猫眼电影、淘宝电影、微信电影票等APP后台数据库的架构是怎样的

作为平台,需要设计哪些数据库和影城对接?APP界面显示的那些影片信息、余票信息以及价格数据是来自哪的?影城、APP后台的数据库是如何整理显示的?

3个回答

影片信息、余票信息以及价格数据,这些东西是电影院那边的数据库提供的,你在你的后台写一个webAPI来获取这个数据库的数据,转化为JSON格式,然后在客户端对这个API进行请求,然后服务器返回JSON格式的数据,再在客户端这边解析这些JSON数据就可以了

是的,平台需要做的是存储这些东西

APP界面显示的那些影片信息、余票信息以及价格数据是来自哪的?
这里应该是影城它们有提供接口,APP后头调用接口查它们的数据库返回给APP展示
作为平台,需要设计哪些数据库和影城对接?
应该是影城的信息,数据地址等
影城、APP后台的数据库是如何整理显示的?
这个可以在后台来组装成json,返回给前台。前台拿到后,展示给用户

Csdn user default icon
上传中...
上传图片
插入图片
抄袭、复制答案,以达到刷声望分或其他目的的行为,在CSDN问答是严格禁止的,一经发现立刻封号。是时候展现真正的技术了!
其他相关推荐
微信端实现选座,如猫眼电影一样的效果,谢谢了
最近开发一个选座页面,希望实现座位区域可以在手机端活动放大或者缩小(如猫眼), 哪位大神有成型控件或者有相关开发经验请指导! 小弟先在此谢过了!
某课网仿猫眼项目前端启动失败 不能展示数据
![图片说明](https://img-ask.csdn.net/upload/201911/26/1574729435_10605.jpg) 前后端分离 后端能看到查询数据日志 ,但是前端页面不变化 ,不展示数据 求解求解
爬虫为什么只能爬到一部分内容?
python爬虫爬取猫眼电影Top100,每一页有10个电影,但是爬虫只能爬取第一个,后面都爬不到不止是为什么 代码如下,大神帮忙看看,感激不尽 import requests from requests.exceptions import RequestException import re def get_one_page(url): try: headers={'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/77.0.3865.90 Safari/537.36'} response=requests.get(url,headers=headers) if response.status_code==200: return response.text return None except RequestException: return None def parse_one_page(html): pattern=re.compile('<dd>.*?board-index-1">(\d+)</i>.*?data-src="(.*?)".*?/>.*?name"><a.*?>(.*?)</a>'+ '.*?star">(.*?)</p>.*?releasetime">(.*?)</p>.*?integer">(.*?)</i>.*?fraction">(.*?)</i>.*?</dd>',re.S) items=re.findall(pattern,html) print(items) def main(): url='http://maoyan.com/board/4?' html=get_one_page(url) parse_one_page(html) if __name__=='__main__': main() 结果显示 C:\Users\Administrator\python37\python.exe C:/Users/Administrator/PycharmProjects/Maoyantop100/spder.py [('1', 'https://p1.meituan.net/movie/20803f59291c47e1e116c11963ce019e68711.jpg@160w_220h_1e_1c', '霸王别姬', '\n 主演:张国荣,张丰毅,巩俐\n ', '上映时间:1993-01-01', '9.', '5')] Process finished with exit code 0
怎么爬取猫眼电影里的所有城市信息,不要selenium的
就是获取下拉列表里的信息。如下: ![图片说明](https://img-ask.csdn.net/upload/201901/14/1547470034_104553.png)
请问我的Python爬虫代码 哪里出现了问题?(要求:爬取猫眼电影top100榜单的信息)
代码如下: ``` import requests from requests.exceptions import RequestException import time from bs4 import BeautifulSoup def get_one_page(url): try: headers={'User-Agent':'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/63.0.3239.132 Safari/537.36'} response = requests.get(url,headers=headers) if response.status_code==200: return response.text return None except RequestException: return None def page(offset): url='http://maoyan.com/board/6?offset='+str(offset) return url for j in range(10): html_doc = get_one_page(page(j*10)) soup = BeautifulSoup(html_doc,'lxml') i = 1 for dd in soup.select("dd"): print(dd.find("i","board-index board-index-"+str(i+j*10)).get_text() +dd.find("p","name").get_text() +dd.find("p","star").get_text().strip() +dd.find("p","releasetime").string +dd.find("p","score").get_text()+'\n') i = i + 1 time.sleep(1) ``` 运行反馈结果为: ``` Traceback (most recent call last): File "<ipython-input-8-95f75b1c7bd0>", line 1, in <module> runfile('H:/程序语言学习用文件夹/Spider/beautifulSoup.py', wdir='H:/程序语言学习用文件夹/Spider') File "C:\Users\pc1\Anaconda3\lib\site-packages\spyder\utils\site\sitecustomize.py", line 705, in runfile execfile(filename, namespace) File "C:\Users\pc1\Anaconda3\lib\site-packages\spyder\utils\site\sitecustomize.py", line 102, in execfile exec(compile(f.read(), filename, 'exec'), namespace) File "H:/程序语言学习用文件夹/Spider/beautifulSoup.py", line 29, in <module> soup = BeautifulSoup(html_doc,'lxml') File "C:\Users\pc1\Anaconda3\lib\site-packages\bs4\__init__.py", line 192, in __init__ elif len(markup) <= 256 and ( TypeError: object of type 'NoneType' has no len() ```
java怎样爬取猫眼票房数据
前台页面显示正常数据,但是查看源码的时候出现乱码,java怎样解决这个问题,各位大神帮帮忙,小弟感激不尽,大神们如果嫌弃金币少的话,我可以追加的,拜托拜托了
python运行有错误:这是对数据进行分析生成可视化界面的程序(我是小白,请说下解决方法)
运行错误: C:\Users\Administrator\PycharmProjects\untitled\venv\Scripts\python.exe C:/Users/Administrator/PycharmProjects/untitled/dianying/src/analysis_data.py 一共有:16590个 Building prefix dict from the default dictionary ... Loading model from cache C:\Users\ADMINI~1\AppData\Local\Temp\jieba.cache Loading model cost 0.808 seconds. Prefix dict has been built succesfully. Traceback (most recent call last): File "C:/Users/Administrator/PycharmProjects/untitled/dianying/src/analysis_data.py", line 252, in <module> jiebaclearText(content) File "C:/Users/Administrator/PycharmProjects/untitled/dianying/src/analysis_data.py", line 97, in jiebaclearText f_stop_text = f_stop.read() File "D:\python111\lib\codecs.py", line 321, in decode (result, consumed) = self._buffer_decode(data, self.errors, final) UnicodeDecodeError: 'utf-8' codec can't decode byte 0xa1 in position 3: invalid start byte Process finished with exit code 1 代码如下: ''' data : 2019.3.28 goal : 可视化分析获取到的数据 ''' import csv time = [] nickName = [] gender = [] cityName = [] userLevel = [] score = [] content = '' # 读数据 def read_csv(): content = '' # 读取文件内容 with open(r'D:\maoyan.csv', 'r', encoding='utf_8_sig', newline='') as file_test: # 读文件 reader = csv.reader(file_test) i = 0 for row in reader: if i != 0: time.append(row[0]) nickName.append(row[1]) gender.append(row[2]) cityName.append(row[3]) userLevel.append(row[4]) score.append(row[5]) content = content + row[6] # print(row) i = i + 1 print('一共有:' + str(i - 1) + '个') return content import re, jieba # 词云生成工具 from wordcloud import WordCloud, ImageColorGenerator # 需要对中文进行处理 import matplotlib.font_manager as fm from pylab import * mpl.rcParams['font.sans-serif'] = ['SimHei'] from os import path d = path.dirname(__file__) stopwords_path = 'D:\ku\chineseStopWords.txt' # 评论词云分析 def word_cloud(content): import jieba, re, numpy from pyecharts import WordCloud import pandas as pd # 去除所有评论里多余的字符 content = content.replace(" ", ",") content = content.replace(" ", "、") content = re.sub('[,,。. \r\n]', '', content) segment = jieba.lcut(content) words_df = pd.DataFrame({'segment': segment}) # quoting=3 表示stopwords.txt里的内容全部不引用 stopwords = pd.read_csv(stopwords_path, index_col=False, quoting=3, sep="\t", names=['stopword'], encoding='utf-8') words_df = words_df[~words_df.segment.isin(stopwords.stopword)] words_stat = words_df.groupby(by=['segment'])['segment'].agg({"计数": numpy.size}) words_stat = words_stat.reset_index().sort_values(by=["计数"], ascending=False) test = words_stat.head(500).values codes = [test[i][0] for i in range(0, len(test))] counts = [test[i][1] for i in range(0, len(test))] wordcloud = WordCloud(width=1300, height=620) wordcloud.add("影评词云", codes, counts, word_size_range=[20, 100]) wordcloud.render(d + "\picture\c_wordcloud.html") # 定义个函数式用于分词 def jiebaclearText(text): # 定义一个空的列表,将去除的停用词的分词保存 mywordList = [] text = re.sub('[,,。. \r\n]', '', text) # 进行分词 seg_list = jieba.cut(text, cut_all=False) # 将一个generator的内容用/连接 listStr = '/'.join(seg_list) listStr = listStr.replace("class", "") listStr = listStr.replace("span", "") listStr = listStr.replace("悲伤逆流成河", "") # 打开停用词表 f_stop = open(stopwords_path, encoding="utf8") # 读取 try: f_stop_text = f_stop.read() finally: f_stop.close() # 关闭资源 # 将停用词格式化,用\n分开,返回一个列表 f_stop_seg_list = f_stop_text.split("\n") # 对默认模式分词的进行遍历,去除停用词 for myword in listStr.split('/'): # 去除停用词 if not (myword.split()) in f_stop_seg_list and len(myword.strip()) > 1: mywordList.append(myword) return ' '.join(mywordList) # 生成词云图 def make_wordcloud(text1): text1 = text1.replace("悲伤逆流成河", "") bg = plt.imread(d + "/static/znn1.jpg") # 生成 wc = WordCloud( # FFFAE3 background_color="white", # 设置背景为白色,默认为黑色 width=890, # 设置图片的宽度 height=600, # 设置图片的高度 mask=bg, # margin=10, # 设置图片的边缘 max_font_size=150, # 显示的最大的字体大小 random_state=50, # 为每个单词返回一个PIL颜色 font_path=d + '/static/simkai.ttf' # 中文处理,用系统自带的字体 ).generate_from_text(text1) # 为图片设置字体 my_font = fm.FontProperties(fname=d + '/static/simkai.ttf') # 图片背景 bg_color = ImageColorGenerator(bg) # 开始画图 plt.imshow(wc.recolor(color_func=bg_color)) # 为云图去掉坐标轴 plt.axis("off") # 画云图,显示 # 保存云图 wc.to_file(d + r"/picture/word_cloud.png") # 评论者性别分布可视化 def sex_distribution(gender): # print(gender) from pyecharts import Pie list_num = [] list_num.append(gender.count('0')) # 未知 list_num.append(gender.count('1')) # 男 list_num.append(gender.count('2')) # 女 attr = ["其他", "男", "女"] pie = Pie("性别饼图") pie.add("", attr, list_num, is_label_show=True) pie.render(d + r"\picture\sex_pie.html") # 评论者所在城市分布可视化 def city_distribution(cityName): city_list = list(set(cityName)) city_dict = {city_list[i]: 0 for i in range(len(city_list))} for i in range(len(city_list)): city_dict[city_list[i]] = cityName.count(city_list[i]) # 根据数量(字典的键值)排序 sort_dict = sorted(city_dict.items(), key=lambda d: d[1], reverse=True) city_name = [] city_num = [] for i in range(len(sort_dict)): city_name.append(sort_dict[i][0]) city_num.append(sort_dict[i][1]) import random from pyecharts import Bar bar = Bar("评论者城市分布") bar.add("", city_name, city_num, is_label_show=True, is_datazoom_show=True) bar.render(d + r"\picture\city_bar.html") # 每日评论总数可视化分析 def time_num_visualization(time): from pyecharts import Line time_list = list(set(time)) time_dict = {time_list[i]: 0 for i in range(len(time_list))} time_num = [] for i in range(len(time_list)): time_dict[time_list[i]] = time.count(time_list[i]) # 根据数量(字典的键值)排序 sort_dict = sorted(time_dict.items(), key=lambda d: d[0], reverse=False) time_name = [] time_num = [] print(sort_dict) for i in range(len(sort_dict)): time_name.append(sort_dict[i][0]) time_num.append(sort_dict[i][1]) line = Line("评论数量日期折线图") line.add( "日期-评论数", time_name, time_num, is_fill=True, area_color="#000", area_opacity=0.3, is_smooth=True, ) line.render(d + r"\picture\c_num_line.html") # 评论者猫眼等级、评分可视化 def level_score_visualization(userLevel, score): from pyecharts import Pie userLevel_list = list(set(userLevel)) userLevel_num = [] for i in range(len(userLevel_list)): userLevel_num.append(userLevel.count(userLevel_list[i])) score_list = list(set(score)) score_num = [] for i in range(len(score_list)): score_num.append(score.count(score_list[i])) pie01 = Pie("等级环状饼图", title_pos='center', width=900) pie01.add( "等级", userLevel_list, userLevel_num, radius=[40, 75], label_text_color=None, is_label_show=True, legend_orient="vertical", legend_pos="left", ) pie01.render(d + r"\picture\level_pie.html") pie02 = Pie("评分玫瑰饼图", title_pos='center', width=900) pie02.add( "评分", score_list, score_num, center=[50, 50], is_random=True, radius=[30, 75], rosetype="area", is_legend_show=False, is_label_show=True, ) pie02.render(d + r"\picture\score_pie.html") time = [] nickName = [] gender = [] cityName = [] userLevel = [] score = [] content = '' content = read_csv() # 1 词云 jiebaclearText(content) make_wordcloud(content) # pyecharts词云 # word_cloud(content) # 2 性别分布 sex_distribution(gender) # 3 城市分布 city_distribution(cityName) # 4 评论数 time_num_visualization(time) # 5 等级,评分 level_score_visualization(userLevel, score)
关于json.load()里报错的问题:json.decoder.JSONDecodeError:
用python爬猫眼电影,代码和老师讲的一样的,但是出现了一些问题: ``` # -*- coding: utf-8 -*- from urllib import request import json def get_data(url): headers = { 'User-Agent': 'Mozilla/5.0 (iPhone; CPU iPhone OS 9_1 like Mac OS X) AppleWebKit/601.1.46 (KHTML, like Gecko) Version/9.0 Mobile/13B143 Safari/601.1' } req = request.Request(url, headers=headers) response = request.urlopen(req) if response.getcode() == 200: print(response.read()) return response.read() def parse_data(html): data = json.loads(html)['cmts'] print(data) if __name__ == '__main__': url = 'http://m.maoyan.com/mmdb/comments/movie/1203084.json?_v_=yes&offset=15&startTime=2018-09-01%2011%3A10%3A00' parse_data(get_data(url)) ``` 报错如下: json.decoder.JSONDecodeError: Expecting value: line 1 column 1 (char 0)
js仿猫眼订票系统,不知道怎么修改着座位信息显示不出来了,代码如下
![图片说明](https://img-ask.csdn.net/upload/201805/03/1525349753_220133.png) ![图片说明](https://img-ask.csdn.net/upload/201805/03/1525349764_402016.png) ![图片说明](https://img-ask.csdn.net/upload/201805/03/1525349775_238296.png)
Java学习的正确打开方式
在博主认为,对于入门级学习java的最佳学习方法莫过于视频+博客+书籍+总结,前三者博主将淋漓尽致地挥毫于这篇博客文章中,至于总结在于个人,实际上越到后面你会发现学习的最好方式就是阅读参考官方文档其次就是国内的书籍,博客次之,这又是一个层次了,这里暂时不提后面再谈。博主将为各位入门java保驾护航,各位只管冲鸭!!!上天是公平的,只要不辜负时间,时间自然不会辜负你。 何谓学习?博主所理解的学习,它是一个过程,是一个不断累积、不断沉淀、不断总结、善于传达自己的个人见解以及乐于分享的过程。
程序员必须掌握的核心算法有哪些?
由于我之前一直强调数据结构以及算法学习的重要性,所以就有一些读者经常问我,数据结构与算法应该要学习到哪个程度呢?,说实话,这个问题我不知道要怎么回答你,主要取决于你想学习到哪些程度,不过针对这个问题,我稍微总结一下我学过的算法知识点,以及我觉得值得学习的算法。这些算法与数据结构的学习大多数是零散的,并没有一本把他们全部覆盖的书籍。下面是我觉得值得学习的一些算法以及数据结构,当然,我也会整理一些看过...
前端 | 2. 正则
转载请注明以下: 本文转自清自以敬的博客:https://blog.csdn.net/qq_45791147 文章目录1.转义2.正则表达式初步2.1.匹配字符2.1.1.组成元素2.1.2.基础正则的设计 1.转义 转义的作用: 当某个字符在表达式中具有特殊含义,例如字符串引号中出现了引号,为了可以使用这些字符本身,而不是使用其在表达式中的特殊含义,则需要通过转义符“\”来构建该字符转义...
有哪些让程序员受益终生的建议
从业五年多,辗转两个大厂,出过书,创过业,从技术小白成长为基层管理,联合几个业内大牛回答下这个问题,希望能帮到大家,记得帮我点赞哦。 敲黑板!!!读了这篇文章,你将知道如何才能进大厂,如何实现财务自由,如何在工作中游刃有余,这篇文章很长,但绝对是精品,记得帮我点赞哦!!!! 一腔肺腑之言,能看进去多少,就看你自己了!!! 目录: 在校生篇: 为什么要尽量进大厂? 如何选择语言及方...
大学四年自学走来,这些私藏的实用工具/学习网站我贡献出来了
大学四年,看课本是不可能一直看课本的了,对于学习,特别是自学,善于搜索网上的一些资源来辅助,还是非常有必要的,下面我就把这几年私藏的各种资源,网站贡献出来给你们。主要有:电子书搜索、实用工具、在线视频学习网站、非视频学习网站、软件下载、面试/求职必备网站。 注意:文中提到的所有资源,文末我都给你整理好了,你们只管拿去,如果觉得不错,转发、分享就是最大的支持了。 一、电子书搜索 对于大部分程序员...
linux系列之常用运维命令整理笔录
本博客记录工作中需要的linux运维命令,大学时候开始接触linux,会一些基本操作,可是都没有整理起来,加上是做开发,不做运维,有些命令忘记了,所以现在整理成博客,当然vi,文件操作等就不介绍了,慢慢积累一些其它拓展的命令,博客不定时更新 free -m 其中:m表示兆,也可以用g,注意都要小写 Men:表示物理内存统计 total:表示物理内存总数(total=used+free) use...
比特币原理详解
一、什么是比特币 比特币是一种电子货币,是一种基于密码学的货币,在2008年11月1日由中本聪发表比特币白皮书,文中提出了一种去中心化的电子记账系统,我们平时的电子现金是银行来记账,因为银行的背后是国家信用。去中心化电子记账系统是参与者共同记账。比特币可以防止主权危机、信用风险。其好处不多做赘述,这一层面介绍的文章很多,本文主要从更深层的技术原理角度进行介绍。 二、问题引入 假设现有4个人...
程序员接私活怎样防止做完了不给钱?
首先跟大家说明一点,我们做 IT 类的外包开发,是非标品开发,所以很有可能在开发过程中会有这样那样的需求修改,而这种需求修改很容易造成扯皮,进而影响到费用支付,甚至出现做完了项目收不到钱的情况。 那么,怎么保证自己的薪酬安全呢? 我们在开工前,一定要做好一些证据方面的准备(也就是“讨薪”的理论依据),这其中最重要的就是需求文档和验收标准。一定要让需求方提供这两个文档资料作为开发的基础。之后开发...
网页实现一个简单的音乐播放器(大佬别看。(⊙﹏⊙))
今天闲着无事,就想写点东西。然后听了下歌,就打算写个播放器。 于是乎用h5 audio的加上js简单的播放器完工了。 演示地点演示 html代码如下` music 这个年纪 七月的风 音乐 ` 然后就是css`*{ margin: 0; padding: 0; text-decoration: none; list-...
Python十大装B语法
Python 是一种代表简单思想的语言,其语法相对简单,很容易上手。不过,如果就此小视 Python 语法的精妙和深邃,那就大错特错了。本文精心筛选了最能展现 Python 语法之精妙的十个知识点,并附上详细的实例代码。如能在实战中融会贯通、灵活使用,必将使代码更为精炼、高效,同时也会极大提升代码B格,使之看上去更老练,读起来更优雅。
数据库优化 - SQL优化
以实际SQL入手,带你一步一步走上SQL优化之路!
2019年11月中国大陆编程语言排行榜
2019年11月2日,我统计了某招聘网站,获得有效程序员招聘数据9万条。针对招聘信息,提取编程语言关键字,并统计如下: 编程语言比例 rank pl_ percentage 1 java 33.62% 2 cpp 16.42% 3 c_sharp 12.82% 4 javascript 12.31% 5 python 7.93% 6 go 7.25% 7 p...
通俗易懂地给女朋友讲:线程池的内部原理
餐盘在灯光的照耀下格外晶莹洁白,女朋友拿起红酒杯轻轻地抿了一小口,对我说:“经常听你说线程池,到底线程池到底是个什么原理?”
《奇巧淫技》系列-python!!每天早上八点自动发送天气预报邮件到QQ邮箱
将代码部署服务器,每日早上定时获取到天气数据,并发送到邮箱。 也可以说是一个小型人工智障。 知识可以运用在不同地方,不一定非是天气预报。
经典算法(5)杨辉三角
杨辉三角 是经典算法,这篇博客对它的算法思想进行了讲解,并有完整的代码实现。
腾讯算法面试题:64匹马8个跑道需要多少轮才能选出最快的四匹?
昨天,有网友私信我,说去阿里面试,彻底的被打击到了。问了为什么网上大量使用ThreadLocal的源码都会加上private static?他被难住了,因为他从来都没有考虑过这个问题。无独有偶,今天笔者又发现有网友吐槽了一道腾讯的面试题,我们一起来看看。 腾讯算法面试题:64匹马8个跑道需要多少轮才能选出最快的四匹? 在互联网职场论坛,一名程序员发帖求助到。二面腾讯,其中一个算法题:64匹...
面试官:你连RESTful都不知道我怎么敢要你?
干货,2019 RESTful最贱实践
Docker 从入门到掉坑
Docker 介绍 简单的对docker进行介绍,可以把它理解为一个应用程序执行的容器。但是docker本身和虚拟机还是有较为明显的出入的。我大致归纳了一下,可以总结为以下几点: docker自身也有着很多的优点,关于它的优点,可以总结为以下几项: 安装docker 从 2017 年 3 月开始 docker 在原来的基础上分为两个分支版本: Docker CE 和 Doc...
为啥国人偏爱Mybatis,而老外喜欢Hibernate/JPA呢?
关于SQL和ORM的争论,永远都不会终止,我也一直在思考这个问题。昨天又跟群里的小伙伴进行了一番讨论,感触还是有一些,于是就有了今天这篇文。 声明:本文不会下关于Mybatis和JPA两个持久层框架哪个更好这样的结论。只是摆事实,讲道理,所以,请各位看官勿喷。 一、事件起因 关于Mybatis和JPA孰优孰劣的问题,争论已经很多年了。一直也没有结论,毕竟每个人的喜好和习惯是大不相同的。我也看...
白话阿里巴巴Java开发手册高级篇
不久前,阿里巴巴发布了《阿里巴巴Java开发手册》,总结了阿里巴巴内部实际项目开发过程中开发人员应该遵守的研发流程规范,这些流程规范在一定程度上能够保证最终的项目交付质量,通过在时间中总结模式,并推广给广大开发人员,来避免研发人员在实践中容易犯的错误,确保最终在大规模协作的项目中达成既定目标。 无独有偶,笔者去年在公司里负责升级和制定研发流程、设计模板、设计标准、代码标准等规范,并在实际工作中进行...
SQL-小白最佳入门sql查询一
不要偷偷的查询我的个人资料,即使你再喜欢我,也不要这样,真的不好;
项目中的if else太多了,该怎么重构?
介绍 最近跟着公司的大佬开发了一款IM系统,类似QQ和微信哈,就是聊天软件。我们有一部分业务逻辑是这样的 if (msgType = "文本") { // dosomething } else if(msgType = "图片") { // doshomething } else if(msgType = "视频") { // doshomething } else { // doshom...
Nginx 原理和架构
Nginx 是一个免费的,开源的,高性能的 HTTP 服务器和反向代理,以及 IMAP / POP3 代理服务器。Nginx 以其高性能,稳定性,丰富的功能,简单的配置和低资源消耗而闻名。 Nginx 的整体架构 Nginx 里有一个 master 进程和多个 worker 进程。master 进程并不处理网络请求,主要负责调度工作进程:加载配置、启动工作进程及非停升级。worker 进程负责处...
Python 编程开发 实用经验和技巧
Python是一门很灵活的语言,也有很多实用的方法,有时候实现一个功能可以用多种方法实现,我这里总结了一些常用的方法和技巧,包括小数保留指定位小数、判断变量的数据类型、类方法@classmethod、制表符中文对齐、遍历字典、datetime.timedelta的使用等,会持续更新......
YouTube排名第一的励志英文演讲《Dream(梦想)》
Idon’t know what that dream is that you have, I don't care how disappointing it might have been as you've been working toward that dream,but that dream that you’re holding in your mind, that it’s po...
“狗屁不通文章生成器”登顶GitHub热榜,分分钟写出万字形式主义大作
一、垃圾文字生成器介绍 最近在浏览GitHub的时候,发现了这样一个骨骼清奇的雷人项目,而且热度还特别高。 项目中文名:狗屁不通文章生成器 项目英文名:BullshitGenerator 根据作者的介绍,他是偶尔需要一些中文文字用于GUI开发时测试文本渲染,因此开发了这个废话生成器。但由于生成的废话实在是太过富于哲理,所以最近已经被小伙伴们给玩坏了。 他的文风可能是这样的: 你发现,...
程序员:我终于知道post和get的区别
是一个老生常谈的话题,然而随着不断的学习,对于以前的认识有很多误区,所以还是需要不断地总结的,学而时习之,不亦说乎
《程序人生》系列-这个程序员只用了20行代码就拿了冠军
你知道的越多,你不知道的越多 点赞再看,养成习惯GitHub上已经开源https://github.com/JavaFamily,有一线大厂面试点脑图,欢迎Star和完善 前言 这一期不算《吊打面试官》系列的,所有没前言我直接开始。 絮叨 本来应该是没有这期的,看过我上期的小伙伴应该是知道的嘛,双十一比较忙嘛,要值班又要去帮忙拍摄年会的视频素材,还得搞个程序员一天的Vlog,还要写BU...
程序员把地府后台管理系统做出来了,还有3.0版本!12月7号最新消息:已在开发中有github地址
第一幕:缘起 听说阎王爷要做个生死簿后台管理系统,我们派去了一个程序员…… 996程序员做的梦: 第一场:团队招募 为了应对地府管理危机,阎王打算找“人”开发一套地府后台管理系统,于是就在地府总经办群中发了项目需求。 话说还是中国电信的信号好,地府都是满格,哈哈!!! 经常会有外行朋友问:看某网站做的不错,功能也简单,你帮忙做一下? 而这次,面对这样的需求,这个程序员...
网易云6亿用户音乐推荐算法
网易云音乐是音乐爱好者的集聚地,云音乐推荐系统致力于通过 AI 算法的落地,实现用户千人千面的个性化推荐,为用户带来不一样的听歌体验。 本次分享重点介绍 AI 算法在音乐推荐中的应用实践,以及在算法落地过程中遇到的挑战和解决方案。 将从如下两个部分展开: AI算法在音乐推荐中的应用 音乐场景下的 AI 思考 从 2013 年 4 月正式上线至今,网易云音乐平台持续提供着:乐屏社区、UGC...
为什么要学数据结构?
一、前言 在可视化化程序设计的今天,借助于集成开发环境可以很快地生成程序,程序设计不再是计算机专业人员的专利。很多人认为,只要掌握几种开发工具就可以成为编程高手,其实,这是一种误解。要想成为一个专业的开发人员,至少需要以下三个条件: 1) 能够熟练地选择和设计各种数据结构和算法 2) 至少要能够熟练地掌握一门程序设计语言 3) 熟知所涉及的相关应用领域的知识 其中,后两个条件比较容易实现,而第一个...
金山办公上市,雷军心愿了却!
作者 | 胡巍巍 出品 | CSDN(ID:CSDNnews) 11月17日,大周末的,雷军微博发了个重磅消息: “明天将是里程碑式的一天,金山办公终于成功在科创板挂牌上市了! 从1988年金山创办到今天,WPS走了整整31年。 从1999年以金山办公为主体准备上市算起,这一天,我们等了20年。 WPS和金山的历程,这是一个坚持梦想并最终取得胜利的励志故事。期待大家的祝福!”...
8年经验面试官详解 Java 面试秘诀
作者 |胡书敏 责编 | 刘静 出品 | CSDN(ID:CSDNnews) 本人目前在一家知名外企担任架构师,而且最近八年来,在多家外企和互联网公司担任Java技术面试官,前后累计面试了有两三百位候选人。在本文里,就将结合本人的面试经验,针对Java初学者、Java初级开发和Java开发,给出若干准备简历和准备面试的建议。 Java程序员准备和投递简历的实...
面试官如何考察你的思维方式?
1.两种思维方式在求职面试中,经常会考察这种问题:北京有多少量特斯拉汽车?某胡同口的煎饼摊一年能卖出多少个煎饼?深圳有多少个产品经理?一辆公交车里能装下多少个乒乓球?一个正常成年人有多少根头发?这类估算问题,被称为费米问题,是以科学家费米命名的。为什么面试会问这种问题呢?这类问题能把两类人清楚地区分出来。一类是具有文科思维的人,擅长赞叹和模糊想象,它主要依靠的是人的第一反应和直觉,比如小孩...
17张图带你解析红黑树的原理!保证你能看懂!
二叉查找树 由于红黑树本质上就是一棵二叉查找树,所以在了解红黑树之前,咱们先来看下二叉查找树。 二叉查找树(Binary Search Tree),也称有序二叉树(ordered binary tree),排序二叉树(sorted binary tree),是指一棵空树或者具有下列性质的二叉树: 若任意结点的左子树不空,则左子树上所有结点的值均小于它的根结点的值; 若任意结点的...
腾讯“疯狂”开源!
作者 | 马超 责编 | 胡巍巍 出品 | CSDN(ID:CSDNnews) 近日,腾讯自研的万亿级分布式消息中间件TubeMQ正式开源,并捐赠给Apache基金会,成为基金会官方认可的Incubator项目。 我们知道与TubeMQ功能类似的kafka是领英公司在早在10年前捐赠给Apache基金会的金牌项目,而那时的腾讯还在忙于3Q大战,公司文化也相对封闭,甚至连目前社交领...
so easy! 10行代码写个"狗屁不通"文章生成器
前几天,GitHub 有个开源项目特别火,只要输入标题就可以生成一篇长长的文章。 背后实现代码一定很复杂吧,里面一定有很多高深莫测的机器学习等复杂算法 不过,当我看了源代码之后 这程序不到50行 尽管我有多年的Python经验,但我竟然一时也没有看懂 当然啦,原作者也说了,这个代码也是在无聊中诞生的,平时撸码是不写中文变量名的, 中文...
知乎高赞:中国有什么拿得出手的开源软件产品?(整理自本人原创回答)
知乎高赞:中国有什么拿得出手的开源软件产品? 在知乎上,有个问题问“中国有什么拿得出手的开源软件产品(在 GitHub 等社区受欢迎度较好的)?” 事实上,还不少呢~ 本人于2019.7.6进行了较为全面的回答,对这些受欢迎的 Github 开源项目分类整理如下: 分布式计算、云平台相关工具类 1.SkyWalking,作者吴晟、刘浩杨 等等 仓库地址: apache/skywalking 更...
MySQL数据库总结
一、数据库简介 数据库(Database,DB)是按照数据结构来组织,存储和管理数据的仓库。 典型特征:数据的结构化、数据间的共享、减少数据的冗余度,数据的独立性。 关系型数据库:使用关系模型把数据组织到数据表(table)中。现实世界可以用数据来描述。 主流的关系型数据库产品:Oracle(Oracle)、DB2(IBM)、SQL Server(MS)、MySQL(Oracle)。 数据表:数...
记一次腾讯面试:进程之间究竟有哪些通信方式?如何通信? ---- 告别死记硬背
有一次面试的时候,被问到进程之间有哪些通信方式,不过由于之前没深入思考且整理过,说的并不好。想必大家也都知道进程有哪些通信方式,可是我猜很多人都是靠着”背“来记忆的,所以今天的这篇文章,讲给大家详细着讲解他们是如何通信的,让大家尽量能够理解他们之间的区别、优缺点等,这样的话,以后面试官让你举例子,你也能够顺手拈来。 1、管道 我们来看一条 Linux 的语句 netstat -tulnp | gr...
相关热词 c# 二进制截断字符串 c#实现窗体设计器 c#检测是否为微信 c# plc s1200 c#里氏转换原则 c# 主界面 c# do loop c#存为组套 模板 c# 停掉协程 c# rgb 读取图片
立即提问