现在有一款小游戏叫做“猜数游戏”。这个游戏的目的是从一个迷宫中找到一个出口。这个迷宫的形状是一棵高度为h的完全二叉树。玩家刚开始站在根部,出口是在某一个叶子结点上面。
现在我们来定义每一个结点的编号:
· 根部是1
· 某个内部结点的编号为 i (i ≤ 2h−1−1) 时,他的左儿子编号为2i,右儿子编号为2i+1。
根的深度定为1,其它结点的深度是他的父亲的深度+1。深度为h的结点是叶子。出口在某个叶子结点上,但是游戏玩家并不知道在哪个叶子,所以他现在要开始猜。
玩家每次会问ancestor(exit, i)属于[L,R]吗?这儿 ancestor(v, i) 表示结点v在第i层的那个祖先。然后游戏会给出"Yes"或"No"的回答。这个游戏的回答也不一定是完全合法的。有一些时候他会骗玩家。
现在有一些询问和回答,要求你从中判断一下,这个游戏有没有在说谎。如果游戏没有说谎,并且出口被推断出来,那么请输出出口,如果游戏没有说谎,但是出口不能被唯一判定出来,请输出“Data not sufficient!”。否则输出“Game cheated!”
结点u是结点v的祖先,当且仅当满足以下条件之一:
· u和v一样,
· u 是 v的父亲,
· u 是v的父亲的祖先。
样例解释:在这个例子中有 8个叶子结点。经过第一个询问之后,出口被确定在 [10, 14]区间内。经过第二个和第三个询问,只有14号符合条件。请结合图例进行理解。
Input
单组测试数据。
第一行有两个整数h, q (1 ≤ h ≤ 50, 1 ≤ q ≤ 10^5),表示树的高度和询问的数量。
接下来q行,每行包含 i, L, R, ans (1 ≤ i ≤ h, 2^(i - 1) ≤ L ≤ R ≤ 2^i - 1, ans∈{0,1}),表示询问出口在第i层的祖先属于L,R吗?ans=1表示YES,否则表示NO。
Output
如果游戏给出的信息是自相矛盾的,那么输出 Game cheated!。
如果可以唯一确定出口。那么输出出口的编号。
否则输出Data not sufficient!。
Input示例
4 3
4 10 14 1
3 6 6 0
2 3 3 1
Output示例
14