spark ansj分词 报错数组越界
    val lines = sc.textFile("file:///D:/data/solr.txt")
    val hashingTF = new mllib.feature.HashingTF()

    val sentences = lines.collect().map{ sents =>
        val data = sents.split(",")
        val lable = "1"
        val sentence=sents.replaceAll("\t","")
                println(sentence)
        val temp = ToAnalysis.parse(sentence) //报错的地方
        val stopwords: java.util.List[String] = sc.textFile("hdfs:/svm/stopword.dic").collect().toSeq
         FilterModifWord.insertStopWords(stopwords)
        //(3)根据词性去停用词,w为标点符号
        FilterModifWord.insertStopNatures("w", null)
        val filter = FilterModifWord.modifResult(temp)
        val sent = for (i <- Range(0, filter.size())) yield filter.get(i).getName
        val message = sent.toArray
        message.map{word=>
          termMap.put(hashingTF.indexOf(word),word)
        }
        RawDataRecord(lable, message)
      }
16/12/17 17:30:45 INFO TaskSetManager: Finished task 0.0 in stage 0.0 (TID 0) in 63 ms on localhost (1/1)
16/12/17 17:30:45 INFO TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks have all completed, from pool 
16/12/17 17:30:45 INFO DAGScheduler: ResultStage 0 (collect at seg_local.scala:33) finished in 0.102 s
16/12/17 17:30:45 INFO DAGScheduler: Job 0 finished: collect at seg_local.scala:33, took 0.146047 s
 目前的分词器大部分都是单机服务器进行分词,或者使用hadoop mapreduce对存储在hdfs中大量的数据文本进行分词。由于mapreduce的速度较慢,相对spark来说代码书写较繁琐。
16/12/17 17:30:45 INFO BlockManagerInfo: Removed broadcast_1_piece0 on 172.16.110.10:49409 in memory (size: 1850.0 B, free: 1992.9 MB)
16/12/17 17:30:46 INFO DICLOG: init user userLibrary ok path is : D:\Intellij\tsf_lda\library\default.dic
16/12/17 17:30:46 INFO DICLOG: init ambiguityLibrary ok!
16/12/17 17:30:46 INFO DICLOG: init core library ok use time :304
Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 3
    at org.ansj.splitWord.Analysis.analysisStr(Analysis.java:115)
    at org.ansj.splitWord.Analysis.parseStr(Analysis.java:222)
    at org.ansj.splitWord.analysis.ToAnalysis.parse(ToAnalysis.java:103)
    at tsf_lda.seg_local$$anonfun$1.apply(seg_local.scala:38)
    at tsf_lda.seg_local$$anonfun$1.apply(seg_local.scala:33)
    at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
    at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
    at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
    at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:186)
    at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
    at scala.collection.mutable.ArrayOps$ofRef.map(ArrayOps.scala:186)
    at tsf_lda.seg_local$.main(seg_local.scala:33)
    at tsf_lda.seg_local.main(seg_local.scala)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:483)
    at com.intellij.rt.execution.application.AppMain.main(AppMain.java:147)

1个回答

Csdn user default icon
上传中...
上传图片
插入图片
抄袭、复制答案,以达到刷声望分或其他目的的行为,在CSDN问答是严格禁止的,一经发现立刻封号。是时候展现真正的技术了!
其他相关推荐
es插件ansj分词的使用
一段带连续数字或者字母的文字,es用iansj分词,要求中文用index_ansj,而数字字母等用nGram,配置文件怎么写。。。。我写的使用nGram filter,但是结果是index分过的中文再次被nGram给分词了,有没有知道怎么解决的
Jar在spark-shell上运行报错:主类找不到
scala IntelliJ的项目,sbt打好包在spark-shell上运行后报错:主类找不到;使用了两个中文分词包(ansj_seg-2.0.8.jar,nlp-lang-0.3.jar),但是已经加入到 External libraries里去了;打包没问题,运行报错 ![![图片说明](https://img-ask.csdn.net/upload/201601/26/1453780626_723163.jpg)![图片说明](https://img-ask.csdn.net/upload/201601/26/1453780648_659305.jpg) spark-shell 提交命令: [gaohui@hadoop-1-2 test]$ spark-submit --master yarn --driver-memory 5G --num-executors 20 --executor-cores 16 --executor-memory 10G --conf spark.serializer=org.apache.spark.serializer.KryoSerializer --class NLP_V6.Nlp_test --jars /home/gaohui/test/NLP_v6_test.jar /home/gaohui/test/NLP_v6_test.jar 报错图片: ![图片说明](https://img-ask.csdn.net/upload/201601/26/1453780776_603750.jpg)
Ansj+yarn自定义词包读取不到
最近有一个需求是使用ansj分词后根据起词性进行分类,当然,词性是自定义词典的词性。然而当将本地测试无误的项目打成jar包提交到yarn上运行时可能是因为某些从机读取了词典,某些没有读取。就会导致只能得到一半的正确结果。困了几天了。求拯救
导入ansj时发生错误。
从网上下载了ansj相关的Zip,解压导入后出现了如图的错误,该怎么改正?![图片](https://img-ask.csdn.net/upload/201611/26/1480134748_104113.png)
spark 中rdd与dataframe的合并(join)
以下是我写的代码: ``` /* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // scalastyle:off println package com.shine.ncc import org.apache.spark.SparkConf import org.apache.spark.storage.StorageLevel import org.apache.spark.streaming.{Seconds, StreamingContext} import org.apache.spark.mllib.classification.NaiveBayesModel import org.apache.spark.rdd.RDD import org.apache.spark.streaming.Time import org.apache.spark.sql.SQLContext import org.apache.spark.SparkContext import org.apache.spark.ml.feature.Tokenizer import org.ansj.splitWord.analysis.ToAnalysis import org.ansj.util.FilterModifWord import java.util.Arrays import org.apache.spark.mllib.feature.HashingTF import scala.collection.JavaConversions._ import org.apache.spark.mllib.feature.IDF import org.apache.spark.mllib.feature.IDFModel import org.apache.hadoop.hbase.HBaseConfiguration import org.apache.hadoop.hbase.client.HTable import org.apache.hadoop.hbase.client.Put import org.apache.hadoop.hbase.util.Bytes object NetworkNewsClassify1 { var sameModel = null /** Case class for converting RDD to DataFrame */ case class Record(content: String,time:String,title:String) /** Lazily instantiated singleton instance of SQLContext */ object SQLContextSingleton { @transient private var instance: SQLContext = _ def getInstance(sparkContext: SparkContext): SQLContext = { if (instance == null) { instance = new SQLContext(sparkContext) } instance } } def main(args: Array[String]) { // if (args.length < 2) { // System.err.println("Usage: NetworkWordCount <hostname> <port>") // System.exit(1) // } StreamingExamples.setStreamingLogLevels() // Create the context with a 1 second batch size val sparkConf = new SparkConf().setAppName("NetworkNewsClassify") sparkConf.setMaster("local[2]"); val ssc = new StreamingContext(sparkConf, Seconds(1)) // Create a socket stream on target ip:port and count the 获取json信息 val lines = ssc.socketTextStream("localhost", 9999, StorageLevel.MEMORY_AND_DISK_SER) val myNaiveBayesModel = NaiveBayesModel.load(ssc.sparkContext, "D:/myNaiveBayesModel") //将接送转换成rdd lines.foreachRDD((rdd: RDD[String], time: Time) => { // Get the singleton instance of SQLContext val sqlContext = SQLContextSingleton.getInstance(rdd.sparkContext) import sqlContext.implicits._ val newsDF = sqlContext.read.json(rdd) newsDF.count(); val featurizedData = newsDF.map{ line => val temp = ToAnalysis.parse(line.getAs("title")) //加入停用词 FilterModifWord.insertStopWords(Arrays.asList("r","n")) //加入停用词性???? FilterModifWord.insertStopNatures("w",null,"ns","r","u","e") val filter = FilterModifWord.modifResult(temp) //此步骤将会只取分词,不附带词性 val words = for(i<-Range(0,filter.size())) yield filter.get(i).getName //println(words.mkString(" ; ")); //计算每个词在文档中的词频 new HashingTF(500000).transform(words) }.cache() if(featurizedData.count()>0){ //计算每个词的TF-IDF val idf = new IDF() val idfModel = idf.fit(featurizedData) val tfidfData = idfModel.transform(featurizedData); //分类预测 val resultData = myNaiveBayesModel.predict(tfidfData) println(resultData) //将result结果与newsDF信息join在一起 //**??? 不会实现了。。。** //保存新闻到hbase中 } }) ssc.start() ssc.awaitTermination() } } ``` 其中newsDF是新闻信息,包含字段(title,body,date),resultData 是通过贝叶斯模型预测的新闻类型,我现在希望把result结果作为一个type字段与newsDF合并(join),保存到hbase中,这个合并的操作怎么做呢
ansj词典的base怎么计算
index name base check status nature 20007 丧 65943 -1 2 {ng=0, vg=3} 20010 个 65927 -1 2 {n=0, ng=1, q=2631, u=1} 20011 丫 65575 -1 2 {n=0, ng=0} 20013 中 85204 -1 2 {a=0, b=1, f=3234, j=449, nr=0, p=1, tg=0, v=13} 20016 丰 66787 -1 2 {ag=8, ng=0, nr=0} 20018 串 65819 -1 2 {n=3, q=13, v=15} 20020 临 70847 -1 2 {j=0, p=0, v=26, vg=1} 20024 丸 65572 -1 2 {ng=0, q=0} 20025 丹 66048 -1 2 {j=0, ng=0, nr=0} 这里第三个 字段就是base值, 麻烦用过的解释下 base值怎么来的
elasticsearch 集成 ansj 异常
![图片说明](https://img-ask.csdn.net/upload/201610/12/1476265161_733233.png) 通过http方式请求创建index设置mapping的时候没问题,但是程序调用设置时候有问题,求教!!!
lucene多条件搜索时or与and问题
lucene版本:3.6 分词器:ansj_seg-master 在lucene多条件搜索时,想根据两个字段去做搜索,创建的Query如下所示 Analyzer analyzer = new AnsjAnalysis(); String paramsStr[] = new String[] { "CA0000001", "特惠" }; String keys[] = new String[] {"code", "name" }; BooleanClause.Occur occur[] = new BooleanClause.Occur[] { BooleanClause.Occur.MUST, BooleanClause.Occur.MUST}; Query query = MultiFieldQueryParser.parse(Version.LUCENE_36, paramsStr, keys, occur, analyzer); 索引中确定有code为"CA0000001",name为"特惠"的数据,但就是为BooleanClause.Occur.MUST时找不到,如果为BooleanClause.Occur.SHOULD,则可以查询到那条数据 请问各位要怎么解决?
请教一个中文词性标注的问题,请大牛指点
报错:没有为类型 WordAlert 定义方法 isEnglish(String) 源码如下: public static List<Term> recognition(List<String> words, int offe) { List<Term> terms = new ArrayList<Term>(words.size()); int tempOffe = 0; String[] params = null; for (String word : words) { // 获得词性 , 先从系统辞典,再从用户自定义辞典 AnsjItem ansjItem = DATDictionary.getItem(word); TermNatures tn = null; if ((params = UserDefineLibrary.getParams(word)) != null) { tn = new TermNatures(new TermNature(params[0], 1)); } else if (ansjItem.termNatures != TermNatures.NULL) { tn = ansjItem.termNatures; } else if(WordAlert.isEnglish(word)){ tn = TermNatures.EN ; } else if(WordAlert.isNumber(word)){ tn = TermNatures.M ; } else{ tn = TermNatures.NULL ; } terms.add(new Term(word, offe + tempOffe, tn)); tempOffe += word.length(); } new NatureRecognition(terms).recognition(); return terms; }
myeclipse10创建maven一直是retrieving archetypes
这是我的路径 ![图片说明](https://img-ask.csdn.net/upload/201901/30/1548780235_648041.png) 这个是我的文件![图片说明](https://img-ask.csdn.net/upload/201901/30/1548780279_286588.png) 这个是我setting.xml的内容: <settings xmlns="http://maven.apache.org/SETTINGS/1.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0 http://maven.apache.org/xsd/settings-1.0.0.xsd"> <!-- 这个是配置阿里Maven镜像 --> <mirrors> <mirror> <id>aliyun</id> <name>aliyun</name> <url>http://maven.aliyun.com/nexus/content/groups/public/</url> <mirrorOf>central</mirrorOf> </mirror> </mirrors> <profiles> <profile> <id>nexus</id> <repositories> <repository> <id>central</id> <url>http://repo.maven.apache.org/maven2</url> <snapshots> <enabled>false</enabled> </snapshots> </repository> <repository> <id>ansj-repo</id> <name>ansj Repository</name> <url>http://maven.nlpcn.org/</url> <snapshots> <enabled>false</enabled> </snapshots> </repository> </repositories> </profile> </profiles> <activeProfiles> <activeProfile>nexus</activeProfile> </activeProfiles> </settings>,现在连个maven都建不了,是哪里错了,大神们![图片说明](https://img-ask.csdn.net/upload/201901/30/1548780487_279529.png)
相见恨晚的超实用网站
相见恨晚的超实用网站 持续更新中。。。
Java学习的正确打开方式
在博主认为,对于入门级学习java的最佳学习方法莫过于视频+博客+书籍+总结,前三者博主将淋漓尽致地挥毫于这篇博客文章中,至于总结在于个人,实际上越到后面你会发现学习的最好方式就是阅读参考官方文档其次就是国内的书籍,博客次之,这又是一个层次了,这里暂时不提后面再谈。博主将为各位入门java保驾护航,各位只管冲鸭!!!上天是公平的,只要不辜负时间,时间自然不会辜负你。 何谓学习?博主所理解的学习,它是一个过程,是一个不断累积、不断沉淀、不断总结、善于传达自己的个人见解以及乐于分享的过程。
程序员必须掌握的核心算法有哪些?
由于我之前一直强调数据结构以及算法学习的重要性,所以就有一些读者经常问我,数据结构与算法应该要学习到哪个程度呢?,说实话,这个问题我不知道要怎么回答你,主要取决于你想学习到哪些程度,不过针对这个问题,我稍微总结一下我学过的算法知识点,以及我觉得值得学习的算法。这些算法与数据结构的学习大多数是零散的,并没有一本把他们全部覆盖的书籍。下面是我觉得值得学习的一些算法以及数据结构,当然,我也会整理一些看过...
大学四年自学走来,这些私藏的实用工具/学习网站我贡献出来了
大学四年,看课本是不可能一直看课本的了,对于学习,特别是自学,善于搜索网上的一些资源来辅助,还是非常有必要的,下面我就把这几年私藏的各种资源,网站贡献出来给你们。主要有:电子书搜索、实用工具、在线视频学习网站、非视频学习网站、软件下载、面试/求职必备网站。 注意:文中提到的所有资源,文末我都给你整理好了,你们只管拿去,如果觉得不错,转发、分享就是最大的支持了。 一、电子书搜索 对于大部分程序员...
linux系列之常用运维命令整理笔录
本博客记录工作中需要的linux运维命令,大学时候开始接触linux,会一些基本操作,可是都没有整理起来,加上是做开发,不做运维,有些命令忘记了,所以现在整理成博客,当然vi,文件操作等就不介绍了,慢慢积累一些其它拓展的命令,博客不定时更新 free -m 其中:m表示兆,也可以用g,注意都要小写 Men:表示物理内存统计 total:表示物理内存总数(total=used+free) use...
比特币原理详解
一、什么是比特币 比特币是一种电子货币,是一种基于密码学的货币,在2008年11月1日由中本聪发表比特币白皮书,文中提出了一种去中心化的电子记账系统,我们平时的电子现金是银行来记账,因为银行的背后是国家信用。去中心化电子记账系统是参与者共同记账。比特币可以防止主权危机、信用风险。其好处不多做赘述,这一层面介绍的文章很多,本文主要从更深层的技术原理角度进行介绍。 二、问题引入 假设现有4个人...
python 简易微信实现(注册登录+数据库存储+聊天+GUI+文件传输)
socket+tkinter详解+简易微信实现 历经多天的努力,查阅了许多大佬的博客后终于实现了一个简易的微信O(∩_∩)O~~ 简易数据库的实现 使用pands+CSV实现数据库框架搭建 import socket import threading from pandas import * import pymysql import csv # 创建DataFrame对象 # 存储用户数据的表(...
程序员接私活怎样防止做完了不给钱?
首先跟大家说明一点,我们做 IT 类的外包开发,是非标品开发,所以很有可能在开发过程中会有这样那样的需求修改,而这种需求修改很容易造成扯皮,进而影响到费用支付,甚至出现做完了项目收不到钱的情况。 那么,怎么保证自己的薪酬安全呢? 我们在开工前,一定要做好一些证据方面的准备(也就是“讨薪”的理论依据),这其中最重要的就是需求文档和验收标准。一定要让需求方提供这两个文档资料作为开发的基础。之后开发...
网页实现一个简单的音乐播放器(大佬别看。(⊙﹏⊙))
今天闲着无事,就想写点东西。然后听了下歌,就打算写个播放器。 于是乎用h5 audio的加上js简单的播放器完工了。 演示地点演示 html代码如下` music 这个年纪 七月的风 音乐 ` 然后就是css`*{ margin: 0; padding: 0; text-decoration: none; list-...
Python十大装B语法
Python 是一种代表简单思想的语言,其语法相对简单,很容易上手。不过,如果就此小视 Python 语法的精妙和深邃,那就大错特错了。本文精心筛选了最能展现 Python 语法之精妙的十个知识点,并附上详细的实例代码。如能在实战中融会贯通、灵活使用,必将使代码更为精炼、高效,同时也会极大提升代码B格,使之看上去更老练,读起来更优雅。
数据库优化 - SQL优化
以实际SQL入手,带你一步一步走上SQL优化之路!
2019年11月中国大陆编程语言排行榜
2019年11月2日,我统计了某招聘网站,获得有效程序员招聘数据9万条。针对招聘信息,提取编程语言关键字,并统计如下: 编程语言比例 rank pl_ percentage 1 java 33.62% 2 cpp 16.42% 3 c_sharp 12.82% 4 javascript 12.31% 5 python 7.93% 6 go 7.25% 7 p...
通俗易懂地给女朋友讲:线程池的内部原理
餐盘在灯光的照耀下格外晶莹洁白,女朋友拿起红酒杯轻轻地抿了一小口,对我说:“经常听你说线程池,到底线程池到底是个什么原理?”
《奇巧淫技》系列-python!!每天早上八点自动发送天气预报邮件到QQ邮箱
将代码部署服务器,每日早上定时获取到天气数据,并发送到邮箱。 也可以说是一个小型人工智障。 知识可以运用在不同地方,不一定非是天气预报。
经典算法(5)杨辉三角
杨辉三角 是经典算法,这篇博客对它的算法思想进行了讲解,并有完整的代码实现。
腾讯算法面试题:64匹马8个跑道需要多少轮才能选出最快的四匹?
昨天,有网友私信我,说去阿里面试,彻底的被打击到了。问了为什么网上大量使用ThreadLocal的源码都会加上private static?他被难住了,因为他从来都没有考虑过这个问题。无独有偶,今天笔者又发现有网友吐槽了一道腾讯的面试题,我们一起来看看。 腾讯算法面试题:64匹马8个跑道需要多少轮才能选出最快的四匹? 在互联网职场论坛,一名程序员发帖求助到。二面腾讯,其中一个算法题:64匹...
面试官:你连RESTful都不知道我怎么敢要你?
干货,2019 RESTful最贱实践
刷了几千道算法题,这些我私藏的刷题网站都在这里了!
遥想当年,机缘巧合入了 ACM 的坑,周边巨擘林立,从此过上了"天天被虐似死狗"的生活… 然而我是谁,我可是死狗中的战斗鸡,智力不够那刷题来凑,开始了夜以继日哼哧哼哧刷题的日子,从此"读题与提交齐飞, AC 与 WA 一色 ",我惊喜的发现被题虐既刺激又有快感,那一刻我泪流满面。这么好的事儿作为一个正直的人绝不能自己独享,经过激烈的颅内斗争,我决定把我私藏的十几个 T 的,阿不,十几个刷题网...
JavaScript 为什么能活到现在?
作者 | 司徒正美 责编 |郭芮 出品 | CSDN(ID:CSDNnews) JavaScript能发展到现在的程度已经经历不少的坎坷,早产带来的某些缺陷是永久性的,因此浏览器才有禁用JavaScript的选项。甚至在jQuery时代有人问出这样的问题,jQuery与JavaScript哪个快?在Babel.js出来之前,发明一门全新的语言代码代替JavaScript...
项目中的if else太多了,该怎么重构?
介绍 最近跟着公司的大佬开发了一款IM系统,类似QQ和微信哈,就是聊天软件。我们有一部分业务逻辑是这样的 if (msgType = "文本") { // dosomething } else if(msgType = "图片") { // doshomething } else if(msgType = "视频") { // doshomething } else { // doshom...
Nginx 原理和架构
Nginx 是一个免费的,开源的,高性能的 HTTP 服务器和反向代理,以及 IMAP / POP3 代理服务器。Nginx 以其高性能,稳定性,丰富的功能,简单的配置和低资源消耗而闻名。 Nginx 的整体架构 Nginx 里有一个 master 进程和多个 worker 进程。master 进程并不处理网络请求,主要负责调度工作进程:加载配置、启动工作进程及非停升级。worker 进程负责处...
致 Python 初学者
欢迎来到“Python进阶”专栏!来到这里的每一位同学,应该大致上学习了很多 Python 的基础知识,正在努力成长的过程中。在此期间,一定遇到了很多的困惑,对未来的学习方向感到迷茫。我非常理解你们所面临的处境。我从2007年开始接触 python 这门编程语言,从2009年开始单一使用 python 应对所有的开发工作,直至今天。回顾自己的学习过程,也曾经遇到过无数的困难,也曾经迷茫过、困惑过。开办这个专栏,正是为了帮助像我当年一样困惑的 Python 初学者走出困境、快速成长。希望我的经验能真正帮到你
Python 编程开发 实用经验和技巧
Python是一门很灵活的语言,也有很多实用的方法,有时候实现一个功能可以用多种方法实现,我这里总结了一些常用的方法和技巧,包括小数保留指定位小数、判断变量的数据类型、类方法@classmethod、制表符中文对齐、遍历字典、datetime.timedelta的使用等,会持续更新......
吐血推荐珍藏的Visual Studio Code插件
作为一名Java工程师,由于工作需要,最近一个月一直在写NodeJS,这种经历可以说是一部辛酸史了。好在有神器Visual Studio Code陪伴,让我的这段经历没有更加困难。眼看这段经历要告一段落了,今天就来给大家分享一下我常用的一些VSC的插件。 VSC的插件安装方法很简单,只需要点击左侧最下方的插件栏选项,然后就可以搜索你想要的插件了。 下面我们进入正题 Material Theme ...
“狗屁不通文章生成器”登顶GitHub热榜,分分钟写出万字形式主义大作
一、垃圾文字生成器介绍 最近在浏览GitHub的时候,发现了这样一个骨骼清奇的雷人项目,而且热度还特别高。 项目中文名:狗屁不通文章生成器 项目英文名:BullshitGenerator 根据作者的介绍,他是偶尔需要一些中文文字用于GUI开发时测试文本渲染,因此开发了这个废话生成器。但由于生成的废话实在是太过富于哲理,所以最近已经被小伙伴们给玩坏了。 他的文风可能是这样的: 你发现,...
程序员:我终于知道post和get的区别
是一个老生常谈的话题,然而随着不断的学习,对于以前的认识有很多误区,所以还是需要不断地总结的,学而时习之,不亦说乎
《程序人生》系列-这个程序员只用了20行代码就拿了冠军
你知道的越多,你不知道的越多 点赞再看,养成习惯GitHub上已经开源https://github.com/JavaFamily,有一线大厂面试点脑图,欢迎Star和完善 前言 这一期不算《吊打面试官》系列的,所有没前言我直接开始。 絮叨 本来应该是没有这期的,看过我上期的小伙伴应该是知道的嘛,双十一比较忙嘛,要值班又要去帮忙拍摄年会的视频素材,还得搞个程序员一天的Vlog,还要写BU...
开源并不是你认为的那些事
点击上方蓝字 关注我们开源之道导读所以 ————想要理清开源是什么?先要厘清开源不是什么,名正言顺是句中国的古代成语,概念本身的理解非常之重要。大部分生物多样性的起源,...
加快推动区块链技术和产业创新发展,2019可信区块链峰会在京召开
11月8日,由中国信息通信研究院、中国通信标准化协会、中国互联网协会、可信区块链推进计划联合主办,科技行者协办的2019可信区块链峰会将在北京悠唐皇冠假日酒店开幕。   区块链技术被认为是继蒸汽机、电力、互联网之后,下一代颠覆性的核心技术。如果说蒸汽机释放了人类的生产力,电力解决了人类基本的生活需求,互联网彻底改变了信息传递的方式,区块链作为构造信任的技术有重要的价值。   1...
Python 植物大战僵尸代码实现(2):植物卡片选择和种植
这篇文章要介绍的是: - 上方植物卡片栏的实现。 - 点击植物卡片,鼠标切换为植物图片。 - 鼠标移动时,判断当前在哪个方格中,并显示半透明的植物作为提示。
程序员把地府后台管理系统做出来了,还有3.0版本!12月7号最新消息:已在开发中有github地址
第一幕:缘起 听说阎王爷要做个生死簿后台管理系统,我们派去了一个程序员…… 996程序员做的梦: 第一场:团队招募 为了应对地府管理危机,阎王打算找“人”开发一套地府后台管理系统,于是就在地府总经办群中发了项目需求。 话说还是中国电信的信号好,地府都是满格,哈哈!!! 经常会有外行朋友问:看某网站做的不错,功能也简单,你帮忙做一下? 而这次,面对这样的需求,这个程序员...
网易云6亿用户音乐推荐算法
网易云音乐是音乐爱好者的集聚地,云音乐推荐系统致力于通过 AI 算法的落地,实现用户千人千面的个性化推荐,为用户带来不一样的听歌体验。 本次分享重点介绍 AI 算法在音乐推荐中的应用实践,以及在算法落地过程中遇到的挑战和解决方案。 将从如下两个部分展开: AI算法在音乐推荐中的应用 音乐场景下的 AI 思考 从 2013 年 4 月正式上线至今,网易云音乐平台持续提供着:乐屏社区、UGC...
shell脚本基础
shell简介:shell是一种脚本语言,可以使用逻辑判断、循环等语法,可以自定义函数,是系统命令的集合 文章目录shell脚本结构和执行方法shell脚本中date命令的用法 shell脚本结构和执行方法 1.shell脚本开头需要加#!/bin/bash 2.以#开头的行作为注释 3.脚本的名字以.sh结尾,用于区分这是一个shell脚本 4.执行方法有两种: 1)bash test.sh 2...
8年经验面试官详解 Java 面试秘诀
作者 |胡书敏 责编 | 刘静 出品 | CSDN(ID:CSDNnews) 本人目前在一家知名外企担任架构师,而且最近八年来,在多家外企和互联网公司担任Java技术面试官,前后累计面试了有两三百位候选人。在本文里,就将结合本人的面试经验,针对Java初学者、Java初级开发和Java开发,给出若干准备简历和准备面试的建议。 Java程序员准备和投递简历的实...
面试官如何考察你的思维方式?
1.两种思维方式在求职面试中,经常会考察这种问题:北京有多少量特斯拉汽车?某胡同口的煎饼摊一年能卖出多少个煎饼?深圳有多少个产品经理?一辆公交车里能装下多少个乒乓球?一个正常成年人有多少根头发?这类估算问题,被称为费米问题,是以科学家费米命名的。为什么面试会问这种问题呢?这类问题能把两类人清楚地区分出来。一类是具有文科思维的人,擅长赞叹和模糊想象,它主要依靠的是人的第一反应和直觉,比如小孩...
碎片化的时代,如何学习
今天周末,和大家聊聊学习这件事情。 在如今这个社会,我们的时间被各类 APP 撕的粉碎。 刷知乎、刷微博、刷朋友圈; 看论坛、看博客、看公号; 等等形形色色的信息和知识获取方式一个都不错过。 貌似学了很多,但是却感觉没什么用。 要解决上面这些问题,首先要分清楚一点,什么是信息,什么是知识。 那什么是信息呢? 你一切听到的、看到的,都是信息,比如微博上的明星出轨、微信中的表情大战、抖音上的...
17张图带你解析红黑树的原理!保证你能看懂!
二叉查找树 由于红黑树本质上就是一棵二叉查找树,所以在了解红黑树之前,咱们先来看下二叉查找树。 二叉查找树(Binary Search Tree),也称有序二叉树(ordered binary tree),排序二叉树(sorted binary tree),是指一棵空树或者具有下列性质的二叉树: 若任意结点的左子树不空,则左子树上所有结点的值均小于它的根结点的值; 若任意结点的...
用Go重构C语言系统,这个抗住春晚红包的百度转发引擎承接了万亿流量
整理 | 夕颜出品 | AI科技大本营(ID:rgznai100)11 月 20 日,百度的万亿流量转发引擎 BFE 登上了 GitHub Trending Top 3,今日 Star 已突破 270。事实上,这个曾经抗住 2019 年春晚抢红包的转发引擎早已于 2019 年夏在 GitHub 上开源,今天突然再次引发关注,那我们不妨来回顾一下这个项目。 首先奉上 Gi...
腾讯“疯狂”开源!
作者 | 马超 责编 | 胡巍巍 出品 | CSDN(ID:CSDNnews) 近日,腾讯自研的万亿级分布式消息中间件TubeMQ正式开源,并捐赠给Apache基金会,成为基金会官方认可的Incubator项目。 我们知道与TubeMQ功能类似的kafka是领英公司在早在10年前捐赠给Apache基金会的金牌项目,而那时的腾讯还在忙于3Q大战,公司文化也相对封闭,甚至连目前社交领...
相关热词 c#中dns类 c#合并的excel c# implicit c#怎么保留3个小数点 c# 串口通信、 网络调试助手c# c# 泛型比较大小 c#解压分卷问题 c#启动居中 c# 逻辑或运算符
立即提问