求教matlab关于pca降维的问题 10C

我想用30*3000的一组数据经pca降维之后使用lssvm来建模,然后用11*3000的一组数据来检验这个模型。
我想问的是,经过pca降维,30*3000的矩阵变成了30*29的矩阵,但是检验的数据经过pca降维之后成为了11*10的矩阵,这样还能检验吗?

1个回答

已经解决了,不好意思麻烦各位了

Csdn user default icon
上传中...
上传图片
插入图片
抄袭、复制答案,以达到刷声望分或其他目的的行为,在CSDN问答是严格禁止的,一经发现立刻封号。是时候展现真正的技术了!
其他相关推荐
sparkMLlib PCA降维后的数据与原来的数据不一样了,怎么使用sparkMLlib PCA降维后得到数据?
原始数据矩阵如下 // 原始数据 val arr = Array( Vectors.dense(4.0,1.0, 4.0, 5.0), Vectors.dense(2.0,3.0, 4.0, 5.0), Vectors.dense(4.0,0.0, 6.0, 7.0)) 降维后的数据如下: [-5.061524965038313,2.6731387750445608] [-7.489827262491891,4.4347709591799624] [-2.9078143281202276,4.506586481532503] spark PCA处理后的数据代表什么意思,和原来的数据不一样,怎么利用这个数据,比如我想对它做线性回归?
PCA降维后,求出多元线性函数,如何还原原始维度。
数据经过PCA将维后,例如,原本是10维,降维后为5维。 然后求出多元线性函数的系数为[1,2,3,4,5], 那么如何将个五个系数还原为10个系数。 因为降维后是5,根据降维后的数据计算线性函数, 系数必然是5. 但是原始维度是10,那么怎样将5个系数还原为10个系数。
高光谱图像降维matlab代码
求使用PCA和低秩张量分解的方法对高光谱图像降维的matlab代码,谢谢大家
关于PCA和KPCA的特征向量的维数问题~
想问一下PCA算出来的特征向量是和样本属性的维数一样,因为主成分是原来样本属性的线性组合,那么KPCA求出来的特征向量(利用核函数),为什么维数等于样本数呢?
PCA降维后,求出多元线性函数,如何还原原始维度,求出原始维度的多元线性函数。
例如:原本数据为10维的,将为后为5维度。然后根据这个5维的结果求得多元线性函数方程。如何将这个5维结果返回成10个维度的结果。也就是5维的线性方程是 1.2*X1 + 1.6*X2 + 2.4*X3 + 2.7*X4 + 3.6*X5 = 0;如何还原成?*X1 + ?*X2 + ?*X3 + ?*X4 + ?*X5 + ?*X6 + ?*X7 + ?*X8 + ?*X9 + ?*X10 = 0的形式,其中?代表将5维返回10维后的系数。重点是这个系数怎么求出?
MATLAB 中PCA特征提取用LDA和PLS代替的代码
function [Xs_new,Xt_new,G] = GFK_Map(Xs,Xt,dim) Ps = pca(Xs); Pt = pca(Xt); G = GFK_core([Ps,null(Ps')], Pt(:,1:dim)); sq_G = real(G); Xs_new = (sq_G * Xs')'; Xt_new = (sq_G * Xt')'; end 这里用PCA特征提取Xs和Xt,得到一个特征的转化矩阵(COEFF) ,这个矩阵在MATLAB里面 叫COEFF,是个n*n,n为原矩阵的维度,我想用LDA或者PLS代替或者有更好的特征提取方式,提取到这个类似COEFF的转化矩阵,代码都可以。
数据预处理:类别型变量的编码问题
在数据挖掘的数据预处理对类别型变量编码过程中,其中一个类别型变量含具有有很多不同的取值(200个),若对这个的类型做OneHot编码,会给数据增加200个特征,大大增加了数据的维数。 请问对于这样的类型变量该怎么处理呢? 1.需要做卡方封箱吗?用python该怎么分箱处理? 2.或者编码后做PCA降维处理?PCA具体怎么降维呢? 3.还有其他更好的方法吗? 谢谢
大家帮忙看看我这段matlab,用pca处理图像,但是输出的图片为什么会是重复的三张?
function y=mypca() %%%%%%%%%%%%%%%%%%%%%%%%%PCA算法对人脸图像处理提取主成分程序 path = ['.\']; % 提取当前目录 %读取图像 numimage=4; %4张人脸 imagepath=[path 'ORL\ORL001' '.bmp']; %第一张人脸文件的路径及文件名:D:\PCA\ORL\ORL001.bmp immatrix=imread(imagepath); % 读入第一张人脸文件,构成矩阵immatrix [m,n]=size(immatrix); % 计算矩阵immatrix的行数m、列数n DATA = uint8 (rand(m*n, numimage)); %随机生成m*n行、numimage列的矩阵,并取uint8 for i=1:numimage s1=floor(i/100); % 取整,求第3位 tem=rem(i,100); % i除以100的余数,取后两位 s2=floor(tem/10); % 取第2位 s3=rem(tem,10); % 取第1位 imagepath=[path 'ORL\ORL' int2str(s1) int2str(s2) int2str(s3) '.bmp']; % 构成图像文件的路径即文件名 immatrix=imread(imagepath); % 读入每一张人脸文件,构成矩阵immatrix imVector=reshape(immatrix,m*n,1); % 将矩阵immatrix转化为一个列向量,长度为m*n DATA(:,i)=imVector; % 将列向量imVector依次加入到DATA矩阵的列中.DATA先随机生成过的 end clear i;clear j; save DATA DATA; % 保存DATA mn=mean(double(DATA'))'; % 计算DATA的行向量的均值 save mn mn; % 保存DATA的行向量的均值 %image substracted by mean of all train images DATAzeromean=double(DATA)-repmat(mn,1,numimage); save DATAzeromean DATAzeromean; clear DATA; L=DATAzeromean'*DATAzeromean; [V,D]=eig(L); enginvalue=diag(D); [enginvalue,ix]=sort(enginvalue);%按升序排列矩阵元素 ix=flipud(ix);%从上到下翻转矩阵,即按降序 V=V(:,ix); %对V的特征向量位置调整 facespace=DATAzeromean*V; %脸空间 for t=1:numimage facespace(:,t)=facespace(:,t)/norm(facespace(:,t));%Normalisation to unit length end subdim=4; facespace=facespace(:,1:subdim);%选择子特征向量的协方差矩阵 projdata=facespace'*DATAzeromean; save projdata projdata; save facespace facespace; datareconstruct=facespace*projdata; fprintf('正在保存 Wakesplace中的图片数据\n'); save datareconstruct datareconstruct; for i=1:numimage-1 imdata=datareconstruct(:,i); imdata=reshape(imdata,m,n); imwrite(imdata,['.\生成的特征脸\' int2str(i) '.bmp'],'bmp');%得到重构图像1.bmp---4.bmp end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
OpenCV PCA人脸识别时欧氏距离的问题
我用PCA+SVM方式对ORL人脸库进行人脸识别,使用Opencv的PCA库进行降维及特征提取,提取后的特征用于SVM训练,如果每人用两个图进行学习,最终测试样本的识别率能到85%+。 但是我如果用测试样本的特征向量和训练样本的特征向量进行欧式距离(NORM_L2)的计算,计算结果十分没有规律,不管是不是同一个人的特征,距离从一千多到四千多的都有。这种情况十分不合理呀,opencv还有个基于PCA样本距离的特征脸识别库不就是用L2距离进行比较来进行识别的吗?鉴于此我又实验了一下使用opencv的特征脸识别库EigenFaceRecognizer进行人脸识别,同样的样本划分,但是不自己写特征提取代码,直接输入原始图片,因为特提取的工作是特征脸库自己做的,识别率也能到80%+。 总结起来问题就是,我用PCA提取的特征进行SVM人脸识别,效果还可以,但是直接用测试样本的特征值和训练样本的特征值进行距离比较,却并不能得出同一人的样本距离会比较近,不同人的会比较远的结果,和特征脸识别的工作原理不符。不知是哪里有问题,求解!
用sklearn在图片分类中数据降维遇到的一些问题
我在用isomap、pca和MDS对原始矩阵处理后,发现分类成功率反而大大小于没有降维前,为什么会这样子。。 好像不是参数的问题,怎么调效果都不好。。是我的姿势不对吗 ``` # pca pca = PCA(n_components=30).fit(x) x2 = pca.transform(x) x_train, x_test, y_train, y_test = train_test_split(x2, y, train_size=0.9) model = RandomForestClassifier(n_estimators=20) model.fit(x_train, y_train) predict = model.predict(x_test) accuracy_pca = metrics.accuracy_score(y_test, predict) # MDS mds = manifold.MDS(n_components=30, eps=1e-10) X_r = mds.fit(x).embedding_ x_train, x_test, y_train, y_test = train_test_split(X_r, y, train_size=0.9) model.fit(x_train, y_train) predict = model.predict(x_test) accuracy_MDS = metrics.accuracy_score(y_test, predict) # isomap isomap = manifold.Isomap(15, n_components=30).fit_transform(x) x_train, x_test, y_train, y_test = train_test_split(isomap, y, train_size=0.9) model.fit(x_train, y_train) predict = model.predict(x_test) accuracy_isomap = metrics.accuracy_score(y_test, predict) print accuracy_isomap ``` 图片是100×100像素 x是数据矩阵(165×10000) y是标签,从1到15
主成分分析降维会影响到机器学习的精度么?
![图片说明](https://img-ask.csdn.net/upload/201907/18/1563440089_697335.png) 我使用五种方法同时对原始数据和主成分分析PCA处理之后的数据进行分析,并且进行回判和预测,发现SVM和神经网络前后变化不大,但是XGBoost、AdaBoost以及Bayes的成功率反而有所降低,请问是不是因为这几个方法不适合主成分分析降维?
求大神帮忙,在MATLAB上用pca算法读入一组数据,分析处理结果
求一个代码,数据是一个word表格,大约读入5000个数据,谢谢啊
如何用pea在matlab上分析数据,例如;iris
哪里能找到关于用matlab进行数据分析的案例, 尤其是pca,lsa这些?尤其是如何对data进行预处理?
opencv pca投影 得到的特征脸问题
用opencv进行人脸识别,在训练阶段利用opencv自带的函数cvCalcEigenObjects获取pca的子空间,代码如下: cvCalcEigenObjects( nTrainFaces, //参加训练的图片 (void*)faceImgArr, //得到的特征脸 (void*)eigenVectArr, CV_EIGOBJ_NO_CALLBACK, 0, 0, &calcLimit, //得到的平均脸 pAvgTrainImg, eigenValMat->data.fl ); 执行该函数后,用cvShowImage()进行特征脸eigenVectArr的显示,特征脸显示结果都是一片漆黑,看网页上正常显示的特征脸应该是这样的吧[图片说明](https://img-ask.csdn.net/upload/201501/30/1422597863_788733.png) 而且我得出的平均脸pAvgTraining显示为一张白色图片,也是什么都没有的。 我用的人脸库是jaffe,想问下各位大神是什么原因导致无法得出特征脸和平均脸? 在此谢过。
刚买的pca9685写的代码一直驱动不了舵机,小白求解
新手小白求问 刚买了pca9685模块,看数据手册没有中文的只好找了些别人stm32的代码改过来用在51上面,但是一直都驱动不了舵机,不是知道代码出了什么问题,求解 以下就是我用的所有源码。 ``` #ifndef __IIC_H #define __IIC_H sbit IIC_SDA = P3^6; sbit IIC_SCL = P3^7; #define u8 unsigned char #define u16 char //IIC所有操作函数 void delay_us(u8 i); void IIC_Start(void); //发送IIC开始信号 void IIC_Stop(void); //发送IIC停止信号 void IIC_Send_Byte(u8 txd); //IIC发送一个字节 u8 IIC_Read_Byte(unsigned char ack);//IIC读取一个字节 u8 IIC_Wait_Ack(void); //IIC等待ACK信号 void IIC_Ack(void); //IIC发送ACK信号 void IIC_NAck(void); //IIC不发送ACK信号 //void IIC_Write_One_Byte(u8 daddr,u8 addr,u8 dat); //u8 IIC_Read_One_Byte(u8 daddr,u8 addr); #endif ``` ``` #include <stc12c5a60s2.h> #include <IIC.h> #include <intrins.h> void delay_us(u8 i) { u8 j; for(j=i;j>0;j--) {_nop_();} } //产生IIC起始信号 void IIC_Start(void) { // SDA_OUT(); //sda线输出 IIC_SDA=1; IIC_SCL=1; delay_us(4); IIC_SDA=0;//START:when CLK is high,DATA change form high to low delay_us(4); IIC_SCL=0;//钳住I2C总线,准备发送或接收数据 } //产生IIC停止信号 void IIC_Stop(void) { // SDA_OUT();//sda线输出 IIC_SCL=0; IIC_SDA=0;//STOP:when CLK is high DATA change form low to high delay_us(4); IIC_SCL=1; IIC_SDA=1;//发送I2C总线结束信号 delay_us(4); } //等待应答信号到来 //返回值:1,接收应答失败 // 0,接收应答成功 u8 IIC_Wait_Ack(void) { u8 ucErrTime=0; // SDA_IN(); //SDA设置为输入 IIC_SDA=1;delay_us(1); IIC_SCL=1;delay_us(1); while(IIC_SDA) { ucErrTime++; if(ucErrTime>250) { IIC_Stop(); return 1; } } IIC_SCL=0;//时钟输出0 return 0; } //产生ACK应答 void IIC_Ack(void) { IIC_SCL=0; // SDA_OUT(); IIC_SDA=0; delay_us(2); IIC_SCL=1; delay_us(2); IIC_SCL=0; } //不产生ACK应答 void IIC_NAck(void) { IIC_SCL=0; // SDA_OUT(); IIC_SDA=1; delay_us(2); IIC_SCL=1; delay_us(2); IIC_SCL=0; } //IIC发送一个字节 //返回从机有无应答 //1,有应答 //0,无应答 void IIC_Send_Byte(u8 txd) { u8 t; // SDA_OUT(); IIC_SCL=0;//拉低时钟开始数据传输 for(t=0;t<8;t++) { IIC_SDA=(txd&0x80)>>7; txd<<=1; delay_us(2); //对TEA5767这三个延时都是必须的 IIC_SCL=1; delay_us(2); IIC_SCL=0; delay_us(2); } } //读1个字节,ack=1时,发送ACK,ack=0,发送nACK u8 IIC_Read_Byte(unsigned char ack) { unsigned char i,receive=0; // SDA_IN();//SDA设置为输入 for(i=0;i<8;i++ ) { IIC_SCL=0; delay_us(2); IIC_SCL=1; receive<<=1; if(IIC_SDA)receive++; delay_us(1); } if (!ack) IIC_NAck();//发送nACK else IIC_Ack(); //发送ACK return receive; } ``` ``` #include <stc12c5a60s2.h> #include <IIC.h> #include <intrins.h> #include <pca8574.h> #define uchar unsigned char #define uint unsigned int sbit scl=P3^6; //时钟输入线 sbit sda=P3^7; //数据输入/输出端 void PCA9685_write(unsigned char reg,unsigned char dat); u8 PCA9685_read(unsigned char reg); void setPWMFreq(u8 freq); void setPWM(u8 num, u16 on, u16 off); void down(); void up(); void delay_ms(u8 xms) { u8 i,j; for(i=xms;i>0;i--) for (j=200;j>0;j--); } void PCA9685_write(unsigned char reg,unsigned char dat) { IIC_Start(); IIC_Send_Byte(PCA9685_adrr); IIC_Wait_Ack(); IIC_Send_Byte(reg); IIC_Wait_Ack(); IIC_Send_Byte(dat); IIC_Wait_Ack(); IIC_Stop(); } u8 PCA9685_read(unsigned char reg) { u8 res; IIC_Start(); IIC_Send_Byte(PCA9685_adrr); IIC_Wait_Ack(); IIC_Send_Byte(reg); IIC_Wait_Ack(); IIC_Start(); IIC_Send_Byte(PCA9685_adrr|0X01); IIC_Wait_Ack(); res=IIC_Read_Byte(0); IIC_Stop(); return res; } void setPWMFreq(u8 freq) { u8 prescale,oldmode,newmode; double prescaleval; prescaleval = 25000000.0/(4096*freq*0.915); prescale = (u8)(prescaleval+0.5)-1; oldmode = PCA9685_read(PCA9685_MODE1); newmode = (oldmode&0x7F) | 0x10; // sleep PCA9685_write(PCA9685_MODE1, newmode); // go to sleep PCA9685_write(PCA9685_PRESCALE, prescale); // set the prescaler PCA9685_write(PCA9685_MODE1, oldmode); delay_ms(5); PCA9685_write(PCA9685_MODE1, oldmode | 0xa1); } void setPWM(u8 num, u16 on, u16 off) { PCA9685_write(LED0_ON_L+4*num,on); PCA9685_write(LED0_ON_H+4*num,on>>8); PCA9685_write(LED0_OFF_L+4*num,off); PCA9685_write(LED0_OFF_H+4*num,off>>8); } u16 calculate_PWM(u8 angle) { return (int)(204.8*(0.5+angle*1.0/90)); } void down() { u16 pwm = calculate_PWM(0); setPWM(0x0,0,pwm); delay_ms(1); setPWM(0x1,0,pwm); delay_ms(1); setPWM(0x2,0,pwm); delay_ms(1); setPWM(0x3,0,pwm); delay_ms(1); setPWM(0x4,0,pwm); delay_ms(1); setPWM(0x5,0,pwm); delay_ms(1); setPWM(0x6,0,pwm); delay_ms(1); setPWM(0x7,0,pwm); } void up() { u16 pwm = calculate_PWM(90); setPWM(0x0,0,pwm); delay_ms(1); setPWM(0x1,0,pwm); delay_ms(1); setPWM(0x2,0,pwm); delay_ms(1); setPWM(0x3,0,pwm); delay_ms(1); setPWM(0x4,0,pwm); delay_ms(1); setPWM(0x5,0,pwm); delay_ms(1); setPWM(0x6,0,pwm); delay_ms(1); setPWM(0x7,0,pwm); } void main() { PCA9685_write(PCA9685_MODE1,0x0);//PCA9685复位 setPWMFreq(50); while(1) { down(); up(); } } ``` ``` #ifndef __PCF8574_H #define __PCF8574_H #include <stc12c5a60s2.h> #define PCA9685_adrr 0x40 #define PCA9685_SUBADR1 0x2 #define PCA9685_SUBADR2 0x3 #define PCA9685_SUBADR3 0x4 #define PCA9685_MODE1 0x0 #define PCA9685_PRESCALE 0xFE #define LED0_ON_L 0x6 #define LED0_ON_H 0x7 #define LED0_OFF_L 0x8 #define LED0_OFF_H 0x9 #define ALLLED_ON_L 0xFA #define ALLLED_ON_H 0xFB #define ALLLED_OFF_L 0xFC #define ALLLED_OFF_H 0xFD #define u8 unsigned char #define u16 char ```
求C#实现PCA算法的例子
求C#实现PCA算法的例子,PCA为主成分分析, 看了一天的百度,然而线性代数的知识完全不记得了。 求各位大神指点迷津,万分感谢!
子网1中的PCa和子网2中的PCb 怎么建立网络连接,相互通信?
子网1中的PCa和子网2中的PCb 怎么建立网络连接,相互通信?而且真心不明白编程socket通信上是怎么解决这个问题的。
为什么说pca是一种在最小均方差意义下的最佳数据表现形式 ?
为什么说pca是一种在最小均方差意义下的最佳数据表现形式 ?
关于PCA主成分分析32个指标,10年的数据,能做吗??
为什么我用R语言显示错误,指标数不能多于数据啊???????????????????????????
130 个相见恨晚的超实用网站,一次性分享出来
相见恨晚的超实用网站 持续更新中。。。
字节跳动视频编解码面经
三四月份投了字节跳动的实习(图形图像岗位),然后hr打电话过来问了一下会不会opengl,c++,shador,当时只会一点c++,其他两个都不会,也就直接被拒了。 七月初内推了字节跳动的提前批,因为内推没有具体的岗位,hr又打电话问要不要考虑一下图形图像岗,我说实习投过这个岗位不合适,不会opengl和shador,然后hr就说秋招更看重基础。我当时想着能进去就不错了,管他哪个岗呢,就同意了面试...
win10系统安装教程(U盘PE+UEFI安装)
一、准备工作 u盘,电脑一台,win10原版镜像(msdn官网) 二、下载wepe工具箱 极力推荐微pe(微pe官方下载) 下载64位的win10 pe,使用工具箱制作启动U盘打开软件, 选择安装到U盘(按照操作无需更改) 三、重启进入pe系统 1、关机后,将U盘插入电脑 2、按下电源后,按住F12进入启动项选择(技嘉主板是F12) 选择需要启...
程序员必须掌握的核心算法有哪些?
由于我之前一直强调数据结构以及算法学习的重要性,所以就有一些读者经常问我,数据结构与算法应该要学习到哪个程度呢?,说实话,这个问题我不知道要怎么回答你,主要取决于你想学习到哪些程度,不过针对这个问题,我稍微总结一下我学过的算法知识点,以及我觉得值得学习的算法。这些算法与数据结构的学习大多数是零散的,并没有一本把他们全部覆盖的书籍。下面是我觉得值得学习的一些算法以及数据结构,当然,我也会整理一些看过...
Python——画一棵漂亮的樱花树(不同种樱花+玫瑰+圣诞树喔)
最近翻到一篇知乎,上面有不少用Python(大多是turtle库)绘制的树图,感觉很漂亮,我整理了一下,挑了一些我觉得不错的代码分享给大家(这些我都测试过,确实可以生成) one 樱花树 动态生成樱花 效果图(这个是动态的): 实现代码 import turtle as T import random import time # 画樱花的躯干(60,t) def Tree(branch, ...
大学四年自学走来,这些私藏的实用工具/学习网站我贡献出来了
大学四年,看课本是不可能一直看课本的了,对于学习,特别是自学,善于搜索网上的一些资源来辅助,还是非常有必要的,下面我就把这几年私藏的各种资源,网站贡献出来给你们。主要有:电子书搜索、实用工具、在线视频学习网站、非视频学习网站、软件下载、面试/求职必备网站。 注意:文中提到的所有资源,文末我都给你整理好了,你们只管拿去,如果觉得不错,转发、分享就是最大的支持了。 一、电子书搜索 对于大部分程序员...
《奇巧淫技》系列-python!!每天早上八点自动发送天气预报邮件到QQ邮箱
将代码部署服务器,每日早上定时获取到天气数据,并发送到邮箱。 也可以说是一个小人工智障。 思路可以运用在不同地方,主要介绍的是思路。
致 Python 初学者
欢迎来到“Python进阶”专栏!来到这里的每一位同学,应该大致上学习了很多 Python 的基础知识,正在努力成长的过程中。在此期间,一定遇到了很多的困惑,对未来的学习方向感到迷茫。我非常理解你们所面临的处境。我从2007年开始接触 python 这门编程语言,从2009年开始单一使用 python 应对所有的开发工作,直至今天。回顾自己的学习过程,也曾经遇到过无数的困难,也曾经迷茫过、困惑过。开办这个专栏,正是为了帮助像我当年一样困惑的 Python 初学者走出困境、快速成长。希望我的经验能真正帮到你
Java描述设计模式(19):模板方法模式
本文源码:GitHub·点这里 || GitEE·点这里 一、生活场景 通常一款互联网应用的开发流程如下:业务需求,规划产品,程序开发,测试交付。现在基于模板方法模式进行该过程描述。 public class C01_InScene { public static void main(String[] args) { DevelopApp developApp = n...
加快推动区块链技术和产业创新发展,2019可信区块链峰会在京召开
11月8日,由中国信息通信研究院、中国通信标准化协会、中国互联网协会、可信区块链推进计划联合主办,科技行者协办的2019可信区块链峰会将在北京悠唐皇冠假日酒店开幕。   区块链技术被认为是继蒸汽机、电力、互联网之后,下一代颠覆性的核心技术。如果说蒸汽机释放了人类的生产力,电力解决了人类基本的生活需求,互联网彻底改变了信息传递的方式,区块链作为构造信任的技术有重要的价值。   1...
C语言魔塔游戏
很早就很想写这个,今天终于写完了。 游戏截图: 编译环境: VS2017 游戏需要一些图片,如果有想要的或者对游戏有什么看法的可以加我的QQ 2985486630 讨论,如果暂时没有回应,可以在博客下方留言,到时候我会看到。 下面我来介绍一下游戏的主要功能和实现方式 首先是玩家的定义,使用结构体,这个名字是可以自己改变的 struct gamerole { char n...
第三个java程序(表白小卡片)
前言: &nbsp;向女神表白啦,作为一个程序员,当然也有爱情啦。只不过,虽然前面两个程序都只是学习了基础的语法结构和向量哈希表。这里涉及的是Swing,awt图形用户界面和一点文件输入输出流的知识。 &nbsp; 表白代码如下: 另附:里面的音乐和图片可以放在一个自己创建的包里面,也可以放在src里面,或者使用绝对路径。至于布局,我自己的使用的是简单的排班,简单的继承。后面的程序会慢慢实现。 ...
8年经验面试官详解 Java 面试秘诀
作者 |胡书敏 责编 | 刘静 出品 | CSDN(ID:CSDNnews) 本人目前在一家知名外企担任架构师,而且最近八年来,在多家外企和互联网公司担任Java技术面试官,前后累计面试了有两三百位候选人。在本文里,就将结合本人的面试经验,针对Java初学者、Java初级开发和Java开发,给出若干准备简历和准备面试的建议。 Java程序员准备和投递简历的实...
知乎高赞:中国有什么拿得出手的开源软件产品?(整理自本人原创回答)
知乎高赞:中国有什么拿得出手的开源软件产品? 在知乎上,有个问题问“中国有什么拿得出手的开源软件产品(在 GitHub 等社区受欢迎度较好的)?” 事实上,还不少呢~ 本人于2019.7.6进行了较为全面的回答,对这些受欢迎的 Github 开源项目分类整理如下: 分布式计算、云平台相关工具类 1.SkyWalking,作者吴晟、刘浩杨 等等 仓库地址: apache/skywalking 更...
化繁为简 - 腾讯计费高一致TDXA的实践之路
导语:腾讯计费是孵化于支撑腾讯内部业务千亿级营收的互联网计费平台,在如此庞大的业务体量下,腾讯计费要支撑业务的快速增长,同时还要保证每笔交易不错账。采用最终一致性或离线补...
Linux网络服务-----实验---PXE和Kickstart的无人值守装机
目录 一.PXE的原理 二.kickstart的原理 三.PXE与kickstart的结合使用自动装机 一.PXE的原理 PXE(preboot execute environment,预启动执行环境)是由Intel公司开发的最新技术,工作于Client/Server的网络模式,支持工作站通过网络从远端服务器下载映像,并由支持通过网络启动操作系统,再启动过程中,终端要求服务器分配IP地址...
究竟你适不适合买Mac?
我清晰的记得,刚买的macbook pro回到家,开机后第一件事情,就是上了淘宝网,花了500元钱,找了一个上门维修电脑的师傅,上门给我装了一个windows系统。。。。。。 表砍我。。。 当时买mac的初衷,只是想要个固态硬盘的笔记本,用来运行一些复杂的扑克软件。而看了当时所有的SSD笔记本后,最终决定,还是买个好(xiong)看(da)的。 已经有好几个朋友问我mba怎么样了,所以今天尽量客观...
A*搜索算法概述
编者按:本文作者奇舞团前端开发工程师魏川凯。A*搜索算法(A-star search algorithm)是一种常见且应用广泛的图搜索和寻径算法。A*搜索算法是通过使用启...
程序员写了一个新手都写不出的低级bug,被骂惨了。
这种新手都不会范的错,居然被一个工作好几年的小伙子写出来,差点被当场开除了。
Java工作4年来应聘要16K最后没要,细节如下。。。
前奏: 今天2B哥和大家分享一位前几天面试的一位应聘者,工作4年26岁,统招本科。 以下就是他的简历和面试情况。 基本情况: 专业技能: 1、&nbsp;熟悉Sping了解SpringMVC、SpringBoot、Mybatis等框架、了解SpringCloud微服务 2、&nbsp;熟悉常用项目管理工具:SVN、GIT、MAVEN、Jenkins 3、&nbsp;熟悉Nginx、tomca...
2020年,冯唐49岁:我给20、30岁IT职场年轻人的建议
点击“技术领导力”关注∆每天早上8:30推送 作者|Mr.K 编辑| Emma 来源|技术领导力(ID:jishulingdaoli) 前天的推文《冯唐:职场人35岁以后,方法论比经验重要》,收到了不少读者的反馈,觉得挺受启发。其实,冯唐写了不少关于职场方面的文章,都挺不错的。可惜大家只记住了“春风十里不如你”、“如何避免成为油腻腻的中年人”等不那么正经的文章。 本文整理了冯...
从顶级黑客到上市公司老板
一看标题,很多老读者就知道我在写什么了。今天Ucloud成功上市,季昕华成为我所熟悉的朋友里又双叒叕一个成功上市的案例。我们认识大概是十五年多吧,如果没记错,第一次见面应该是2004年,...
蓝桥杯知识点汇总:基础知识和常用算法
文章目录基础语法部分:算法竞赛常用API:算法部分数据结构部分 此系列包含蓝桥杯绝大部分所考察的知识点,以及真题题解~ 基础语法部分: 备战蓝桥杯java(一):一般输入输出 和 快速输入输(BufferedReader&amp;BufferedWrite) 备战蓝桥杯java(二):java编程规范和常用数据类型 备战蓝桥杯java(三):常用功能符以及循环结构和分支结构 备战蓝桥杯java(四...
作为一个程序员,CPU的这些硬核知识你必须会!
CPU对每个程序员来说,是个既熟悉又陌生的东西? 如果你只知道CPU是中央处理器的话,那可能对你并没有什么用,那么作为程序员的我们,必须要搞懂的就是CPU这家伙是如何运行的,尤其要搞懂它里面的寄存器是怎么一回事,因为这将让你从底层明白程序的运行机制。 随我一起,来好好认识下CPU这货吧 把CPU掰开来看 对于CPU来说,我们首先就要搞明白它是怎么回事,也就是它的内部构造,当然,CPU那么牛的一个东...
破14亿,Python分析我国存在哪些人口危机!
一、背景 二、爬取数据 三、数据分析 1、总人口 2、男女人口比例 3、人口城镇化 4、人口增长率 5、人口老化(抚养比) 6、各省人口 7、世界人口 四、遇到的问题 遇到的问题 1、数据分页,需要获取从1949-2018年数据,观察到有近20年参数:LAST20,由此推测获取近70年的参数可设置为:LAST70 2、2019年数据没有放上去,可以手动添加上去 3、将数据进行 行列转换 4、列名...
强烈推荐10本程序员在家读的书
很遗憾,这个春节注定是刻骨铭心的,新型冠状病毒让每个人的神经都是紧绷的。那些处在武汉的白衣天使们,尤其值得我们的尊敬。而我们这些窝在家里的程序员,能不外出就不外出,就是对社会做出的最大的贡献。 有些读者私下问我,窝了几天,有点颓丧,能否推荐几本书在家里看看。我花了一天的时间,挑选了 10 本我最喜欢的书,你可以挑选感兴趣的来读一读。读书不仅可以平复恐惧的压力,还可以对未来充满希望,毕竟苦难终将会...
Linux自学篇——linux命令英文全称及解释
man: Manual 意思是手册,可以用这个命令查询其他命令的用法。 pwd:Print working directory 意思是密码。 su:Swith user 切换用户,切换到root用户 cd:Change directory 切换目录 ls:List files 列出目录下的文件 ps:Process Status 进程状态 mkdir:Make directory ...
Python实战:抓肺炎疫情实时数据,画2019-nCoV疫情地图
今天,群里白垩老师问如何用python画武汉肺炎疫情地图。白垩老师是研究海洋生态与地球生物的学者,国家重点实验室成员,于不惑之年学习python,实为我等学习楷模。先前我并没有关注武汉肺炎的具体数据,也没有画过类似的数据分布图。于是就拿了两个小时,专门研究了一下,遂成此文。
疫情数据接口api
返回json示例 { "errcode":0,//0标识接口正常 "data":{ "date":"2020-01-30 07:47:23",//实时更新时间 "diagnosed":7736,//确诊人数 "suspect":12167,//疑是病例人数 "death":170,//死亡人数 "cur...
智力题(程序员面试经典)
NO.1  有20瓶药丸,其中19瓶装有1克/粒的药丸,余下一瓶装有1.1克/粒的药丸。给你一台称重精准的天平,怎么找出比较重的那瓶药丸?天平只能用一次。 解法 有时候,严格的限制条件有可能反倒是解题的线索。在这个问题中,限制条件是天平只能用一次。 因为天平只能用一次,我们也得以知道一个有趣的事实:一次必须同时称很多药丸,其实更准确地说,是必须从19瓶拿出药丸进行称重。否则,如果跳过两瓶或更多瓶药...
相关热词 c# 压缩图片好麻烦 c#计算数组中的平均值 c#获取路由参数 c#日期精确到分钟 c#自定义异常必须继承 c#查表并返回值 c# 动态 表达式树 c# 监控方法耗时 c# listbox c#chart显示滚动条
立即提问