-Allow-Origin", "*") self.set_header("Access-Control-Allow-Headers", "x-requested-with") self.set_header('Access-Control-Allow-Methods', 'POST, GET, OPTIONS') def get(self): data="你好我是刘德华" #data.encode("utf-8") print("get") self.write(data) def post(self): import json res=dict( hel="你好我是刘德华", d="ee" ) json = json.dumps(res) print("post") self.write(json) ``` python的代码应该是没有问题的 问题应该出在java上因为用直接用jQuery ajax请求是完全没有问题的 java代码如下: ``` package xiaoxiaomo; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.io.UnsupportedEncodingException; import java.net.URL; import java.net.URLConnection; import java.util.List; import java.util.Map; public class test { /** * 向指定URL发送GET方法的请求 * * @param url * 发送请求的URL * @param param * 请求参数,请求参数应该是 name1=value1&name2=value2 的形式。 * @return URL 所代表远程资源的响应结果 */ public test() { // TODO Auto-generated constructor stub } public static String sendGet(String url, String param) { String result = ""; BufferedReader in = null; try { String urlNameString = url + "?" + param; URL realUrl = new URL(urlNameString); // 打开和URL之间的连接 URLConnection connection = realUrl.openConnection(); // 设置通用的请求属性 connection.setRequestProperty("accept", "*/*"); connection.setRequestProperty("connection", "Keep-Alive"); connection.setRequestProperty("user-agent", "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1;SV1)"); // 建立实际的连接 connection.connect(); // 获取所有响应头字段 Map<String, List<String>> map = connection.getHeaderFields(); // 遍历所有的响应头字段 for (String key : map.keySet()) { System.out.println(key + "--->" + map.get(key)); } // 定义 BufferedReader输入流来读取URL的响应 in = new BufferedReader(new InputStreamReader( connection.getInputStream())); String line; while ((line = in.readLine()) != null) { result += line; } } catch (Exception e) { System.out.println("发送GET请求出现异常!" + e); e.printStackTrace(); } // 使用finally块来关闭输入流 finally { try { if (in != null) { in.close(); } } catch (Exception e2) { e2.printStackTrace(); } } return result; } /** * 向指定 URL 发送POST方法的请求 * * @param url * 发送请求的 URL * @param param * 请求参数,请求参数应该是 name1=value1&name2=value2 的形式。 * @return 所代表远程资源的响应结果 */ public static String sendPost(String url, String param) { PrintWriter out = null; BufferedReader in = null; String result = ""; try { URL realUrl = new URL(url); // 打开和URL之间的连接 URLConnection conn = realUrl.openConnection(); // 设置通用的请求属性 conn.setRequestProperty("accept", "*/*"); conn.setRequestProperty("connection", "Keep-Alive"); conn.setRequestProperty("user-agent", "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1;SV1)"); // 发送POST请求必须设置如下两行 conn.setDoOutput(true); conn.setDoInput(true); // 获取URLConnection对象对应的输出流 out = new PrintWriter(conn.getOutputStream()); // 发送请求参数 out.print(param); // flush输出流的缓冲 out.flush(); // 定义BufferedReader输入流来读取URL的响应 in = new BufferedReader( new InputStreamReader(conn.getInputStream())); String line; while ((line = in.readLine()) != null) { result += line; } } catch (Exception e) { System.out.println("发送 POST 请求出现异常!"+e); e.printStackTrace(); } //使用finally块来关闭输出流、输入流 finally{ try{ if(out!=null){ out.close(); } if(in!=null){ in.close(); } } catch(IOException ex){ ex.printStackTrace(); } } return result; } public static String getEncoding(String str) { String encode = "GB2312"; try { if (str.equals(new String(str.getBytes(encode), encode))) { //判断是不是GB2312 String s = encode; return s; //是的话,返回“GB2312“,以下代码同理 } } catch (Exception exception) { } encode = "ISO-8859-1"; try { if (str.equals(new String(str.getBytes(encode), encode))) { //判断是不是ISO-8859-1 String s1 = encode; return s1; } } catch (Exception exception1) { } encode = "UTF-8"; try { if (str.equals(new String(str.getBytes(encode), encode))) { //判断是不是UTF-8 String s2 = encode; return s2; } } catch (Exception exception2) { } encode = "GBK"; try { if (str.equals(new String(str.getBytes(encode), encode))) { //判断是不是GBK String s3 = encode; return s3; } } catch (Exception exception3) { } return ""; } public static void main(String[] args) throws UnsupportedEncodingException { //发送 GET 请求 String s=test.sendGet("http://127.0.0.1:9999/ajax", "key=123&v=456"); // String str=new String(s.getBytes(),"utf-8"); String type=getEncoding(s); System.out.println("字符串的编码是:"+type); System.out.println(s); //发送 POST 请求 // String sr=test.sendPost("http://localhost:6144/Home/RequestPostString", "key=123&v=456"); // System.out.println(sr); } } ``` 执行效果如下中文乱码: ![图片说明](https://img-ask.csdn.net/upload/201805/16/1526480833_741806.png) 然后我转了字符串编码为utf-8执行结果如下最后一个字显示问号 ![图片说明](https://img-ask.csdn.net/upload/201805/16/1526480961_68315.png) 后面没有办法,我在python就把字符串转为utf-8 ![图片说明](https://img-ask.csdn.net/upload/201805/16/1526481027_280369.png) 结果执行以后编码是utf-8没错 但是还是乱码 这是咋回事啊 ![图片说明](https://img-ask.csdn.net/upload/201805/16/1526481133_525792.png)
python unicode包含中文 ,怎么转中文呢.?
其实刚才问了...但是可能没表达清楚..所以还是没搞定.. 现在 弄明白其中的问题了..主要是爬下来的是已经是字符串的形式了. 需要转成中文.. data为采集下来的数据, 前标 r 不能删除. . ``` data = r'\u003Cdiv\u003E\u003Ch1\u003E\u003Cstrong\u003E写在前面\u003C\u002Fstrong\u003E\u003C\u002Fh1\u003E\u003Cp' print(data) ``` 这个只能输出 ``` \u003Cdiv\u003E\u003Ch1\u003E\u003Cstrong\u003E写在前面\u003C\u002Fstrong\u003E\u003C\u002Fh1\u003E\u003Cp ``` 所以,请问怎么 转为中文呢..我已经试了好几个方式了 比如: ``` data.encode('unicode_escape') 或 data.encode("utf-8").decode("utf-8") ``` 都不得行.. 所以请问.怎么转换呢?
python3 word="0"的编码如何变为“utf-8”
python3 最近要通过python实现搜索文件中的关键词出现次数的功能,定义输入的关键字字符串为word="",代码从docx文件读取编码为"utf-8",然后进行匹配搜索。目前输入word="1",word="0"都会报错,word="1234"就不会报错,分析大概是**编码问题**导致的。总的来说,我希望检索“0”这个字符串在某个word文档中出现的次数;是需要从word加载的内容全部转为unicode或者utf-8编码再匹配查找吗?目前“0”会在循环的某个判断停掉 :if i.find(word) != -1:,关于在匹配关键词时用什么编码这块比较小白,希望大神可以帮忙看下: ``` # -*- coding: UTF-8 -*- from docx import Document import re, chardet filename = "D:\python测试\科目四.docx" word = "米".encode(encoding='utf-8') #打开文档 document = Document(filename) print (filename) #读取每段资料 l = [paragraph.text.encode(encoding='utf-8', errors='ignore') for paragraph in document.paragraphs] count = 0 count_2 = 0 j = 0 for i in l: i = i.strip() if i.find(word) != -1: count = count + 1 j = j + 1 print('-', count, '-', i.decode('utf-8')) print("计数: ", j) count_2 = count_2 + j print("该篇中出现字符的个数为:", count_2) ``` 每次报错不一样,有时就是直接循环结束但最后一个print没有执行,也没有任何报错,和输入word参数有关: ![图片说明](https://img-ask.csdn.net/upload/201909/25/1569399847_808735.jpg) 如果把编码全部去掉,大部分输入没问题,但是当word="0"时最后一个print没输出,这个如何解释 ############################ 刚才又改了下,如果加try就会运行正确,不加try就不打印最后一个print: ![图片说明](https://img-ask.csdn.net/upload/201909/25/1569404197_644224.jpg) 如下是正确的输出: ![图片说明](https://img-ask.csdn.net/upload/201909/25/1569404323_410334.jpg)
如何将spark读入的txtRDD文本转为Vector格式
在spark上使用textFile读入HDFS中的txt文件,该文件部分如下: ``` 49420 1383788 0.000020 358064278.750527 0 0.000000 48896 1369116 0.000020 357927226.401787 0 0.000000 49412 1383564 0.000020 357979014.993087 0 0.000000 49284 1379980 0.000020 357811734.328588 0 0.000000 48666 1362676 0.000021 357741524.933751 0 0.000000 49726 1392356 0.000020 357853612.975128 0 0.000000 49546 1387316 0.000020 358326789.510850 0 0.000000 48781 1365896 0.000020 357718866.216985 0 0.000000 36848 1031772 0.000027 357027433.127875 0 0.000000 49537 1387064 0.000020 358307459.890310 0 0.000000 49146 1376116 0.000020 358291449.233641 0 0.000000 49952 1398684 0.000020 357755490.896889 0 0.000000 ``` 为六列整型或浮点型数值,将每一行作为一个样本进行分类机器学习的特征向量。 该文件准备打同一标签,但还未打标签。 textFile读入之后只是返回一个字符串RDD,请问如何将其转换为Mllib支持处理的Vector或分类算法直接支持的LabeledPoint格式呢?最好用python吧。
python正则表达式求助
![图片说明](https://img-ask.csdn.net/upload/201811/06/1541492634_210594.jpg) ![图片说明](https://img-ask.csdn.net/upload/201811/06/1541492861_995335.jpg) 我想实现把以下格式的字符串全部转为空格: (非字母)数字(非字母) 只有满足上述条件的才会转为空格,但最后的结果老是不对,比如sadf11,总会把11给删掉。 求助各位,怎么解决?谢谢
SendMessage 无法设置ComboBox的值
最近使用python编写一个自动化测试工具,其中要自动打开文件对话框选择文件进行操作,但是使用SendMessage 发送消息填充ComboBox时填充的值无法显示 大概如下 ``` # 找到指定标题的对话框,暂时不用管,自己封装的 b = SimpleWnd.get('打开', 'title') # 找到文件路径输入框 h1 = b.get_child_handle_by_class('ComboBoxEx32') h2 = win32gui.FindWindowEx(h1, None, 'ComboBox', None) h3 = win32gui.FindWindowEx(h2, None, 'Edit', None) print h1,h2,h3 # 值都是对的 # 填写路径,这里单步调试可以显示,直接运行不行 # 返回值为1 # 在其后加Sleep也不行 win32gui.SendMessage(h3, win32con.WM_SETTEXT, 0, '111111'.encode('gbk')) # 这时候获取的值是对的,111111 buf_size = win32gui.SendMessage(h3, win32con.WM_GETTEXTLENGTH, 0, 0) + 1 # 要加上截尾的字节 str_buffer = win32gui.PyMakeBuffer(buf_size) # 生成buffer对象 win32api.SendMessage(h3, win32con.WM_GETTEXT, buf_size, str_buffer) # 获取buffer str = str(str_buffer[:-1]) # 转为字符串 ``` 大神们,这是为什么,或者给个能实际运行的代码参考一下
用tensorflow做机器翻译时训练代码有问题
``` # -*- coding:UTF-8 -*- import tensorflow as tf src_path = 'D:/Python37/untitled1/train.tags.en-zh.en.deletehtml' trg_path = 'D:/Python37/untitled1/train.tags.en-zh.zh.deletehtml' SRC_TRAIN_DATA = 'D:/Python37/untitled1/train.tags.en-zh.en.deletehtml.segment' # 源语言输入文件 TRG_TRAIN_DATA = 'D:/Python37/untitled1/train.tags.en-zh.zh.deletehtml.segment' # 目标语言输入文件 CHECKPOINT_PATH = './model/seq2seq_ckpt' # checkpoint保存路径 HIDDEN_SIZE = 1024 # LSTM的隐藏层规模 NUM_LAYERS = 2 # 深层循环神经网络中LSTM结构的层数 SRC_VOCAB_SIZE = 10000 # 源语言词汇表大小 TRG_VOCAB_SIZE = 4000 # 目标语言词汇表大小 BATCH_SIZE = 100 # 训练数据batch的大小 NUM_EPOCH = 5 # 使用训练数据的轮数 KEEP_PROB = 0.8 # 节点不被dropout的概率 MAX_GRAD_NORM = 5 # 用于控制梯度膨胀的梯度大小上限 SHARE_EMB_AND_SOFTMAX = True # 在softmax层和词向量层之间共享参数 MAX_LEN = 50 # 限定句子的最大单词数量 SOS_ID = 1 # 目标语言词汇表中<sos>的ID """ function: 数据batching,产生最后输入数据格式 Parameters: file_path-数据路径 Returns: dataset- 每个句子-对应的长度组成的TextLineDataset类的数据集对应的张量 """ def MakeDataset(file_path): dataset = tf.data.TextLineDataset(file_path) # map(function, sequence[, sequence, ...]) -> list # 通过定义可以看到,这个函数的第一个参数是一个函数,剩下的参数是一个或多个序列,返回值是一个集合。 # function可以理解为是一个一对一或多对一函数,map的作用是以参数序列中的每一个元素调用function函数,返回包含每次function函数返回值的list。 # lambda argument_list: expression # 其中lambda是Python预留的关键字,argument_list和expression由用户自定义 # argument_list参数列表, expression 为函数表达式 # 根据空格将单词编号切分开并放入一个一维向量 dataset = dataset.map(lambda string: tf.string_split([string]).values) # 将字符串形式的单词编号转化为整数 dataset = dataset.map(lambda string: tf.string_to_number(string, tf.int32)) # 统计每个句子的单词数量,并与句子内容一起放入Dataset dataset = dataset.map(lambda x: (x, tf.size(x))) return dataset """ function: 从源语言文件src_path和目标语言文件trg_path中分别读取数据,并进行填充和batching操作 Parameters: src_path-源语言,即被翻译的语言,英语. trg_path-目标语言,翻译之后的语言,汉语. batch_size-batch的大小 Returns: dataset- 每个句子-对应的长度 组成的TextLineDataset类的数据集 """ def MakeSrcTrgDataset(src_path, trg_path, batch_size): # 首先分别读取源语言数据和目标语言数据 src_data = MakeDataset(src_path) trg_data = MakeDataset(trg_path) # 通过zip操作将两个Dataset合并为一个Dataset,现在每个Dataset中每一项数据ds由4个张量组成 # ds[0][0]是源句子 # ds[0][1]是源句子长度 # ds[1][0]是目标句子 # ds[1][1]是目标句子长度 #https://blog.csdn.net/qq_32458499/article/details/78856530这篇博客看一下可以细致了解一下Dataset这个库,以及.map和.zip的用法 dataset = tf.data.Dataset.zip((src_data, trg_data)) # 删除内容为空(只包含<eos>)的句子和长度过长的句子 def FilterLength(src_tuple, trg_tuple): ((src_input, src_len), (trg_label, trg_len)) = (src_tuple, trg_tuple) # tf.logical_and 相当于集合中的and做法,后面两个都为true最终结果才会为true,否则为false # tf.greater Returns the truth value of (x > y),所以以下所说的是句子长度必须得大于一也就是不能为空的句子 # tf.less_equal Returns the truth value of (x <= y),所以所说的是长度要小于最长长度 src_len_ok = tf.logical_and(tf.greater(src_len, 1), tf.less_equal(src_len, MAX_LEN)) trg_len_ok = tf.logical_and(tf.greater(trg_len, 1), tf.less_equal(trg_len, MAX_LEN)) return tf.logical_and(src_len_ok, trg_len_ok) #两个都满足才返回true # filter接收一个函数Func并将该函数作用于dataset的每个元素,根据返回值True或False保留或丢弃该元素,True保留该元素,False丢弃该元素 # 最后得到的就是去掉空句子和过长的句子的数据集 dataset = dataset.filter(FilterLength) # 解码器需要两种格式的目标句子: # 1.解码器的输入(trg_input), 形式如同'<sos> X Y Z' # 2.解码器的目标输出(trg_label), 形式如同'X Y Z <eos>' # 上面从文件中读到的目标句子是'X Y Z <eos>'的形式,我们需要从中生成'<sos> X Y Z'形式并加入到Dataset # 编码器只有输入,没有输出,而解码器有输入也有输出,输入为<sos>+(除去最后一位eos的label列表) # 例如train.en最后都为2,id为2就是eos def MakeTrgInput(src_tuple, trg_tuple): ((src_input, src_len), (trg_label, trg_len)) = (src_tuple, trg_tuple) # tf.concat用法 https://blog.csdn.net/qq_33431368/article/details/79429295 trg_input = tf.concat([[SOS_ID], trg_label[:-1]], axis=0) return ((src_input, src_len), (trg_input, trg_label, trg_len)) dataset = dataset.map(MakeTrgInput) # 随机打乱训练数据 dataset = dataset.shuffle(10000) # 规定填充后的输出的数据维度 padded_shapes = ( (tf.TensorShape([None]), # 源句子是长度未知的向量 tf.TensorShape([])), # 源句子长度是单个数字 (tf.TensorShape([None]), # 目标句子(解码器输入)是长度未知的向量 tf.TensorShape([None]), # 目标句子(解码器目标输出)是长度未知的向量 tf.TensorShape([])) # 目标句子长度(输出)是单个数字 ) # 调用padded_batch方法进行padding 和 batching操作 batched_dataset = dataset.padded_batch(batch_size, padded_shapes) return batched_dataset """ function: seq2seq模型 Parameters: Returns: """ class NMTModel(object): """ function: 模型初始化 Parameters: Returns: """ def __init__(self): # 定义编码器和解码器所使用的LSTM结构 self.enc_cell = tf.nn.rnn_cell.MultiRNNCell( [tf.nn.rnn_cell.LSTMCell(HIDDEN_SIZE) for _ in range(NUM_LAYERS)]) self.dec_cell = tf.nn.rnn_cell.MultiRNNCell( [tf.nn.rnn_cell.LSTMCell(HIDDEN_SIZE) for _ in range(NUM_LAYERS)]) # 为源语言和目标语言分别定义词向量 self.src_embedding = tf.get_variable('src_emb', [SRC_VOCAB_SIZE, HIDDEN_SIZE]) self.trg_embedding = tf.get_variable('trg_emb', [TRG_VOCAB_SIZE, HIDDEN_SIZE]) # 定义softmax层的变量 if SHARE_EMB_AND_SOFTMAX: self.softmax_weight = tf.transpose(self.trg_embedding) else: self.softmax_weight = tf.get_variable('weight', [HIDDEN_SIZE, TRG_VOCAB_SIZE]) self.softmax_bias = tf.get_variable('softmax_loss', [TRG_VOCAB_SIZE]) """ function: 在forward函数中定义模型的前向计算图 Parameters:   MakeSrcTrgDataset函数产生的五种张量如下(全部为张量) src_input: 编码器输入(源数据) src_size : 输入大小 trg_input:解码器输入(目标数据) trg_label:解码器输出(目标数据) trg_size: 输出大小 Returns: """ def forward(self, src_input, src_size, trg_input, trg_label, trg_size): batch_size = tf.shape(src_input)[0] # 将输入和输出单词转为词向量(rnn中输入数据都要转换成词向量) # 相当于input中的每个id对应的embedding中的向量转换 src_emb = tf.nn.embedding_lookup(self.src_embedding, src_input) trg_emb = tf.nn.embedding_lookup(self.trg_embedding, trg_input) # 在词向量上进行dropout src_emb = tf.nn.dropout(src_emb, KEEP_PROB) trg_emb = tf.nn.dropout(trg_emb, KEEP_PROB) # 使用dynamic_rnn构造编码器 # 编码器读取源句子每个位置的词向量,输出最后一步的隐藏状态enc_state # 因为编码器是一个双层LSTM,因此enc_state是一个包含两个LSTMStateTuple类的tuple, # 每个LSTMStateTuple对应编码器中一层的状态 # enc_outputs是顶层LSTM在每一步的输出,它的维度是[batch_size, max_time, HIDDEN_SIZE] # seq2seq模型中不需要用到enc_outputs,而attention模型会用到它 with tf.variable_scope('encoder'): enc_outputs, enc_state = tf.nn.dynamic_rnn(self.enc_cell, src_emb, src_size, dtype=tf.float32) # 使用dynamic_rnn构造解码器 # 解码器读取目标句子每个位置的词向量,输出的dec_outputs为每一步顶层LSTM的输出 # dec_outputs的维度是[batch_size, max_time, HIDDEN_SIZE] # initial_state=enc_state表示用编码器的输出来初始化第一步的隐藏状态 # 编码器最后编码结束最后的状态为解码器初始化的状态 with tf.variable_scope('decoder'): dec_outputs, _ = tf.nn.dynamic_rnn(self.dec_cell, trg_emb, trg_size, initial_state=enc_state) # 计算解码器每一步的log perplexity # 输出重新转换成shape为[,HIDDEN_SIZE] output = tf.reshape(dec_outputs, [-1, HIDDEN_SIZE]) # 计算解码器每一步的softmax概率值 logits = tf.matmul(output, self.softmax_weight) + self.softmax_bias # 交叉熵损失函数,算loss loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=tf.reshape(trg_label, [-1]), logits=logits) # 在计算平均损失时,需要将填充位置的权重设置为0,以避免无效位置的预测干扰模型的训练 label_weights = tf.sequence_mask(trg_size, maxlen=tf.shape(trg_label)[1], dtype=tf.float32) label_weights = tf.reshape(label_weights, [-1]) cost = tf.reduce_sum(loss * label_weights) cost_per_token = cost / tf.reduce_sum(label_weights) # 定义反向传播操作 trainable_variables = tf.trainable_variables() # 控制梯度大小,定义优化方法和训练步骤 # 算出每个需要更新的值的梯度,并对其进行控制 grads = tf.gradients(cost / tf.to_float(batch_size), trainable_variables) grads, _ = tf.clip_by_global_norm(grads, MAX_GRAD_NORM) # 利用梯度下降优化算法进行优化.学习率为1.0 optimizer = tf.train.GradientDescentOptimizer(learning_rate=1.0) # 相当于minimize的第二步,正常来讲所得到的list[grads,vars]由compute_gradients得到,返回的是执行对应变量的更新梯度操作的op train_op = optimizer.apply_gradients(zip(grads, trainable_variables)) return cost_per_token, train_op """ function: 使用给定的模型model上训练一个epoch,并返回全局步数,每训练200步便保存一个checkpoint Parameters: session : 会议 cost_op : 计算loss的操作op train_op: 训练的操作op saver:  保存model的类 step:   训练步数 Returns: """ def run_epoch(session, cost_op, train_op, saver, step): # 训练一个epoch # 重复训练步骤直至遍历完Dataset中所有数据 while True: try: # 运行train_op并计算cost_op的结果也就是损失值,训练数据在main()函数中以Dataset方式提供 cost, _ = session.run([cost_op, train_op]) # 步数为10的倍数进行打印 if step % 10 == 0: print('After %d steps, per token cost is %.3f' % (step, cost)) # 每200步保存一个checkpoint if step % 200 == 0: saver.save(session, CHECKPOINT_PATH, global_step=step) step += 1 except tf.errors.OutOfRangeError: break return step """ function: 主函数 Parameters: Returns: """ def main(): # 定义初始化函数 initializer = tf.random_uniform_initializer(-0.05, 0.05) # 定义训练用的循环神经网络模型 with tf.variable_scope('nmt_model', reuse=None, initializer=initializer): train_model = NMTModel() # 定义输入数据 data = MakeSrcTrgDataset(SRC_TRAIN_DATA, TRG_TRAIN_DATA, BATCH_SIZE) iterator = data.make_initializable_iterator() (src, src_size), (trg_input, trg_label, trg_size) = iterator.get_next() # 定义前向计算图,输入数据以张量形式提供给forward函数 cost_op, train_op = train_model.forward(src, src_size, trg_input, trg_label, trg_size) # 训练模型 # 保存模型 saver = tf.train.Saver() step = 0 with tf.Session() as sess: # 初始化全部变量 tf.global_variables_initializer().run() # 进行NUM_EPOCH轮数 for i in range(NUM_EPOCH): print('In iteration: %d' % (i + 1)) sess.run(iterator.initializer) step = run_epoch(sess, cost_op, train_op, saver, step) if __name__ == '__main__': main() ``` 问题如下,不知道怎么解决,谢谢! Traceback (most recent call last): File "D:\Anaconda\envs\tensorflow\lib\site-packages\tensorflow\python\client\session.py", line 1334, in _do_call return fn(*args) File "D:\Anaconda\envs\tensorflow\lib\site-packages\tensorflow\python\client\session.py", line 1319, in _run_fn options, feed_dict, fetch_list, target_list, run_metadata) File "D:\Anaconda\envs\tensorflow\lib\site-packages\tensorflow\python\client\session.py", line 1407, in _call_tf_sessionrun run_metadata) tensorflow.python.framework.errors_impl.InvalidArgumentError: StringToNumberOp could not correctly convert string: This [[{{node StringToNumber}}]] [[{{node IteratorGetNext}}]] During handling of the above exception, another exception occurred: Traceback (most recent call last): File "D:/Python37/untitled1/train_model.py", line 277, in <module> main() File "D:/Python37/untitled1/train_model.py", line 273, in main step = run_epoch(sess, cost_op, train_op, saver, step) File "D:/Python37/untitled1/train_model.py", line 231, in run_epoch cost, _ = session.run([cost_op, train_op]) File "D:\Anaconda\envs\tensorflow\lib\site-packages\tensorflow\python\client\session.py", line 929, in run run_metadata_ptr) File "D:\Anaconda\envs\tensorflow\lib\site-packages\tensorflow\python\client\session.py", line 1152, in _run feed_dict_tensor, options, run_metadata) File "D:\Anaconda\envs\tensorflow\lib\site-packages\tensorflow\python\client\session.py", line 1328, in _do_run run_metadata) File "D:\Anaconda\envs\tensorflow\lib\site-packages\tensorflow\python\client\session.py", line 1348, in _do_call raise type(e)(node_def, op, message) tensorflow.python.framework.errors_impl.InvalidArgumentError: StringToNumberOp could not correctly convert string: This [[{{node StringToNumber}}]] [[node IteratorGetNext (defined at D:/Python37/untitled1/train_model.py:259) ]]
终于明白阿里百度这样的大公司,为什么面试经常拿ThreadLocal考验求职者了
点击上面↑「爱开发」关注我们每晚10点,捕获技术思考和创业资源洞察什么是ThreadLocalThreadLocal是一个本地线程副本变量工具类,各个线程都拥有一份线程私有的数
Java学习的正确打开方式
在博主认为,对于入门级学习java的最佳学习方法莫过于视频+博客+书籍+总结,前三者博主将淋漓尽致地挥毫于这篇博客文章中,至于总结在于个人,实际上越到后面你会发现学习的最好方式就是阅读参考官方文档其次就是国内的书籍,博客次之,这又是一个层次了,这里暂时不提后面再谈。博主将为各位入门java保驾护航,各位只管冲鸭!!!上天是公平的,只要不辜负时间,时间自然不会辜负你。 何谓学习?博主所理解的学习,它是一个过程,是一个不断累积、不断沉淀、不断总结、善于传达自己的个人见解以及乐于分享的过程。
程序员必须掌握的核心算法有哪些?
由于我之前一直强调数据结构以及算法学习的重要性,所以就有一些读者经常问我,数据结构与算法应该要学习到哪个程度呢?,说实话,这个问题我不知道要怎么回答你,主要取决于你想学习到哪些程度,不过针对这个问题,我稍微总结一下我学过的算法知识点,以及我觉得值得学习的算法。这些算法与数据结构的学习大多数是零散的,并没有一本把他们全部覆盖的书籍。下面是我觉得值得学习的一些算法以及数据结构,当然,我也会整理一些看过
大学四年自学走来,这些私藏的实用工具/学习网站我贡献出来了
大学四年,看课本是不可能一直看课本的了,对于学习,特别是自学,善于搜索网上的一些资源来辅助,还是非常有必要的,下面我就把这几年私藏的各种资源,网站贡献出来给你们。主要有:电子书搜索、实用工具、在线视频学习网站、非视频学习网站、软件下载、面试/求职必备网站。 注意:文中提到的所有资源,文末我都给你整理好了,你们只管拿去,如果觉得不错,转发、分享就是最大的支持了。 一、电子书搜索 对于大部分程序员...
《奇巧淫技》系列-python!!每天早上八点自动发送天气预报邮件到QQ邮箱
此博客仅为我业余记录文章所用,发布到此,仅供网友阅读参考,如有侵权,请通知我,我会删掉。 补充 有不少读者留言说本文章没有用,因为天气预报直接打开手机就可以收到了,为何要多此一举发送到邮箱呢!!!那我在这里只能说:因为你没用,所以你没用!!! 这里主要介绍的是思路,不是天气预报!不是天气预报!!不是天气预报!!!天气预报只是用于举例。请各位不要再刚了!!! 下面是我会用到的两个场景: 每日下
Python 植物大战僵尸代码实现(2):植物卡片选择和种植
这篇文章要介绍的是: - 上方植物卡片栏的实现。 - 点击植物卡片,鼠标切换为植物图片。 - 鼠标移动时,判断当前在哪个方格中,并显示半透明的植物作为提示。
死磕YOLO系列,YOLOv1 的大脑、躯干和手脚
YOLO 是我非常喜欢的目标检测算法,堪称工业级的目标检测,能够达到实时的要求,它帮我解决了许多实际问题。 这就是 YOLO 的目标检测效果。它定位了图像中物体的位置,当然,也能预测物体的类别。 之前我有写博文介绍过它,但是每次重新读它的论文,我都有新的收获,为此我准备写一个系列的文章来详尽分析它。这是第一篇,从它的起始 YOLOv1 讲起。 YOLOv1 的论文地址:https://www.c
知乎高赞:中国有什么拿得出手的开源软件产品?(整理自本人原创回答)
知乎高赞:中国有什么拿得出手的开源软件产品? 在知乎上,有个问题问“中国有什么拿得出手的开源软件产品(在 GitHub 等社区受欢迎度较好的)?” 事实上,还不少呢~ 本人于2019.7.6进行了较为全面的 回答 - Bravo Yeung,获得该问题下回答中得最高赞(236赞和1枚专业勋章),对这些受欢迎的 Github 开源项目分类整理如下: 分布式计算、云平台相关工具类 1.SkyWalk
记一次腾讯面试:进程之间究竟有哪些通信方式?如何通信? ---- 告别死记硬背
有一次面试的时候,被问到进程之间有哪些通信方式,不过由于之前没深入思考且整理过,说的并不好。想必大家也都知道进程有哪些通信方式,可是我猜很多人都是靠着”背“来记忆的,所以今天的这篇文章,讲给大家详细着讲解他们是如何通信的,让大家尽量能够理解他们之间的区别、优缺点等,这样的话,以后面试官让你举例子,你也能够顺手拈来。 1、管道 我们来看一条 Linux 的语句 netstat -tulnp | gr...
20行Python代码爬取王者荣耀全英雄皮肤
引言 王者荣耀大家都玩过吧,没玩过的也应该听说过,作为时下最火的手机MOBA游戏,咳咳,好像跑题了。我们今天的重点是爬取王者荣耀所有英雄的所有皮肤,而且仅仅使用20行Python代码即可完成。 准备工作 爬取皮肤本身并不难,难点在于分析,我们首先得得到皮肤图片的url地址,话不多说,我们马上来到王者荣耀的官网: 我们点击英雄资料,然后随意地选择一位英雄,接着F12打开调试台,找到英雄原皮肤的图片
网络(8)-HTTP、Socket、TCP、UDP的区别和联系
TCP/IP协议是传输层协议,主要解决数据如何在网络中传输,而HTTP是应用层协议,主要解决如何包装数据。 一、TCP与UDP的不同 1. 是否需要建立连接。 UDP在传送数据之前不需要先建立连接;TCP则提供面向连接的服务; 2. 是否需要给出确认 对方的传输层在收到UDP报文后,不需要给出任何确认,而 TCP需要给出确认报文,要提供可靠的、面向连接的传输服务。 3.虽然UDP不提供可靠交...
简明易理解的@SpringBootApplication注解源码解析(包含面试提问)
欢迎关注文章系列 ,关注我 《提升能力,涨薪可待》 《面试知识,工作可待》 《实战演练,拒绝996》 欢迎关注我博客,原创技术文章第一时间推出 也欢迎关注公 众 号【Ccww笔记】,同时推出 如果此文对你有帮助、喜欢的话,那就点个赞呗,点个关注呗! 《提升能力,涨薪可待篇》- @SpringBootApplication注解源码解析 一、@SpringBootApplication 的作用是什
防劝退!数据结构和算法难理解?可视化动画带你轻松透彻理解!
大家好,我是 Rocky0429,一个连数据结构和算法都不会的蒟蒻… 学过数据结构和算法的都知道这玩意儿不好学,没学过的经常听到这样的说法还没学就觉得难,其实难吗?真难! 难在哪呢?当年我还是个小蒟蒻,初学数据结构和算法的时候,在忍着枯燥看完定义原理,之后想实现的时候,觉得它们的过程真的是七拐八绕,及其难受。 在简单的链表、栈和队列这些我还能靠着在草稿上写写画画理解过程,但是到了数论、图...
西游记团队中如果需要裁掉一个人,会先裁掉谁?
2019年互联网寒冬,大批企业开始裁员,下图是网上流传的一张截图: 裁员不可避免,那如何才能做到不管大环境如何变化,自身不受影响呢? 我们先来看一个有意思的故事,如果西游记取经团队需要裁员一名,会裁掉谁呢,为什么? 西游记团队组成: 1.唐僧 作为团队teamleader,有很坚韧的品性和极高的原则性,不达目的不罢休,遇到任何问题,都没有退缩过,又很得上司支持和赏识(直接得到唐太宗的任命,既给
开挂的人生!那些当选院士,又是ACM/IEEE 双料Fellow的华人学者们
昨日,2019年两院院士正式官宣,一时间抢占了各大媒体头条。 朋友圈也是一片沸腾,奔走相告,赶脚比自己中了大奖还嗨皮! 谁叫咱家导师就是这么厉害呢!!! 而就在最近,新一年度的IEEE/ACM Fellow也将正式公布。 作为学术届的顶级荣誉,不自然地就会将院士与Fellow作比较,到底哪个含金量更高呢? 学术君认为,同样是专业机构对学者的认可,考量标准不一,自然不能一概而论。 但...
聊聊C语言和指针的本质
坐着绿皮车上海到杭州,24块钱,很宽敞,在火车上非正式地聊几句。 很多编程语言都以 “没有指针” 作为自己的优势来宣传,然而,对于C语言,指针却是与生俱来的。 那么,什么是指针,为什么大家都想避开指针。 很简单, 指针就是地址,当一个地址作为一个变量存在时,它就被叫做指针,该变量的类型,自然就是指针类型。 指针的作用就是,给出一个指针,取出该指针指向地址处的值。为了理解本质,我们从计算机模型说起...
Python语言高频重点汇总
Python语言高频重点汇总 GitHub面试宝典仓库——点这里跳转 文章目录Python语言高频重点汇总**GitHub面试宝典仓库——点这里跳转**1. 函数-传参2. 元类3. @staticmethod和@classmethod两个装饰器4. 类属性和实例属性5. Python的自省6. 列表、集合、字典推导式7. Python中单下划线和双下划线8. 格式化字符串中的%和format9.
究竟你适不适合买Mac?
我清晰的记得,刚买的macbook pro回到家,开机后第一件事情,就是上了淘宝网,花了500元钱,找了一个上门维修电脑的师傅,上门给我装了一个windows系统。。。。。。 表砍我。。。 当时买mac的初衷,只是想要个固态硬盘的笔记本,用来运行一些复杂的扑克软件。而看了当时所有的SSD笔记本后,最终决定,还是买个好(xiong)看(da)的。 已经有好几个朋友问我mba怎么样了,所以今天尽量客观
代码详解:如何用Python快速制作美观、炫酷且有深度的图表
全文共12231字,预计学习时长35分钟生活阶梯(幸福指数)与人均GDP(金钱)正相关的正则图本文将探讨三种用Python可视化数据的不同方法。以可视化《2019年世界幸福报告》的数据为例,本文用Gapminder和Wikipedia的信息丰富了《世界幸福报告》数据,以探索新的数据关系和可视化方法。《世界幸福报告》试图回答世界范围内影响幸福的因素。报告根据对“坎特里尔阶梯问题”的回答来确定幸...
程序员一般通过什么途径接私活?
二哥,你好,我想知道一般程序猿都如何接私活,我也想接,能告诉我一些方法吗? 上面是一个读者“烦不烦”问我的一个问题。其实不止是“烦不烦”,还有很多读者问过我类似这样的问题。 我接的私活不算多,挣到的钱也没有多少,加起来不到 20W。说实话,这个数目说出来我是有点心虚的,毕竟太少了,大家轻喷。但我想,恰好配得上“一般程序员”这个称号啊。毕竟苍蝇再小也是肉,我也算是有经验的人了。 唾弃接私活、做外
(经验分享)作为一名普通本科计算机专业学生,我大学四年到底走了多少弯路
今年正式步入了大四,离毕业也只剩半年多的时间,回想一下大学四年,感觉自己走了不少弯路,今天就来分享一下自己大学的学习经历,也希望其他人能不要走我走错的路。 (一)初进校园 刚进入大学的时候自己完全就相信了高中老师的话:“进入大学你们就轻松了”。因此在大一的时候自己学习的激情早就被抛地一干二净,每天不是在寝室里玩游戏就是出门游玩,不过好在自己大学时买的第一台笔记本性能并不是很好,也没让我彻底沉...
如何写一篇技术博客,谈谈我的看法
前言 只有光头才能变强。 文本已收录至我的GitHub精选文章,欢迎Star:https://github.com/ZhongFuCheng3y/3y 我一直推崇学技术可以写技术博客去沉淀自己的知识,因为知识点实在是太多太多了,通过自己的博客可以帮助自己快速回顾自己学过的东西。 我最开始的时候也是只记笔记,认为自己能看得懂就好。但如果想验证自己是不是懂了,可以写成技术博客。在写技术博客的...
字节跳动面试官这样问消息队列:分布式事务、重复消费、顺序消费,我整理了一下
你知道的越多,你不知道的越多 点赞再看,养成习惯 GitHub上已经开源 https://github.com/JavaFamily 有一线大厂面试点脑图、个人联系方式和人才交流群,欢迎Star和完善 前言 消息队列在互联网技术存储方面使用如此广泛,几乎所有的后端技术面试官都要在消息队列的使用和原理方面对小伙伴们进行360°的刁难。 作为一个在互联网公司面一次拿一次Offer的面霸...
面试还搞不懂redis,快看看这40道面试题(含答案和思维导图)
Redis 面试题 1、什么是 Redis?. 2、Redis 的数据类型? 3、使用 Redis 有哪些好处? 4、Redis 相比 Memcached 有哪些优势? 5、Memcache 与 Redis 的区别都有哪些? 6、Redis 是单进程单线程的? 7、一个字符串类型的值能存储最大容量是多少? 8、Redis 的持久化机制是什么?各自的优缺点? 9、Redis 常见性...
大学四年自学走来,这些珍藏的「实用工具/学习网站」我全贡献出来了
知乎高赞:文中列举了互联网一线大厂程序员都在用的工具集合,涉及面非常广,小白和老手都可以进来看看,或许有新收获。
互联网公司的裁员,能玩出多少种花样?
裁员,也是一门学问,可谓博大精深!以下,是互联网公司的裁员的多种方法:-正文开始-135岁+不予续签的理由:千禧一代网感更强。95后不予通过试用期的理由:已婚已育员工更有责任心。2通知接下来要过苦日子,让一部分不肯同甘共苦的员工自己走人,以“兄弟”和“非兄弟”来区别员工。3强制996。员工如果平衡不了工作和家庭,可在离婚或离职里二选一。4不布置任何工作,但下班前必须提交千字工作日报。5不给活干+...
【设计模式】单例模式的八种写法分析
网上泛滥流传单例模式的写法种类,有说7种的,也有说6种的,当然也不排除说5种的,他们说的有错吗?其实没有对与错,刨根问底,写法终究是写法,其本质精髓大体一致!因此完全没必要去追究写法的多少,有这个时间还不如跟着宜春去网吧偷耳机、去田里抓青蛙得了,一天天的....
《面试宝典》:检验是否为合格的初中级程序员的面试知识点,你都知道了吗?查漏补缺
欢迎关注文章系列,一起学习 《提升能力,涨薪可待篇》 《面试知识,工作可待篇》 《实战演练,拒绝996篇》 也欢迎关注公 众 号【Ccww笔记】,原创技术文章第一时间推出 如果此文对你有帮助、喜欢的话,那就点个赞呗,点个关注呗! 《面试知识,工作可待篇》-Java笔试面试基础知识大全 前言 是不是感觉找工作面试是那么难呢? 在找工作面试应在学习的基础进行总结面试知识点,工作也指日可待,欢...
关于研发效能提升的思考
研发效能提升是最近比较热门的一个话题,本人根据这几年的工作心得,做了一些思考总结,由于个人深度有限,暂且抛转引入。 三要素 任何生产力的提升都离不开这三个因素:人、流程和工具,少了其中任何一个因素都无法实现。 人,即思想,也就是古人说的“道”,道不同不相为谋,是制高点,也是高层建筑的基石。 流程,即方法,也是古人说的“法”。研发效能的提升,也就是要提高投入产出比,既要增加产出,也要减...
微博推荐算法简述
在介绍微博推荐算法之前,我们先聊一聊推荐系统和推荐算法。有这样一些问题:推荐系统适用哪些场景?用来解决什么问题、具有怎样的价值?效果如何衡量? 推荐系统诞生很早,但真正被大家所重视,缘起于以”facebook”为代表的社会化网络的兴起和以“淘宝“为代表的电商的繁荣,”选择“的时代已经来临,信息和物品的极大丰富,让用户如浩瀚宇宙中的小点,无所适从。推荐系统迎来爆发的机会,变得离用户更近: 快...
GitHub 标星 1.6w+,我发现了一个宝藏项目,作为编程新手有福了!
大家好,我是 Rocky0429,一个最近老在 GitHub 上闲逛的蒟蒻… 特别惭愧的是,虽然我很早就知道 GitHub,但是学会逛 GitHub 的时间特别晚。当时一方面是因为菜,看着这种全是英文的东西难受,不知道该怎么去玩,另一方面是一直在搞 ACM,没有做一些工程类的项目,所以想当然的以为和 GitHub 也没什么关系(当然这种想法是错误的)。 后来自己花了一个星期看完了 Pyt...
Python爬虫爬取淘宝,京东商品信息
小编是一个理科生,不善长说一些废话。简单介绍下原理然后直接上代码。 使用的工具(Python+pycharm2019.3+selenium+xpath+chromedriver)其中要使用pycharm也可以私聊我selenium是一个框架可以通过pip下载 pip install selenium -i https://pypi.tuna.tsinghua.edu.cn/simple/ 
阿里程序员写了一个新手都写不出的低级bug,被骂惨了。
你知道的越多,你不知道的越多 点赞再看,养成习惯 本文 GitHub https://github.com/JavaFamily 已收录,有一线大厂面试点思维导图,也整理了很多我的文档,欢迎Star和完善,大家面试可以参照考点复习,希望我们一起有点东西。 前前言 为啥今天有个前前言呢? 因为你们的丙丙啊,昨天有牌面了哟,直接被微信官方推荐,知乎推荐,也就仅仅是还行吧(心里乐开花)
Java工作4年来应聘要16K最后没要,细节如下。。。
前奏: 今天2B哥和大家分享一位前几天面试的一位应聘者,工作4年26岁,统招本科。 以下就是他的简历和面试情况。 基本情况: 专业技能: 1、&nbsp;熟悉Sping了解SpringMVC、SpringBoot、Mybatis等框架、了解SpringCloud微服务 2、&nbsp;熟悉常用项目管理工具:SVN、GIT、MAVEN、Jenkins 3、&nbsp;熟悉Nginx、tomca
恕我直言,牛逼哄哄的MongoDB你可能只会30%
MongoDB 闪亮登场自我介绍MongoDB 是一个基于分布式文件存储的数据库。由 C++ 语言编写。旨在为 WEB 应用提供可扩展的高性能数据存储解决方案。MongoDB 是一个介于...
一文带你看清 HTTP 所有概念
上一篇文章我们大致讲解了一下 HTTP 的基本特征和使用,大家反响很不错,那么本篇文章我们就来深究一下 HTTP 的特性。我们接着上篇文章没有说完的 HTTP 标头继续来介绍(此篇文章会介绍所有标头的概念,但没有深入底层) HTTP 标头 先来回顾一下 HTTP1.1 标头都有哪几种 HTTP 1.1 的标头主要分为四种,通用标头、实体标头、请求标头、响应标头,现在我们来对这几种标头进行介绍 通用...
作为一个程序员,CPU的这些硬核知识你必须会!
CPU对每个程序员来说,是个既熟悉又陌生的东西? 如果你只知道CPU是中央处理器的话,那可能对你并没有什么用,那么作为程序员的我们,必须要搞懂的就是CPU这家伙是如何运行的,尤其要搞懂它里面的寄存器是怎么一回事,因为这将让你从底层明白程序的运行机制。 随我一起,来好好认识下CPU这货吧 把CPU掰开来看 对于CPU来说,我们首先就要搞明白它是怎么回事,也就是它的内部构造,当然,CPU那么牛的一个东
破14亿,Python分析我国存在哪些人口危机!
2020年1月17日,国家统计局发布了2019年国民经济报告,报告中指出我国人口突破14亿。 猪哥的朋友圈被14亿人口刷屏,但是很多人并没有看到我国复杂的人口问题:老龄化、男女比例失衡、生育率下降、人口红利下降等。 今天我们就来分析一下我们国家的人口数据吧! 更多有趣分析教程,扫描下方二维码关注vx公号「裸睡的猪」 即可查看! 一、背景 1.人口突破14亿 2020年1月17日,国家统计局发布
web前端javascript+jquery知识点总结
Javascript javascript 在前端网页中占有非常重要的地位,可以用于验证表单,制作特效等功能,它是一种描述语言,也是一种基于对象(Object)和事件驱动并具有安全性的脚本语言 ,语法同java类似,是一种解释性语言,边执行边解释。 JavaScript的组成: ECMAScipt 用于描述: 语法,变量和数据类型,运算符,逻辑控制语句,关键字保留字,对象。 浏览器对象模型(Br
相关热词 c#判断数字不得为负数 c#帧和帧协议 c#算偏移值 c# 在枚举中 c#6 字符串 插值 c#程序中的占位符标签 c#监听数组变化 c# vlc c#索引实现 c# 局域网广播通信
立即提问