Crash and Go(relians) 怎么实现的

Problem Description
The Gorelians are a warlike race that travel the universe conquering new worlds as a form of recreation. Generally, their space battles are fairly one-sided, but occasionally even the Gorelians get the worst of an encounter. During one such losing battle, the Gorelians’ space ship became so damaged that the Gorelians had to evacuate to the planet below. Because of the chaos (and because escape pods are not very accurate) the Gorelians were scattered across a large area of the planet (yet a small enough area that we can model the relevant planetary surface as planar, not spherical). Your job is to track their efforts to regroup. Fortunately, each escape pod was equipped with a locator that can tell the Gorelian his current coordinates on the planet, as well as with a radio that can be used to communicate with other Gorelians. Unfortunately, the range on the radios is fairly limited according to how much power one has.
When a Gorelian lands on the alien planet, the first thing he does is check the radio to see if he can communicate with any other Gorelians. If he can, then he arranges a meeting point with them, and then they converge on that point. Once together, they are able to combine the power sources from their radios, which gives them a larger radio range. They then repeat the process—see who they can reach, arrange a meeting point, combine their radios—until they finally cannot contact any more Gorelians.
Gorelian technology allows two-way communication as long as at least one of them has a radio with enough range to cover the distance between them. For example, suppose Alice has a radio with a range of 40 km, and Bob has a range of 30 km, but they are 45 km apart (Figure 1). Since neither has a radio with enough range to reach the other, they cannot talk. However, suppose they were only 35 km apart (Figure 2). Bob’s radio still does not have enough range to reach Alice, but that does not matter—they can still talk because Alice’s radio has enough range to reach Bob.

If a Gorelian successfully contacts other Gorelians, they will meet at the point that is the average of all their locations. In the case of Alice and Bob, this would simply be the midpoint of A and B (Figure 3). Note that the Gorelians turn off their radios while traveling; they will not attempt to communicate with anyone else until they have all gathered at the meeting point. Once the Gorelians meet, they combine their radios to make a new radio with a larger range. In particular, the area covered by the new radio is equal to the sum of the areas covered by the old radio. In our example, Alice had a range of 40 km, so her radio covered an area of 1600π km. Bob’s radio covered an area of 900π km. So when they combine their radios they can cover 2500π km—meaning they have a range of 50 km. At this point they will try again to contact other Gorelians.

This process continues until no more Gorelians can be contacted. As an example, suppose the following Gorelians have all landed and all have a radio range of 30 km: Alice (100, 100), Bob (130, 80), Cathy (80, 60), and Dave (120, 150). At this point, none of the Gorelians can contact anyone else (Figure 5). Now Eddy lands at position (90, 80) (Figure 6). Eddy can contact Alice and Cathy, so they arrange to meet at (90, 80), which is the average of their locations. Combining their radios gives them a range of √2700 ≈ 51.96 km (Figure 7).

Now they check again with their new improved range and find that they can reach Bob. So they meet Bob at (110, 80) and combine their radios to get a new radio with a range of 60 (Figure 8). Unfortunately, this is not far enough to be able to reach Dave, so Dave remains isolated.

Input
The input will consist of one or more data sets. Each data set will begin with an integer N representing the number of Gorelians for this dataset (1 ≤ N ≤ 100). A value of N = 0 will signify the end of the input.
Next will come N lines each containing three integers X, Y, and R representing the x- and y-coordinate where the Gorelian lands and the range of the radio (0 ≤ X ≤ 1000, 0 ≤ Y ≤ 1000, and 1 ≤ R ≤ 1000). Note that only the Gorelians' initial coordinates/range will be integral; after merging with other Gorelians they may no longer be integral. You should use double-precision arithmetic for all computations.
The Gorelians land in the order in which they appear in the input file. When a Gorelian lands, he merges with any Gorelians he can contact, and the process keeps repeating until no further merges can be made. The next Gorelian does not land until all previous merges have been completed.

Output
The output will be one line per data set, reporting the number of independent groups of Gorelians that remain at the end of the process.

Sample Input
5
100 100 30
130 80 30
80 60 30
120 150 30
90 80 30
6
100 100 50
145 125 10
60 140 15
160 145 20
130 135 25
80 80 30
0

Sample Output
2
3

Crash and Go(relians) 代码的写法
Crashing Robots怎么实现的
Problem Description In a modernized warehouse, robots are used to fetch the goods. Careful planning is needed to ensure that the robots reach their destinations without crashing into each other. Of course, all warehouses are rectangular, and all robots occupy a circular floor space with a diameter of 1 meter. Assume there are N robots, numbered from 1 through N. You will get to know the position and orientation of each robot, and all the instructions, which are carefully (and mindlessly) followed by the robots. Instructions are processed in the order they come. No two robots move simultaneously; a robot always completes its move before the next one starts moving. A robot crashes with a wall if it attempts to move outside the area of the warehouse, and two robots crash with each other if they ever try to occupy the same spot. Input The first line of input is K, the number of test cases. Each test case starts with one line consisting of two integers, 1 <= A, B <= 100, giving the size of the warehouse in meters. A is the length in the EW-direction, and B in the NS-direction. The second line contains two integers, 1 <= N, M <= 100, denoting the numbers of robots and instructions respectively. Then follow N lines with two integers, 1 <= Xi <= A, 1 <= Yi <= B and one letter (N, S, E or W), giving the starting position and direction of each robot, in order from 1 through N. No two robots start at the same position. Figure 1: The starting positions of the robots in the sample warehouse Finally there are M lines, giving the instructions in sequential order. An instruction has the following format: < robot #> < action> < repeat> Where is one of L: turn left 90 degrees, R: turn right 90 degrees, or F: move forward one meter, and 1 <= < repeat> <= 100 is the number of times the robot should perform this single move. Output Output one line for each test case: Robot i crashes into the wall, if robot i crashes into a wall. (A robot crashes into a wall if Xi = 0, Xi = A + 1, Yi = 0 or Yi = B + 1.) Robot i crashes into robot j, if robots i and j crash, and i is the moving robot. OK, if no crashing occurs. Only the first crash is to be reported. Sample Input 4 5 4 2 2 1 1 E 5 4 W 1 F 7 2 F 7 5 4 2 4 1 1 E 5 4 W 1 F 3 2 F 1 1 L 1 1 F 3 5 4 2 2 1 1 E 5 4 W 1 L 96 1 F 2 5 4 2 3 1 1 E 5 4 W 1 F 4 1 L 1 1 F 20
CRASH X算法的计算的问题，如何运用C语言解决这个数据结构
Problem Description Boudreaux and Thibodeaux are on the road again . . . "Boudreaux, we have to get this shipment of mudbugs to Baton Rouge by tonight!" "Don't worry, Thibodeaux, I already checked ahead. There are three underpasses and our 18-wheeler will fit through all of them, so just keep that motor running!" "We're not going to make it, I say!" So, which is it: will there be a very messy accident on Interstate 10, or is Thibodeaux just letting the sound of his own wheels drive him crazy? Input Input to this problem will consist of a single data set. The data set will be formatted according to the following description. The data set will consist of a single line containing 3 numbers, separated by single spaces. Each number represents the height of a single underpass in inches. Each number will be between 0 and 300 inclusive. Output There will be exactly one line of output. This line will be: NO CRASH if the height of the 18-wheeler is less than the height of each of the underpasses, or: CRASH X otherwise, where X is the height of the first underpass in the data set that the 18-wheeler is unable to go under (which means its height is less than or equal to the height of the 18-wheeler). The height of the 18-wheeler is 168 inches. Sample Input 180 160 170 Sample Output CRASH 160

IOS系统内有哪些crash追踪的SDK可以推荐的！！大神们都是用的哪款SDK！！
Schottkey 7th Path 程序是怎么编写的呢
Problem Description With a typical operating system, a filesystem consists of a number of directories, in which reside files. These files generally have a canonical location, known as the absolute path (such as /usr/games/bin/kobodl), which can be used to refer to the file no matter where the user is on a system. Most operating system environments allow you to refer to files in other directories without having to be so explicit about their locations, however. This is often stored in a variable called PATH, and is an ordered list of locations (always absolute paths in this problem) to search for a given name. We will call these search paths. In the brand-new crash shell, paths are handled somewhat differently. Users still provide an ordered list of locations that they wish to search for files (their search paths); when a particular filename is requested, however, crash tries to be even more helpful than usual. The process it follows is as follows: If there is an exact match for the filename, it is returned. Exact matches in locations earlier in the list are preferred. (There are no duplicate filenames in a single location.) If there are no exact matches, a filename that has a single extra character is returned. That character may be at any point in the filename, but the order of the non-extra characters must be identical to the requested filename. As before, matches in locations earlier in the list are preferred; if there are multiple matches in the highest-ranked location, all such matches in that location are returned. If there are no exact matches or one-extra-character matches, files that have two extra characters are looked for. The same rules of precedence and multiple matches apply as for the one-extra-character case. If no files meet the three criteria above, no filenames are returned. Two characters is considered the limit of "permissiveness" for the crash shell. So, for example, given the two files bang and tang, they are both one character away from the filename ang and two from ag. (All characters in this problem will be lowercase.) In the sample data below, both cat and rat are one character away from at. Given a complete list of locations and files in those locations on a system, a set of users each with their own ordered lists of search paths, and a set of files that they wish to search for, what filenames would crash return? For the purposes of simplification, all locations will be described by a single alphabetic string, as will filenames and usernames. Real operating system paths often have many components separated by characters such as slashes, but this problem does not. Also note that users may accidentally refer to nonexistent locations in their search paths; these (obviously) contain no files. Input All alphabetic strings in the input will have at least one and at most 20 characters, and will contain no special characters such as slashes or spaces; all letters will be lowercase. Input to this problem will begin with a line containing a single integer N (1 ≤ N ≤ 100) indicating the number of data sets. Each data set consists of the following components: A line containing a single integer F (1 ≤ F ≤ 100) indicating the number of files on the system; A series of F lines representing the files on the system, in the format "location filename", where location and filename are both alphabetic strings; A line containing a single integer U (1 ≤ U ≤ 10) indicating the number of users on the system; A series of U stanzas representing the users. Each stanza consists of the following components: A line containing a single alphabetic string which is the user'susername; A line containing a single integer L (1 ≤ L ≤ 10) representing the number of locations in the user's search path; and A series of L lines containing a single alphabetic string apiece listing the locations in the user's search path. The first one is the highest priority, the second (if present) is the second-highest priority, and so on. A line containing a single integer S (1 ≤ S ≤ 200) indicating the number of file searches to run; A series of S lines representing the searches, in the format "username filename", where username is an alphabetic string that matches one of the users defined in the data set, and filename is an alphabetic string that represents the requested filename. Output For each data set in the input, output the heading "DATA SET #k" where k is 1 for the first data set, 2 for the second, etc. Then for each of the S searches in the data set (and in the same order as read from the input) do the following: Print the line "username REQUESTED filename" where filename is the file requested by username. For each file (if any) that matches this search, print the line "FOUND filename IN location" where filename is the file that matched the user's request and that was found in location. The list of matching files must be sorted in alphabetical order by filename. Sample Input 1 4 food oat food goat animal rat animal cat 2 bob 2 food animal bill 1 animal 4 bob at bob cat bill goat bill at Sample Output DATA SET #1 bob REQUESTED at FOUND oat IN food bob REQUESTED cat FOUND cat IN animal bill REQUESTED goat bill REQUESTED at FOUND cat IN animal FOUND rat IN animal
linux 进程crash 生成的core文件被破坏

android加载so库出现的crash问题？

Problem Description In a modernized warehouse, robots are used to fetch the goods. Careful planning is needed to ensure that the robots reach their destinations without crashing into each other. Of course, all warehouses are rectangular, and all robots occupy a circular floor space with a diameter of 1 meter. Assume there are N robots, numbered from 1 through N. You will get to know the position and orientation of each robot, and all the instructions, which are carefully (and mindlessly) followed by the robots. Instructions are processed in the order they come. No two robots move simultaneously; a robot always completes its move before the next one starts moving. A robot crashes with a wall if it attempts to move outside the area of the warehouse, and two robots crash with each other if they ever try to occupy the same spot. Input The first line of input is K, the number of test cases. Each test case starts with one line consisting of two integers, 1 <= A, B <= 100, giving the size of the warehouse in meters. A is the length in the EW-direction, and B in the NS-direction. The second line contains two integers, 1 <= N, M <= 100, denoting the numbers of robots and instructions respectively. Then follow N lines with two integers, 1 <= Xi <= A, 1 <= Yi <= B and one letter (N, S, E or W), giving the starting position and direction of each robot, in order from 1 through N. No two robots start at the same position. Figure 1: The starting positions of the robots in the sample warehouse Finally there are M lines, giving the instructions in sequential order. An instruction has the following format: < robot #> < action> < repeat> Where is one of L: turn left 90 degrees, R: turn right 90 degrees, or F: move forward one meter, and 1 <= < repeat> <= 100 is the number of times the robot should perform this single move. Output Output one line for each test case: Robot i crashes into the wall, if robot i crashes into a wall. (A robot crashes into a wall if Xi = 0, Xi = A + 1, Yi = 0 or Yi = B + 1.) Robot i crashes into robot j, if robots i and j crash, and i is the moving robot. OK, if no crashing occurs. Only the first crash is to be reported. Sample Input 4 5 4 2 2 1 1 E 5 4 W 1 F 7 2 F 7 5 4 2 4 1 1 E 5 4 W 1 F 3 2 F 1 1 L 1 1 F 3 5 4 2 2 1 1 E 5 4 W 1 L 96 1 F 2 5 4 2 3 1 1 E 5 4 W 1 F 4 1 L 1 1 F 20 Sample Output Robot 1 crashes into the wall Robot 1 crashes into robot 2 OK Robot 1 crashes into robot 2
ios 问一个关于crash日志 错误类型的问题

clr/c++ dll注册时提示crash

Problem Description Boudreaux and Thibodeaux are on the road again . . . "Boudreaux, we have to get this shipment of mudbugs to Baton Rouge by tonight!" "Don't worry, Thibodeaux, I already checked ahead. There are three underpasses and our 18-wheeler will fit through all of them, so just keep that motor running!" "We're not going to make it, I say!" So, which is it: will there be a very messy accident on Interstate 10, or is Thibodeaux just letting the sound of his own wheels drive him crazy? Input Input to this problem will consist of a single data set. The data set will be formatted according to the following description. The data set will consist of a single line containing 3 numbers, separated by single spaces. Each number represents the height of a single underpass in inches. Each number will be between 0 and 300 inclusive. Output There will be exactly one line of output. This line will be: NO CRASH if the height of the 18-wheeler is less than the height of each of the underpasses, or: CRASH X otherwise, where X is the height of the first underpass in the data set that the 18-wheeler is unable to go under (which means its height is less than or equal to the height of the 18-wheeler). The height of the 18-wheeler is 168 inches. Sample Input 180 160 170 Sample Output CRASH 160
MFC的CCombox替换为BCG的之后，关闭程序crash
crash的位置是releaserefD2D里，release指针的时候，希望大神指点。

ios数据解析怎么实现嵌套遍历赋值? 求大神指点, 赋值后用点属性的方法无法打印出来总是Crash, 什么原因啊?

Crashing Robots 怎么来计算的
Problem Description In a modernized warehouse, robots are used to fetch the goods. Careful planning is needed to ensure that the robots reach their destinations without crashing into each other. Of course, all warehouses are rectangular, and all robots occupy a circular floor space with a diameter of 1 meter. Assume there are N robots, numbered from 1 through N. You will get to know the position and orientation of each robot, and all the instructions, which are carefully (and mindlessly) followed by the robots. Instructions are processed in the order they come. No two robots move simultaneously; a robot always completes its move before the next one starts moving. A robot crashes with a wall if it attempts to move outside the area of the warehouse, and two robots crash with each other if they ever try to occupy the same spot. Input The first line of input is K, the number of test cases. Each test case starts with one line consisting of two integers, 1 <= A, B <= 100, giving the size of the warehouse in meters. A is the length in the EW-direction, and B in the NS-direction. The second line contains two integers, 1 <= N, M <= 100, denoting the numbers of robots and instructions respectively. Then follow N lines with two integers, 1 <= Xi <= A, 1 <= Yi <= B and one letter (N, S, E or W), giving the starting position and direction of each robot, in order from 1 through N. No two robots start at the same position. Figure 1: The starting positions of the robots in the sample warehouse Finally there are M lines, giving the instructions in sequential order. An instruction has the following format: < robot #> < action> < repeat> Where is one of L: turn left 90 degrees, R: turn right 90 degrees, or F: move forward one meter, and 1 <= < repeat> <= 100 is the number of times the robot should perform this single move. Output Output one line for each test case: Robot i crashes into the wall, if robot i crashes into a wall. (A robot crashes into a wall if Xi = 0, Xi = A + 1, Yi = 0 or Yi = B + 1.) Robot i crashes into robot j, if robots i and j crash, and i is the moving robot. OK, if no crashing occurs. Only the first crash is to be reported. Sample Input 4 5 4 2 2 1 1 E 5 4 W 1 F 7 2 F 7 5 4 2 4 1 1 E 5 4 W 1 F 3 2 F 1 1 L 1 1 F 3 5 4 2 2 1 1 E 5 4 W 1 L 96 1 F 2 5 4 2 3 1 1 E 5 4 W 1 F 4 1 L 1 1 F 20 Sample Output Robot 1 crashes into the wall Robot 1 crashes into robot 2 OK Robot 1 crashes into robot 2
Keep on Truckin' 具体怎么来写
Problem Description Boudreaux and Thibodeaux are on the road again . . . "Boudreaux, we have to get this shipment of mudbugs to Baton Rouge by tonight!" "Don't worry, Thibodeaux, I already checked ahead. There are three underpasses and our 18-wheeler will fit through all of them, so just keep that motor running!" "We're not going to make it, I say!" So, which is it: will there be a very messy accident on Interstate 10, or is Thibodeaux just letting the sound of his own wheels drive him crazy? Input Input to this problem will consist of a single data set. The data set will be formatted according to the following description. The data set will consist of a single line containing 3 numbers, separated by single spaces. Each number represents the height of a single underpass in inches. Each number will be between 0 and 300 inclusive. Output There will be exactly one line of output. This line will be: NO CRASH if the height of the 18-wheeler is less than the height of each of the underpasses, or: CRASH X otherwise, where X is the height of the first underpass in the data set that the 18-wheeler is unable to go under (which means its height is less than or equal to the height of the 18-wheeler). The height of the 18-wheeler is 168 inches. Sample Input 180 160 170
rabbitmq启动失败，erlang crash dump，求大神指导
rt，我在一台服务器上编译安装了erlang otp_src_19.2， 命令如下： ./configure --prefix="/data/service/erlang"； make && make install。然后我把装好的erlang打包复制到另一台linux服务器的相同目录位置去。 然后在目的linux上下载了rabbitmq.3.6.6的程序包。设置PATH如下： export PATH=/data/service/erlang:\$PATH. 然后进入/data/services/rabbitmq_server-3.6.6/sbin/, 执行./rabbitmq-server & , 发现报错 init terminating in do_boot ()， Crash dump is being written to: erl_crash.dump...done。求问这是什么问题该怎么破，谢谢！
Schottkey 7th Path 我不会了
Problem Description With a typical operating system, a filesystem consists of a number of directories, in which reside files. These files generally have a canonical location, known as the absolute path (such as /usr/games/bin/kobodl), which can be used to refer to the file no matter where the user is on a system. Most operating system environments allow you to refer to files in other directories without having to be so explicit about their locations, however. This is often stored in a variable called PATH, and is an ordered list of locations (always absolute paths in this problem) to search for a given name. We will call these search paths. In the brand-new crash shell, paths are handled somewhat differently. Users still provide an ordered list of locations that they wish to search for files (their search paths); when a particular filename is requested, however, crash tries to be even more helpful than usual. The process it follows is as follows: If there is an exact match for the filename, it is returned. Exact matches in locations earlier in the list are preferred. (There are no duplicate filenames in a single location.) If there are no exact matches, a filename that has a single extra character is returned. That character may be at any point in the filename, but the order of the non-extra characters must be identical to the requested filename. As before, matches in locations earlier in the list are preferred; if there are multiple matches in the highest-ranked location, all such matches in that location are returned. If there are no exact matches or one-extra-character matches, files that have two extra characters are looked for. The same rules of precedence and multiple matches apply as for the one-extra-character case. If no files meet the three criteria above, no filenames are returned. Two characters is considered the limit of "permissiveness" for the crash shell. So, for example, given the two files bang and tang, they are both one character away from the filename ang and two from ag. (All characters in this problem will be lowercase.) In the sample data below, both cat and rat are one character away from at. Given a complete list of locations and files in those locations on a system, a set of users each with their own ordered lists of search paths, and a set of files that they wish to search for, what filenames would crash return? For the purposes of simplification, all locations will be described by a single alphabetic string, as will filenames and usernames. Real operating system paths often have many components separated by characters such as slashes, but this problem does not. Also note that users may accidentally refer to nonexistent locations in their search paths; these (obviously) contain no files. Input All alphabetic strings in the input will have at least one and at most 20 characters, and will contain no special characters such as slashes or spaces; all letters will be lowercase. Input to this problem will begin with a line containing a single integer N (1 ≤ N ≤ 100) indicating the number of data sets. Each data set consists of the following components: A line containing a single integer F (1 ≤ F ≤ 100) indicating the number of files on the system; A series of F lines representing the files on the system, in the format "location filename", where location and filename are both alphabetic strings; A line containing a single integer U (1 ≤ U ≤ 10) indicating the number of users on the system; A series of U stanzas representing the users. Each stanza consists of the following components: A line containing a single alphabetic string which is the user'susername; A line containing a single integer L (1 ≤ L ≤ 10) representing the number of locations in the user's search path; and A series of L lines containing a single alphabetic string apiece listing the locations in the user's search path. The first one is the highest priority, the second (if present) is the second-highest priority, and so on. A line containing a single integer S (1 ≤ S ≤ 200) indicating the number of file searches to run; A series of S lines representing the searches, in the format "username filename", where username is an alphabetic string that matches one of the users defined in the data set, and filename is an alphabetic string that represents the requested filename. Output For each data set in the input, output the heading "DATA SET #k" where k is 1 for the first data set, 2 for the second, etc. Then for each of the S searches in the data set (and in the same order as read from the input) do the following: Print the line "username REQUESTED filename" where filename is the file requested by username. For each file (if any) that matches this search, print the line "FOUND filename IN location" where filename is the file that matched the user's request and that was found in location. The list of matching files must be sorted in alphabetical order by filename. Sample Input 1 4 food oat food goat animal rat animal cat 2 bob 2 food animal bill 1 animal 4 bob at bob cat bill goat bill at Sample Output DATA SET #1 bob REQUESTED at FOUND oat IN food bob REQUESTED cat FOUND cat IN animal bill REQUESTED goat bill REQUESTED at FOUND cat IN animal FOUND rat IN animal

《奇巧淫技》系列-python！！每天早上八点自动发送天气预报邮件到QQ邮箱

8年经验面试官详解 Java 面试秘诀

MyBatis研习录(01)——MyBatis概述与入门
MyBatis 是一款优秀的持久层框架，它支持定制化 SQL、存储过程以及高级映射。MyBatis原本是apache的一个开源项目iBatis, 2010年该项目由apache software foundation 迁移到了google code并改名为MyBatis 。2013年11月MyBatis又迁移到Github。

Python爬虫爬取淘宝，京东商品信息

Java工作4年来应聘要16K最后没要,细节如下。。。

Python爬虫精简步骤1 获取数据

Python绘图，圣诞树，花，爱心 | Turtle篇

CPU对每个程序员来说，是个既熟悉又陌生的东西？ 如果你只知道CPU是中央处理器的话，那可能对你并没有什么用，那么作为程序员的我们，必须要搞懂的就是CPU这家伙是如何运行的，尤其要搞懂它里面的寄存器是怎么一回事，因为这将让你从底层明白程序的运行机制。 随我一起，来好好认识下CPU这货吧 把CPU掰开来看 对于CPU来说，我们首先就要搞明白它是怎么回事，也就是它的内部构造，当然，CPU那么牛的一个东...

web前端javascript+jquery知识点总结
1.Javascript 语法.用途 javascript 在前端网页中占有非常重要的地位，可以用于验证表单，制作特效等功能，它是一种描述语言，也是一种基于对象（Object）和事件驱动并具有安全性的脚本语言 ...
Python实战：抓肺炎疫情实时数据，画2019-nCoV疫情地图

Python：爬取疫情每日数据

B 站上有哪些很好的学习资源?

Web播放器解决了在手机浏览器和PC浏览器上播放音视频数据的问题，让视音频内容可以不依赖用户安装App，就能进行播放以及在社交平台进行传播。在视频业务大数据平台中，播放数据的统计分析非常重要，所以Web播放器在使用过程中，需要对其内部的数据进行收集并上报至服务端，此时，就需要对发生在其内部的一些播放行为进行事件监听。 那么Web播放器事件监听是怎么实现的呢？ 01 监听事件明细表 名...
3万字总结，Mysql优化之精髓

Python新型冠状病毒疫情数据自动爬取+统计+发送报告+数据屏幕（三）发送篇

1.Matlab实现粒子群算法的程序代码：https://www.cnblogs.com/kexinxin/p/9858664.html matlab代码求解函数最优值：https://blog.csdn.net/zyqblog/article/details/80829043 讲解通俗易懂，有数学实例的博文：https://blog.csdn.net/daaikuaichuan/article/...

1. 传统事件绑定和符合W3C标准的事件绑定有什么区别？ 传统事件绑定 &lt;div onclick=""&gt;123&lt;/div&gt; div1.onclick = function(){}; &lt;button onmouseover=""&gt;&lt;/button&gt; 注意： 如果给同一个元素绑定了两次或多次相同类型的事件，那么后面的绑定会覆盖前面的绑定 （不支持DOM事...