opencv新手入门方法介绍

本人大二,刚刚接触科研方面内容,想入门opencv图像处理技术,但是由于接触的还不多,c++也处于入门级水平,一些opencv里面的算法都不怎么看得懂数学原理,现在不知道是怎么入门,望高人指教

4个回答

你最好还是把C++的基础弄扎实一点,然后推荐一本书,《学习OpenCv中文版》个人觉得还是挺不错的,是C语言写的。然后边看书边在csdn上找一些相关的博客

opencv是一个计算机视觉库,包含很多图像处理和计算机视觉方面的通用算法,所以学习opencv的话,应该对计算机视觉和图像处理有所了解。
1.推荐一本学习图像处理的书《数字图像处理》,当对图像处理理论知识有所了解后,opencv中的原理自然也会明白了。
2.对于学习opencv教程,推荐《学习OpenCV》(中文版)这本书,还有一个比较好的博客:opencv入门教程:http://blog.csdn.net/poem_qianmo/article/details/19809337#comments
3.c++还需要认真看一下,至少知道它的基类、继承、重载等明显与C语言不同的地方,编程能力可以在实践中锻炼,切忌只看书,不自己操作一下。

OPENCV是一个处理视觉信息的库,我觉得要想学好它首先要了解它的数据结构。入门的书有很多,最经典的是于仕旗/刘瑞帧翻译的《学习opencv》。这本书有两个版本,一个是基础篇,一个是相对高级点的。还有opencv中文网站,里面有安装和常用功能的例程,想必你很需要这些。当初我开始学习的时候就帮了不少忙。我的建议:先按照http://www.opencv.org.cn/index.php/Template:Install 这里的教程安装运行opencv,然后在opencv的安装目录里有个opencv2.0.pdf(2.0是版本号),那个就是opencv的文档了,数据类型的定义和函数的说明里面都有。可以试着去把基本的数据类型了解下,知道opencv是怎样包装数据的。最后还是要多写程序,尽快熟悉它里面的函数。

参考:http://zhidao.baidu.com/link?url=zAzl86vpW8ufOvYA9ULkzdscWeF9tNGRSFFAgl7Q_Ly7y8ponWPB9DFleyPO8xxQi6oLcyyoycgm7_O3g5jDdK

有本书叫OpenCV.2.Computer.Vision.Application.Programming.Cookbook 可以看里面的例子,有附带code.

Csdn user default icon
上传中...
上传图片
插入图片
抄袭、复制答案,以达到刷声望分或其他目的的行为,在CSDN问答是严格禁止的,一经发现立刻封号。是时候展现真正的技术了!
其他相关推荐
opencv 入门问题求解!
我现在安装了opencv 2.4.10 和vs2010 我调试了下面的程序为什么摁了F5以后感觉程序没有反应?(感觉就像窗口刷新了一遍但是没有矩阵输出) 请问这是什么原因呢?另外我调试最简单的图片输出也是不能用Mat类调试,要使用Mat类的话就会说我“rR 6010 Abort has been called”就卡在那里了! 求大神指点一下!please! ``` #include<iostream> #include <opencv2/core/core.hpp> //#include <opencv2/highgui/highgui.hpp> #include <opencv2/opencv.hpp> using namespace std; using namespace cv; int main(int argc, char*argv[]) { Mat m(3,2,CV_8UC3,Scalar(0,0,255)); cout<<"M=="<< endl << ""<< m <<endl; //return 0; } ``` 'SSSSSSS.exe': Loaded 'F:\TDDOWNLOAD\SSSSSSS\Debug\SSSSSSS.exe', Symbols loaded. 'SSSSSSS.exe': Loaded 'C:\Windows\System32\ntdll.dll', Symbols loaded (source information stripped). 'SSSSSSS.exe': Loaded 'C:\Windows\System32\kernel32.dll', Symbols loaded (source information stripped). 'SSSSSSS.exe': Loaded 'C:\Windows\System32\KernelBase.dll', Symbols loaded (source information stripped). 'SSSSSSS.exe': Loaded 'F:\opencv\build\x86\vc10\bin\opencv_core2410.dll', Cannot find or open the PDB file 'SSSSSSS.exe': Loaded 'C:\Windows\System32\msvcp100.dll', Symbols loaded (source information stripped). 'SSSSSSS.exe': Loaded 'C:\Windows\System32\msvcr100.dll', Symbols loaded (source information stripped). 'SSSSSSS.exe': Loaded 'C:\Windows\System32\msvcp100d.dll', Symbols loaded (source information stripped). 'SSSSSSS.exe': Loaded 'C:\Windows\System32\msvcr100d.dll', Symbols loaded (source information stripped). The program '[8000] SSSSSSS.exe: Native' has exited with code 0 (0x0).
python3.4.0安装opencv出现问题
1.编译错误 到99% 2.结果如图![图片说明](https://img-ask.csdn.net/upload/202002/16/1581861235_906993.png) 3.错误问题#make错误,退出 make[2]: *** [modules/python3/CMakeFiles/opencv_python3.dir/build.make:56: modules/python3/CMakeFiles/opencv_python3.dir/__/src2/cv2.cpp.o] Error 1 make[1]: *** [CMakeFiles/Makefile2:21149: modules/python3/CMakeFiles/opencv_python3.dir/all] Error 2 make: *** [Makefile:138: all] Error
Android使用opencv,不需要装opencv manager
# 按照了网上的步骤将opencv的libs里的动态文件(.so)加入了jniLibs文件夹。但一直还是出现错误 ``` public class MainActivity extends AppCompatActivity { private static final String TAG = "MainActivity"; // Used to load the 'native-lib' library on application startup. static { System.loadLibrary("native-lib"); } private BaseLoaderCallback mLoaderCallback = new BaseLoaderCallback(this) { @Override public void onManagerConnected(int status) { if (status == LoaderCallbackInterface.SUCCESS) { Log.i(TAG, "OpenCV loaded successfully"); } else { super.onManagerConnected(status); } } }; @Override protected void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.activity_main); } @Override protected void onResume() { super.onResume(); if (!OpenCVLoader.initDebug()) { Log.d(TAG, "Internal OpenCV library not found. Using OpenCV Manager for initialization"); OpenCVLoader.initAsync(OpenCVLoader.OPENCV_VERSION_3_0_0, this, mLoaderCallback); } else { Log.d(TAG, "OpenCV library found inside package. Using it!"); mLoaderCallback.onManagerConnected(LoaderCallbackInterface.SUCCESS); } } /** * A native method that is implemented by the 'native-lib' native library, * which is packaged with this application. */ public native String stringFromJNI(); } ``` 以上是MainActivity.java文件内容,尝试过很多次,有一两次达到了不需要装opencv manager的目的。但大多是都会报错:**E/OpenCV/StaticHelper: OpenCV error: Cannot load info library for OpenCV**
Ubuntu 16.04安装opencv 3.4.1出错
Ubuntu16.04安装opencv 3.4.1出错,请求大佬帮忙看下是啥问题,百度也找不出问题。log记录如下: Determining if the include file sys/videoio.h exists failed with the following output: Change Dir: /home/whitejiang/opencv-3.4.1/my_build_dir/CMakeFiles/CMakeTmp Run Build Command:"/usr/bin/make" "cmTC_f508d/fast" /usr/bin/make -f CMakeFiles/cmTC_f508d.dir/build.make CMakeFiles/cmTC_f508d.dir/build make[1]: Entering directory '/home/whitejiang/opencv-3.4.1/my_build_dir/CMakeFiles/CMakeTmp' Building C object CMakeFiles/cmTC_f508d.dir/CheckIncludeFile.c.o /usr/bin/cc -fsigned-char -W -Wall -Werror=return-type -Werror=non-virtual-dtor -Werror=address -Werror=sequence-point -Wformat -Werror=format-security -Wmissing-declarations -Wmissing-prototypes -Wstrict-prototypes -Wundef -Winit-self -Wpointer-arith -Wshadow -Wuninitialized -Winit-self -Wno-narrowing -Wno-comment -fdiagnostics-show-option -Wno-long-long -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections -msse -msse2 -msse3 -fvisibility=hidden -O3 -DNDEBUG -fPIE -o CMakeFiles/cmTC_f508d.dir/CheckIncludeFile.c.o -c /home/whitejiang/opencv-3.4.1/my_build_dir/CMakeFiles/CMakeTmp/CheckIncludeFile.c /home/whitejiang/opencv-3.4.1/my_build_dir/CMakeFiles/CMakeTmp/CheckIncludeFile.c:1:25: fatal error: sys/videoio.h: 没有那个文件或目录 compilation terminated. CMakeFiles/cmTC_f508d.dir/build.make:65: recipe for target 'CMakeFiles/cmTC_f508d.dir/CheckIncludeFile.c.o' failed make[1]: *** [CMakeFiles/cmTC_f508d.dir/CheckIncludeFile.c.o] Error 1 make[1]: Leaving directory '/home/whitejiang/opencv-3.4.1/my_build_dir/CMakeFiles/CMakeTmp' Makefile:126: recipe for target 'cmTC_f508d/fast' failed make: *** [cmTC_f508d/fast] Error 2
opencv处理图像粘连问题
本人opencv刚入门,在做车辆图像粘连分割的项目,希望有源代码能参考尝试着修改,感激不尽!
小白OpenCV2入门,请问为什么有的函数有cv::,有时又不带?懵逼
刚入门,看了一些实例,有的里面函数带cv::,有的不带,不太懂
为什么vs2019配置opencv包含目录的路径..\opencv\build\include还要再配置..\opencv\build\include\opencv2
在使用vs2019开发opencv应用的过程中发现,配置项目属性中包含目录和库目录时,需要增加..\opencv\build\include和..\opencv\build\include\opencv2这两个路径,opencv2包含在include下面,那么为什么不能只用\opencv\build\include这一个路径(会找不到头文件)
如何快速查阅openCV的函数作用和使用方法?
才开始学习使用openCV进行图像处理,但是在GitHub上看的程序很多openCV函数都不熟悉,导致读懂程序有很大的阻力,想问问各位前辈有没有什么方法可以快速的查阅到openCV具体函数的使用方法。
关于win10上VS code C++ OpenCV环境配置问题的提问
运行测试程序: #include <opencv2/opencv.hpp> #include<iostream> using namespace cv; using namespace std; int main(int argc, char** argv) { Mat img = imread("C:/Users/83643/Desktop/1.jpg"); namedWindow("Example1",WINDOW_AUTOSIZE); imshow("Example1", img); waitKey(); destroyWindow("Example1"); return 0; } ``` 结果报错: ```a.cpp:1:10: fatal error: opencv2/opencv.hpp: No such file or directory #include <opencv2/opencv.hpp> 但是我已经在c_cpp_properities.json中添加了正确的相关路径。并且添加了环境变量 "includePath": [ "${workspaceFolder}/**", "D:/opencv/build/include/opencv2", "D:/opencv/build/include" ], 结果还是一样,报错,求大佬们帮忙看看
需要openCV特征提取和匹配指导,具体看内容?
是个openCV新手,目前基于vs2017+openCV3.4.3配置好了opencv_contrib。需要一个师傅,带我简单运用opencv内置算法做一个特征提取和匹配的实现。
基于opencv的视频人数统计入门
最近接手了一个基于opencv进行视频人数统计的项目,其中还涉及到进出门等等问题。 我现在主要想通过opencv调用相机(网络相机,安装在过道顶上),比较精确地判断出视频中有几个人。 求问做过相关项目的大神们有没有靠谱的学习网址推荐(找过一些资料都不好用),或者说可以用的github源码,万分感谢!
ubuntu 安装配置c++的opencv 报错
我在ubuntu 上打算安装和配置c++的Opencv, 下载了opencv3.1.0版本的代码,然后也手动的下载了ippicv_linux_20151201.tgz。创建build文件夹后Cmake命令已经可以编译过去了。 但是在执行make命令的时候,经常会报错: ``` [ 15%] Building CXX object modules/core/CMakeFiles/opencv_core.dir/opencl_kernels_core.cpp.o [ 15%] Linking CXX shared library ../../lib/libopencv_core.so /usr/bin/ld: CMakeFiles/opencv_core.dir/src/va_intel.cpp.o: relocation R_X86_64_32 against `.rodata' can not be used when making a shared object; recompile with -fPIC CMakeFiles/opencv_core.dir/src/va_intel.cpp.o: 无法添加符号: 错误的值 collect2: error: ld returned 1 exit status modules/core/CMakeFiles/opencv_core.dir/build.make:1382: recipe for target 'lib/libopencv_core.so.3.1.0' failed make[2]: *** [lib/libopencv_core.so.3.1.0] Error 1 CMakeFiles/Makefile2:1420: recipe for target 'modules/core/CMakeFiles/opencv_core.dir/all' failed make[1]: *** [modules/core/CMakeFiles/opencv_core.dir/all] Error 2 Makefile:160: recipe for target 'all' failed make: *** [all] Error 2 ``` 有时候在33%进度的时候报这个错误,有时候就在15%时候报。我整整试了一整天,查遍了各种解决方法都无济于事。请大侠们帮忙解决下吧。跪谢。 是否有直接加载已经编译好的库的方式,可以快速实现配置,因为我急需要用Opencv实现代码。感谢各位大侠了。
opencv入门——图像的显示
这个错误是为啥?![图片](https://img-ask.csdn.net/upload/201703/12/1489324393_93199.jpg)
Python与opencv新手,做毕设看一位大神源码,但自己执行时候有如下错误,请问怎么解决?
代码如下: if __name__ == '__main__': im = array(Image.open('G:/graduation project/picture/车牌.jpg')) ret, binary = cv2.threshold(im, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) img = cv2Thin(im, 3) im2, cdf = histeq(im) cv2.imshow('细化图像', img) plt.imshow(im2, cmap=cm.gray) show() # 定义在pylab中 报错: C:\Python27\python.exe "G:/graduation project/Python-opencv/imtools.py" Traceback (most recent call last): File "G:/graduation project/Python-opencv/imtools.py", line 387, in <module> ret, binary = cv2.threshold(im, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) TypeError: src data type = 17 is not supported
ubuntu 配置c++版本的opencv 的诸多困扰
我刚刚接触Ubuntu系统,打算在Ubuntu上做c++开发,看了很多关于如何配置opencv的帖子, 感觉都非常顺畅: 1)下载opencv 源代码 2)解压 3)创建build文件夹, 然后cd build 4)cmake, make, install等等。 但是我操作的时候有很多问题,首先: 1)opencv的源代码由于不能翻墙原因,下载非常慢,目前只能借用一些网友在百度云的存储下载。 2)在按照Opencv官网执行cmake编译的时候,非常的不顺利,会报很多错误,其中最主要的就是ippicv下载慢,也需要提前手动下载。同时,还需要修改很多文件的内容。 3)好容易cmake编译通过,但是执行make命令的时候一直就是无法通过,至今不知道原因。 希望各位有经验的大神可以帮下我,能让我快速的配好Opencv,并且非常想知道,我上述提出的一些问题大家都是如何解决的? 感谢大家。
【小白求助】安卓opencv用分类器对人脸进行识别的一些问题
小白入门,最近在看opencv的人脸识别(分类) 然后按照网上的代码,学习了之后,自己写了一段,发现运行的时候会卡很久,甚至直接退出,并且越用越卡。 我想实现的是对一张图片进行读入,然后加载多个分类器对图片内容进行识别,从而达到分类的目的。 我那个问题困扰了我一天,想来求助大神 我加载人脸识别的模型没问题,但是同时加载两个模型,比如说人脸和上身,就会卡死。 代码分3个部分,分别是MainActivity.java , execDetect.java , Detector.java 以下是MainActivity.java ``` package com.RinGo.IMGfenlei; import android.content.Context; import android.content.Intent; import android.graphics.Bitmap; import android.graphics.BitmapFactory; import android.net.Uri; import android.os.Bundle; import android.os.Environment; import android.provider.MediaStore; import android.util.Log; import android.view.View; import android.widget.Button; import android.widget.ImageButton; import android.widget.TextView; import android.widget.Toast; import androidx.appcompat.app.AppCompatActivity; import org.opencv.android.Utils; import org.opencv.core.Mat; import org.opencv.core.MatOfRect; import org.opencv.core.Rect; import org.opencv.core.Scalar; import org.opencv.imgproc.Imgproc; import org.opencv.objdetect.CascadeClassifier; public class MainActivity extends AppCompatActivity { private Detector frontfaceDetector; private Detector smileDetector; private static String CAMERAIMAGENAME = "image.jpg"; private ImageButton imageButton; private ImageButton imageButton2; private TextView textView; private Bitmap bitmap; private Bitmap rectBitmap; private Bitmap resizeBitmap; private Toast toast; private Button addFile; private Button startDetect; private Button check; private execDetect toDetcet; private String show; @Override protected void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.activity_main); textView = (TextView) findViewById(R.id.tv_face); // imageButton = (ImageButton) findViewById(R.id.iv_face); //imageButton.setGravity(Gravity.CENTER_HORIZONTAL | Gravity.CENTER_VERTICAL); // imageButton2 = (ImageButton) findViewById(R.id.iv_face2); // imageButton2.setGravity(Gravity.CENTER_HORIZONTAL | Gravity.CENTER_VERTICAL); toDetcet=new execDetect(); addFile=(Button)findViewById(R.id.addPic); startDetect=(Button)findViewById(R.id.startDetect); check=(Button)findViewById(R.id.check); startDetect.setOnClickListener(new View.OnClickListener() { @Override public void onClick(View v) { // startDetect.setClickable(false); textView.setText("正在检测"); // detect(); Thread d =new Thread(new Runnable() { @Override public void run() { toDetcet.initExecDetect(MainActivity.this,bitmap); // Toast.makeText(MainActivity.this, "initialize succeed", Toast.LENGTH_SHORT).show(); show= toDetcet.startDetect(); // Toast.makeText(MainActivity.this, " succeed", Toast.LENGTH_SHORT).show(); } }); d.run(); textView.setText(show); // startDetect.setClickable(true); } }); check.setOnClickListener(new View.OnClickListener() { @Override public void onClick(View v) { // startDetect.setClickable(false); textView.setText(toDetcet.getReturntoMain()); // startDetect.setClickable(true); } }); addFile.setOnClickListener(new View.OnClickListener() { @Override public void onClick(View v) { // 添加照片 // 打开本地相册 Intent intent1 = new Intent(Intent.ACTION_PICK, android.provider.MediaStore.Images.Media.EXTERNAL_CONTENT_URI); startActivityForResult(intent1, 101); //startActivity(intent1); } }); String strLibraryName = "opencv_java3"; // 不需要添加前缀 libopencv_java3 { try { Log.e("loadLibrary", strLibraryName); System.loadLibrary(strLibraryName); //System.loadLibrary(Core.NATIVE_LIBRARY_NAME); // couldn't find "libopencv_java320.so" } catch (UnsatisfiedLinkError e) { Log.e("loadLibrary", "Native code library failed to load.\n" + e); } catch (Exception e) { Log.e("loadLibrary", "Exception: " + e); } } // frontfaceDetector = new Detector(this, R.raw.haarcascade_frontalface_alt, 6, 0.2F, 0.2F, new Scalar(255, 0, 0, 255)); } /** * 点击添加照片事件 * * @param v */ public void onClick(View v) { int bt_id = v.getId(); switch (bt_id) { /* case R.id.takePhoto: // 拍照 // 打开本地相机 Intent intent2 = new Intent(android.provider.MediaStore.ACTION_IMAGE_CAPTURE); Uri imageUri = Uri.fromFile(new File(Environment.getExternalStorageDirectory(), CAMERAIMAGENAME)); intent2.putExtra(MediaStore.EXTRA_OUTPUT, imageUri); startActivityForResult(intent2, 102); break; */ case R.id.back: this.finish(); break; default: break; } } @Override protected void onActivityResult(int requestCode, int resultCode, Intent data) { super.onActivityResult(requestCode, resultCode, data); // 加判断 不选择照片或者不拍照时不闪退 //Log.e("data", String.valueOf(data)); //if (data == null) //return; bitmap = null; switch (requestCode) { // 选择图片库的图片 case 101: if (resultCode == RESULT_OK) { try { Uri uri = data.getData(); bitmap = MediaStore.Images.Media.getBitmap(this.getContentResolver(), uri); } catch (Exception e) { e.printStackTrace(); } } break; // 表示调用本地照相机拍照 case 102: if (resultCode == RESULT_OK) { //Bundle bundle = data.getExtras(); //bm = (Bitmap) bundle.get("data"); bitmap = BitmapFactory.decodeFile(Environment.getExternalStorageDirectory() + "/" + CAMERAIMAGENAME); } break; default: break; } Log.e("bitmap", String.valueOf(bitmap)); if (bitmap == null) { toast = Toast.makeText(MainActivity.this, "未选择图像", Toast.LENGTH_SHORT); toast.show(); return; } // 识别图片 并画框 /* Thread detect=new Thread(new Runnable() { @Override public void run() { } }); detect.run(); */ // 将照片剪裁 bitmap将被释放重新赋值 //int ibWidth = imageButton.getWidth(); // int ibHeight = imageButton.getHeight(); //resizeBitmap = imageButton.resizeBitmap(bitmap, ibWidth, ibHeight); //imageButton.setBitmap(resizeBitmap); //imageButton2.setBitmap(rectBitmap); } private void detect() { MainActivity.this.runOnUiThread(new Runnable() { @Override public void run() { toDetcet.initExecDetect(MainActivity.this,bitmap); // Toast.makeText(MainActivity.this, "initialize succeed", Toast.LENGTH_SHORT).show(); String show= toDetcet.startDetect(); // Toast.makeText(MainActivity.this, " succeed", Toast.LENGTH_SHORT).show(); textView.setText(show); } }); //textView.setText(toDetcet.getReturntoMain()); } } ``` 以下是activity_main.xml ``` <?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" xmlns:app="http://schemas.android.com/apk/res-auto" xmlns:tools="http://schemas.android.com/tools" android:layout_width="match_parent" android:layout_height="match_parent" android:orientation="vertical"> <TextView android:id="@+id/tv_face" android:layout_width="wrap_content" android:layout_height="wrap_content" android:layout_marginBottom="16dp" android:text="未检测到人脸" android:textColor="@color/colorAccent" app:layout_constraintBottom_toTopOf="@+id/ll1" app:layout_constraintLeft_toLeftOf="parent" app:layout_constraintRight_toRightOf="parent" /> <LinearLayout android:id="@+id/ll1" android:layout_width="wrap_content" android:layout_height="wrap_content" android:orientation="horizontal" app:layout_constraintBottom_toBottomOf="parent" app:layout_constraintLeft_toLeftOf="parent" app:layout_constraintRight_toRightOf="parent"> <com.qmuiteam.qmui.widget.roundwidget.QMUIRoundButton android:id="@+id/addPic" android:layout_width="wrap_content" android:layout_height="wrap_content" android:layout_marginBottom="5dp" android:layout_weight="1" android:onClick="onClick" android:text=" 选择图片(CV) " android:textSize="16sp" app:layout_constraintLeft_toLeftOf="parent" app:layout_constraintRight_toRightOf="parent" /> <com.qmuiteam.qmui.widget.roundwidget.QMUIRoundButton android:id="@+id/startDetect" android:layout_width="wrap_content" android:layout_height="wrap_content" android:layout_marginBottom="5dp" android:layout_weight="1" android:onClick="onClick" android:text=" 开始识别 " android:textSize="16sp" app:layout_constraintLeft_toLeftOf="parent" app:layout_constraintRight_toRightOf="parent" /> <com.qmuiteam.qmui.widget.roundwidget.QMUIRoundButton android:id="@+id/check" android:layout_width="wrap_content" android:layout_height="wrap_content" android:layout_marginBottom="5dp" android:layout_weight="1" android:onClick="onClick" android:text=" 结果 " android:textSize="16sp" app:layout_constraintLeft_toLeftOf="parent" app:layout_constraintRight_toRightOf="parent" /> <com.qmuiteam.qmui.widget.roundwidget.QMUIRoundButton android:id="@+id/back" android:layout_width="wrap_content" android:layout_height="wrap_content" android:layout_marginBottom="0dp" android:layout_weight="1" android:onClick="onClick" android:text=" 返回 " android:textSize="16sp" app:layout_constraintLeft_toLeftOf="parent" app:layout_constraintRight_toRightOf="parent" /> </LinearLayout> </LinearLayout> ``` 以下是execDetect.java ``` package com.RinGo.IMGfenlei; import android.content.Context; import android.graphics.Bitmap; import android.util.Log; import org.opencv.android.Utils; import org.opencv.core.Mat; import org.opencv.core.MatOfRect; import org.opencv.core.Rect; import org.opencv.core.Scalar; import org.opencv.imgproc.Imgproc; import org.opencv.objdetect.CascadeClassifier; import com.RinGo.IMGfenlei.R; import com.RinGo.IMGfenlei.Detector; import java.io.File; import java.io.FileOutputStream; import java.io.InputStream; public class execDetect { private Detector frontfaceDetector; private Detector smilefaceDetector; private Detector[] detectors=new Detector[10]; private Detector detector; private Bitmap bitmap; private Bitmap rectBitmap; private String returntoMain=""; private String[] detectorNames=new String[10]; private CascadeClassifier mFrontalFaceClassifier = null; //正脸 级联分类器 private CascadeClassifier mProfileFaceClassifier = null; //侧脸 级联分类器 private int smilefacenum=0; private Context mcontext; private int[] cascades=new int[10]; public void initExecDetect(Context _context,Bitmap _bitmap) { bitmap=_bitmap; mcontext=_context; cascades[0]=R.raw.haarcascade_frontalface_alt; detectors[0] = new Detector(_context,R.raw.haarcascade_frontalface_alt, 1, 0.2F, 0.2F, new Scalar(255, 0, 0, 255)); detectorNames[0]="正面人脸"; cascades[1]=R.raw.lbpcascade_frontalface; detectors[1] = new Detector(_context,R.raw.lbpcascade_frontalface, 1, 0.2F, 0.2F, new Scalar(255, 0, 0, 255)); detectorNames[1]="正面人脸2"; } public String startDetect() { // bitmapToMat Mat toMat = new Mat(); Utils.bitmapToMat(bitmap, toMat); // Mat copyMat = new Mat(); // toMat.copyTo(copyMat); // 复制 // togray Mat gray = new Mat(); MatOfRect mRect = new MatOfRect(); Imgproc.cvtColor(toMat, gray, Imgproc.COLOR_RGBA2GRAY); for (int id = 0; id < detectors.length; id++) { //detector = new Detector(mcontext,cascades[id], 3, 0.1F, 0.1F, new Scalar(255, 0, 0, 255)); try { int num = 0; mRect=new MatOfRect(); Rect[] object = detectors[id].detectObjectImage( gray, mRect); Log.e("objectLength", object.length + ""); num=object.length; /* for (Rect rect : object) { num++; } */ returntoMain =returntoMain+ String.format("检测到%1$d个" + detectorNames[id], num) + "\n"; } catch (Exception e) { e.printStackTrace(); } //textView.setText(String.format("检测到%1$d个人脸", facenum)); //Utils.matToBitmap(toMat, bitmap); } return returntoMain; } public String getReturntoMain() { return returntoMain; } } ``` 以下是Detector.java,定义了我的级联分类器的设置 ``` package com.RinGo.IMGfenlei; import android.content.Context; import org.opencv.core.Mat; import org.opencv.core.MatOfRect; import org.opencv.core.Rect; import org.opencv.core.Scalar; import org.opencv.core.Size; import org.opencv.objdetect.CascadeClassifier; import org.opencv.objdetect.Objdetect; import java.io.File; import java.io.FileOutputStream; import java.io.IOException; import java.io.InputStream; /** * Created by think-hxr on 17-10-12. */ public class Detector { private CascadeClassifier mCascadeClassifier; private int mMinNeighbors; private float mRelativeObjectWidth; private float mRelativeObjectHeight; private Scalar mRectColor; /** * 构造方法 * * @param context 上下文 * @param id 级联分类器ID * @param minNeighbors 连续几帧确认目标 * @param relativeObjectWidth 最小宽度屏占比 * @param relativeObjectHeight 最小高度屏占比 * @param rectColor 画笔颜色 */ public Detector(Context context, int id, int minNeighbors, float relativeObjectWidth, float relativeObjectHeight, Scalar rectColor) { context = context.getApplicationContext(); mCascadeClassifier = createDetector(context, id); mMinNeighbors = minNeighbors; mRelativeObjectWidth = relativeObjectWidth; mRelativeObjectHeight = relativeObjectHeight; mRectColor = rectColor; } /** * 创建检测器 * * @param context 上下文 * @param id 级联分类器ID * @return 检测器 */ private CascadeClassifier createDetector(Context context, int id) { CascadeClassifier javaDetector; InputStream is = null; FileOutputStream os = null; try { is = context.getResources().openRawResource(id); File cascadeDir = context.getDir("cascade", Context.MODE_PRIVATE); File cascadeFile = new File(cascadeDir, id + ".xml"); os = new FileOutputStream(cascadeFile); byte[] buffer = new byte[4096]; int bytesRead; while ((bytesRead = is.read(buffer)) != -1) { os.write(buffer, 0, bytesRead); } javaDetector = new CascadeClassifier(cascadeFile.getAbsolutePath()); //javaDetector=new CascadeClassifier(); // javaDetector.load(cascadeFile.getAbsolutePath()); if (javaDetector.empty()) { javaDetector = null; } boolean delete = cascadeDir.delete(); return javaDetector; } catch (IOException e) { e.printStackTrace(); return null; } finally { try { if (null != is) { is.close(); } if (null != os) { os.close(); } } catch (IOException e) { e.printStackTrace(); } } } /** * 目标检测 视频 * * @param gray 灰度图像 * @param object 识别结果的容器 * @return 检测到的目标位置集合 */ public Rect[] detectObject(Mat gray, MatOfRect object) { // 使用Java人脸检测 mCascadeClassifier.detectMultiScale( gray, // 要检查的灰度图像 object, // 检测到的人脸 1.1, // 表示在前后两次相继的扫描中,搜索窗口的比例系数。默认为1.1即每次搜索窗口依次扩大10%; mMinNeighbors, // 默认是3 控制误检测,表示默认几次重叠检测到人脸,才认为人脸存在 Objdetect.CASCADE_SCALE_IMAGE, getSize(gray, mRelativeObjectWidth, mRelativeObjectHeight), // 目标最小可能的大小 gray.size()); // 目标最大可能的大小 return object.toArray(); } /** * 目标检测 图片 * * @param gray 灰度图像 * @param object 识别结果的容器 * @return */ public Rect[] detectObjectImage(Mat gray, MatOfRect object) { mCascadeClassifier.detectMultiScale(gray,object); return object.toArray(); } /** * 根据屏占比获取大小 * * @param gray gray * @param relativeObjectWidth 最小宽度屏占比 * @param relativeObjectHeight 最小高度屏占比 * @return 大小 */ private Size getSize(Mat gray, float relativeObjectWidth, float relativeObjectHeight) { Size size = gray.size(); int cameraWidth = gray.cols(); int cameraHeight = gray.rows(); int width = Math.round(cameraWidth * relativeObjectWidth); int height = Math.round(cameraHeight * relativeObjectHeight); size.width = 0 >= width ? 0 : (cameraWidth < width ? cameraWidth : width); // width [0, cameraWidth] size.height = 0 >= height ? 0 : (cameraHeight < height ? cameraHeight : height); // height [0, cameraHeight] return size; } /** * 获取画笔颜色 * * @return 颜色 */ public Scalar getRectColor() { return mRectColor; } } ```
【已经解决】 Win10环境下采用CMake编译OpenCV项目,提示无法找到opencv
1. 安装过OpenCV 4.1 win pack版本,同时安装的Intel Sensor SDK第三方软件中有opencv 3.4版本。 都按照操作要求添加了环境变量路径。 2. 采用CMake编译一个文件出现一直提示错误,这个错误应该是很多人都遇到过的。 CMakeLists.txt文件内容如下: cmake_minimum_required(VERSION 3.10) project(CvTrack) set(CMAKE_BUILD_TYPE Debug) set(OpenCV_DIR "D:/opencv/build") find_package(OpenCV REQUIRED) add_executable(CvTracking "main.cpp") target_link_libraries(CvTrack ${OpenCV_LIBS}) ********************************************************************************************************************************************************** 产生的错误提示: Selecting Windows SDK version 10.0.17763.0 to target Windows 10.0.18362. OpenCV ARCH: x86 OpenCV RUNTIME: vc14 OpenCV STATIC: OFF CMake Warning at D:/opencv/build/OpenCVConfig.cmake:166 (message): Found OpenCV Windows Pack but it has no binaries compatible with your configuration. You should manually point CMake variable OpenCV_DIR to your build of OpenCV library. Call Stack (most recent call first): CMakeLists.txt:15 (find_package) CMake Error at CMakeLists.txt:15 (find_package): Found package configuration file: D:/opencv/build/OpenCVConfig.cmake but it set OpenCV_FOUND to FALSE so package "OpenCV" is considered to be NOT FOUND. ![图片说明](https://img-ask.csdn.net/upload/201912/09/1575860198_340992.png) 安装目录如下: ![图片说明](https://img-ask.csdn.net/upload/201912/09/1575860277_399662.png) ![图片说明](https://img-ask.csdn.net/upload/201912/09/1575860289_707476.png) 请问,这个问题如何解决呢?? /==/==/==/==/==/==/==/==/==/==/==/==/==/==/==/==/==/== 解决方法: 主要原因:根据提示,OpenCVConfig.cmake文件有问题;实际在OpenCV 4.1 wind pack安装版本中,OpenCVConfig.cmake在其它路径下也有一个文件,修改路径即。 其次原因:设定的工程名为CvTrack,在add\_excuatable中的TargetName不对应。所以:重新修正了一下CMakeLists.txt: cmake_minimum_required(VERSION 3.10) project(CvTrack) set(OpenCV_DIR "D:/opencv/build/x64/vc15/lib") # 错误修正 find_package(OpenCV REQUIRED) include_directories(${OpenCV_INCLUDE_DIRS}) add_executable(CvTrack "main.cpp") # 错误修正 target_link_libraries(CvTrack ${OpenCV_LIBS})
opencv单目相机像素平面到世界坐标系中指定平面如何转换?
目的: 使用固定的单目相机**_倾斜_**着检测固定平面上的两点实际长度 目前已使用opencv中calibrateCamera函数标定相机,已求得相机**内参矩阵**、**5个畸变参数**、待检测面的**旋转向量和平移向量**; ![图片说明](https://img-ask.csdn.net/upload/202001/31/1580444964_631785.png) 问题:现在有一张待检测面的图片,已知像素坐标,需求出对应的世界坐标(x,y)? 注意是世界坐标系Z=0的平面 按照我的理解,是不是对像素图片进行单应性矩阵H的逆变换?如果是这样,单应性矩阵H怎么根据内参矩阵、畸变参数、旋转平移矩阵求出?张正友标定法里的单应性矩阵应该**不包含**畸变系数 网上还有一种方法通过opencv中getPerspectiveTransform、perspectiveTransform函数直接求一个面到另一个面的透视变换矩阵进行透视变换,但这种方法应该不能矫正镜头畸变吧? 跪求,实在搞不清楚。
无法打开包括文件:opencv2\contrib\contrib.hpp
本人OpenCV新手,在做人脸识别,程序运行当中显示 1> faceRecgnition.cpp 1>c:\users\administrator\documents\visual studio 2010\projects\facerecgnition\facerecgnition.cpp(14): fatal error C1083: 无法打开包括文件:“opencv2\contrib\contrib.hpp”: No such file or directory 1> detect_recog.cpp 1>c:\users\administrator\documents\visual studio 2010\projects\facerecgnition\detect_recog.h(14): fatal error C1083: 无法打开包括文件:“opencv2\contrib\contrib.hpp”: No such file or directory 但是我在OpenCV2的文件夹下面根本找不到contrib文件夹,是不是版本的问题,还是要重新下载这个文件夹?谢谢~~
终于明白阿里百度这样的大公司,为什么面试经常拿ThreadLocal考验求职者了
点击上面↑「爱开发」关注我们每晚10点,捕获技术思考和创业资源洞察什么是ThreadLocalThreadLocal是一个本地线程副本变量工具类,各个线程都拥有一份线程私...
《奇巧淫技》系列-python!!每天早上八点自动发送天气预报邮件到QQ邮箱
将代码部署服务器,每日早上定时获取到天气数据,并发送到邮箱。 也可以说是一个小人工智障。 思路可以运用在不同地方,主要介绍的是思路。
面试官问我:什么是消息队列?什么场景需要他?用了会出现什么问题?
你知道的越多,你不知道的越多 点赞再看,养成习惯 GitHub上已经开源 https://github.com/JavaFamily 有一线大厂面试点脑图、个人联系方式和人才交流群,欢迎Star和完善 前言 消息队列在互联网技术存储方面使用如此广泛,几乎所有的后端技术面试官都要在消息队列的使用和原理方面对小伙伴们进行360°的刁难。 作为一个在互联网公司面一次拿一次Offer的面霸...
8年经验面试官详解 Java 面试秘诀
作者 |胡书敏 责编 | 刘静 出品 | CSDN(ID:CSDNnews) 本人目前在一家知名外企担任架构师,而且最近八年来,在多家外企和互联网公司担任Java技术面试官,前后累计面试了有两三百位候选人。在本文里,就将结合本人的面试经验,针对Java初学者、Java初级开发和Java开发,给出若干准备简历和准备面试的建议。 Java程序员准备和投递简历的实...
究竟你适不适合买Mac?
我清晰的记得,刚买的macbook pro回到家,开机后第一件事情,就是上了淘宝网,花了500元钱,找了一个上门维修电脑的师傅,上门给我装了一个windows系统。。。。。。 表砍我。。。 当时买mac的初衷,只是想要个固态硬盘的笔记本,用来运行一些复杂的扑克软件。而看了当时所有的SSD笔记本后,最终决定,还是买个好(xiong)看(da)的。 已经有好几个朋友问我mba怎么样了,所以今天尽量客观...
MyBatis研习录(01)——MyBatis概述与入门
MyBatis 是一款优秀的持久层框架,它支持定制化 SQL、存储过程以及高级映射。MyBatis原本是apache的一个开源项目iBatis, 2010年该项目由apache software foundation 迁移到了google code并改名为MyBatis 。2013年11月MyBatis又迁移到Github。
程序员一般通过什么途径接私活?
二哥,你好,我想知道一般程序猿都如何接私活,我也想接,能告诉我一些方法吗? 上面是一个读者“烦不烦”问我的一个问题。其实不止是“烦不烦”,还有很多读者问过我类似这样的问题。 我接的私活不算多,挣到的钱也没有多少,加起来不到 20W。说实话,这个数目说出来我是有点心虚的,毕竟太少了,大家轻喷。但我想,恰好配得上“一般程序员”这个称号啊。毕竟苍蝇再小也是肉,我也算是有经验的人了。 唾弃接私活、做外...
Python爬虫爬取淘宝,京东商品信息
小编是一个理科生,不善长说一些废话。简单介绍下原理然后直接上代码。 使用的工具(Python+pycharm2019.3+selenium+xpath+chromedriver)其中要使用pycharm也可以私聊我selenium是一个框架可以通过pip下载 pip installselenium -ihttps://pypi.tuna.tsinghua.edu.cn/simple/ ...
阿里程序员写了一个新手都写不出的低级bug,被骂惨了。
这种新手都不会范的错,居然被一个工作好几年的小伙子写出来,差点被当场开除了。
Java工作4年来应聘要16K最后没要,细节如下。。。
前奏: 今天2B哥和大家分享一位前几天面试的一位应聘者,工作4年26岁,统招本科。 以下就是他的简历和面试情况。 基本情况: 专业技能: 1、&nbsp;熟悉Sping了解SpringMVC、SpringBoot、Mybatis等框架、了解SpringCloud微服务 2、&nbsp;熟悉常用项目管理工具:SVN、GIT、MAVEN、Jenkins 3、&nbsp;熟悉Nginx、tomca...
Python爬虫精简步骤1 获取数据
爬虫,从本质上来说,就是利用程序在网上拿到对我们有价值的数据。 爬虫能做很多事,能做商业分析,也能做生活助手,比如:分析北京近两年二手房成交均价是多少?广州的Python工程师平均薪资是多少?北京哪家餐厅粤菜最好吃?等等。 这是个人利用爬虫所做到的事情,而公司,同样可以利用爬虫来实现巨大的商业价值。比如你所熟悉的搜索引擎——百度和谷歌,它们的核心技术之一也是爬虫,而且是超级爬虫。 从搜索巨头到人工...
Python绘图,圣诞树,花,爱心 | Turtle篇
每周每日,分享Python实战代码,入门资料,进阶资料,基础语法,爬虫,数据分析,web网站,机器学习,深度学习等等。 公众号回复【进群】沟通交流吧,QQ扫码进群学习吧 微信群 QQ群 1.画圣诞树 import turtle screen = turtle.Screen() screen.setup(800,600) circle = turtle.Turtle()...
作为一个程序员,CPU的这些硬核知识你必须会!
CPU对每个程序员来说,是个既熟悉又陌生的东西? 如果你只知道CPU是中央处理器的话,那可能对你并没有什么用,那么作为程序员的我们,必须要搞懂的就是CPU这家伙是如何运行的,尤其要搞懂它里面的寄存器是怎么一回事,因为这将让你从底层明白程序的运行机制。 随我一起,来好好认识下CPU这货吧 把CPU掰开来看 对于CPU来说,我们首先就要搞明白它是怎么回事,也就是它的内部构造,当然,CPU那么牛的一个东...
破14亿,Python分析我国存在哪些人口危机!
一、背景 二、爬取数据 三、数据分析 1、总人口 2、男女人口比例 3、人口城镇化 4、人口增长率 5、人口老化(抚养比) 6、各省人口 7、世界人口 四、遇到的问题 遇到的问题 1、数据分页,需要获取从1949-2018年数据,观察到有近20年参数:LAST20,由此推测获取近70年的参数可设置为:LAST70 2、2019年数据没有放上去,可以手动添加上去 3、将数据进行 行列转换 4、列名...
web前端javascript+jquery知识点总结
1.Javascript 语法.用途 javascript 在前端网页中占有非常重要的地位,可以用于验证表单,制作特效等功能,它是一种描述语言,也是一种基于对象(Object)和事件驱动并具有安全性的脚本语言 ...
Python实战:抓肺炎疫情实时数据,画2019-nCoV疫情地图
今天,群里白垩老师问如何用python画武汉肺炎疫情地图。白垩老师是研究海洋生态与地球生物的学者,国家重点实验室成员,于不惑之年学习python,实为我等学习楷模。先前我并没有关注武汉肺炎的具体数据,也没有画过类似的数据分布图。于是就拿了两个小时,专门研究了一下,遂成此文。
听说想当黑客的都玩过这个Monyer游戏(1~14攻略)
第零关 进入传送门开始第0关(游戏链接) 请点击链接进入第1关: 连接在左边→ ←连接在右边 看不到啊。。。。(只能看到一堆大佬做完的留名,也能看到菜鸡的我,在后面~~) 直接fn+f12吧 &lt;span&gt;连接在左边→&lt;/span&gt; &lt;a href="first.php"&gt;&lt;/a&gt; &lt;span&gt;←连接在右边&lt;/span&gt; o...
在家远程办公效率低?那你一定要收好这个「在家办公」神器!
相信大家都已经收到国务院延长春节假期的消息,接下来,在家远程办公可能将会持续一段时间。 但是问题来了。远程办公不是人在电脑前就当坐班了,相反,对于沟通效率,文件协作,以及信息安全都有着极高的要求。有着非常多的挑战,比如: 1在异地互相不见面的会议上,如何提高沟通效率? 2文件之间的来往反馈如何做到及时性?如何保证信息安全? 3如何规划安排每天工作,以及如何进行成果验收? ...... ...
作为一个程序员,内存和磁盘的这些事情,你不得不知道啊!!!
截止目前,我已经分享了如下几篇文章: 一个程序在计算机中是如何运行的?超级干货!!! 作为一个程序员,CPU的这些硬核知识你必须会! 作为一个程序员,内存的这些硬核知识你必须懂! 这些知识可以说是我们之前都不太重视的基础知识,可能大家在上大学的时候都学习过了,但是嘞,当时由于老师讲解的没那么有趣,又加上这些知识本身就比较枯燥,所以嘞,大家当初几乎等于没学。 再说啦,学习这些,也看不出来有什么用啊!...
渗透测试-灰鸽子远控木马
木马概述 灰鸽子( Huigezi),原本该软件适用于公司和家庭管理,其功能十分强大,不但能监视摄像头、键盘记录、监控桌面、文件操作等。还提供了黑客专用功能,如:伪装系统图标、随意更换启动项名称和表述、随意更换端口、运行后自删除、毫无提示安装等,并采用反弹链接这种缺陷设计,使得使用者拥有最高权限,一经破解即无法控制。最终导致被黑客恶意使用。原作者的灰鸽子被定义为是一款集多种控制方式于一体的木马程序...
Python:爬取疫情每日数据
前言 目前每天各大平台,如腾讯、今日头条都会更新疫情每日数据,他们的数据源都是一样的,主要都是通过各地的卫健委官网通报。 以全国、湖北和上海为例,分别为以下三个网站: 国家卫健委官网:http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml 湖北卫健委官网:http://wjw.hubei.gov.cn/bmdt/ztzl/fkxxgzbdgrfyyq/xxfb...
这个世界上人真的分三六九等,你信吗?
偶然间,在知乎上看到一个问题 一时间,勾起了我深深的回忆。 以前在厂里打过两次工,做过家教,干过辅导班,做过中介。零下几度的晚上,贴过广告,满脸、满手地长冻疮。 再回首那段岁月,虽然苦,但让我学会了坚持和忍耐。让我明白了,在这个世界上,无论环境多么的恶劣,只要心存希望,星星之火,亦可燎原。 下文是原回答,希望能对你能有所启发。 如果我说,这个世界上人真的分三六九等,...
B 站上有哪些很好的学习资源?
哇说起B站,在小九眼里就是宝藏般的存在,放年假宅在家时一天刷6、7个小时不在话下,更别提今年的跨年晚会,我简直是跪着看完的!! 最早大家聚在在B站是为了追番,再后来我在上面刷欧美新歌和漂亮小姐姐的舞蹈视频,最近两年我和周围的朋友们已经把B站当作学习教室了,而且学习成本还免费,真是个励志的好平台ヽ(.◕ฺˇд ˇ◕ฺ;)ノ 下面我们就来盘点一下B站上优质的学习资源: 综合类 Oeasy: 综合...
雷火神山直播超两亿,Web播放器事件监听是怎么实现的?
Web播放器解决了在手机浏览器和PC浏览器上播放音视频数据的问题,让视音频内容可以不依赖用户安装App,就能进行播放以及在社交平台进行传播。在视频业务大数据平台中,播放数据的统计分析非常重要,所以Web播放器在使用过程中,需要对其内部的数据进行收集并上报至服务端,此时,就需要对发生在其内部的一些播放行为进行事件监听。 那么Web播放器事件监听是怎么实现的呢? 01 监听事件明细表 名...
3万字总结,Mysql优化之精髓
本文知识点较多,篇幅较长,请耐心学习 MySQL已经成为时下关系型数据库产品的中坚力量,备受互联网大厂的青睐,出门面试想进BAT,想拿高工资,不会点MySQL优化知识,拿offer的成功率会大大下降。 为什么要优化 系统的吞吐量瓶颈往往出现在数据库的访问速度上 随着应用程序的运行,数据库的中的数据会越来越多,处理时间会相应变慢 数据是存放在磁盘上的,读写速度无法和内存相比 如何优化 设计...
Python新型冠状病毒疫情数据自动爬取+统计+发送报告+数据屏幕(三)发送篇
今天介绍的项目是使用 Itchat 发送统计报告 项目功能设计: 定时爬取疫情数据存入Mysql 进行数据分析制作疫情报告 使用itchat给亲人朋友发送分析报告 基于Django做数据屏幕 使用Tableau做数据分析 来看看最终效果 目前已经完成,预计2月12日前更新 使用 itchat 发送数据统计报告 itchat 是一个基于 web微信的一个框架,但微信官方并不允许使用这...
作为程序员的我,大学四年一直自学,全靠这些实用工具和学习网站!
我本人因为高中沉迷于爱情,导致学业荒废,后来高考,毫无疑问进入了一所普普通通的大学,实在惭愧???? 我又是那么好强,现在学历不行,没办法改变的事情了,所以,进入大学开始,我就下定决心,一定要让自己掌握更多的技能,尤其选择了计算机这个行业,一定要多学习技术。 在进入大学学习不久后,我就认清了一个现实:我这个大学的整体教学质量和学习风气,真的一言难尽,懂的人自然知道怎么回事? 怎么办?我该如何更好的提升自...
粒子群算法求解物流配送路线问题(python)
1.Matlab实现粒子群算法的程序代码:https://www.cnblogs.com/kexinxin/p/9858664.html matlab代码求解函数最优值:https://blog.csdn.net/zyqblog/article/details/80829043 讲解通俗易懂,有数学实例的博文:https://blog.csdn.net/daaikuaichuan/article/...
教你如何编写第一个简单的爬虫
很多人知道爬虫,也很想利用爬虫去爬取自己想要的数据,那么爬虫到底怎么用呢?今天就教大家编写一个简单的爬虫。 下面以爬取笔者的个人博客网站为例获取第一篇文章的标题名称,教大家学会一个简单的爬虫。 第一步:获取页面 #!/usr/bin/python # coding: utf-8 import requests #引入包requests link = "http://www.santostang....
前端JS初级面试题二 (。•ˇ‸ˇ•。)老铁们!快来瞧瞧自己都会了么
1. 传统事件绑定和符合W3C标准的事件绑定有什么区别? 传统事件绑定 &lt;div onclick=""&gt;123&lt;/div&gt; div1.onclick = function(){}; &lt;button onmouseover=""&gt;&lt;/button&gt; 注意: 如果给同一个元素绑定了两次或多次相同类型的事件,那么后面的绑定会覆盖前面的绑定 (不支持DOM事...
相关热词 c# 识别回车 c#生成条形码ean13 c#子控制器调用父控制器 c# 写大文件 c# 浏览pdf c#获取桌面图标的句柄 c# list反射 c# 句柄 进程 c# 倒计时 线程 c# 窗体背景色
立即提问