hadoop yarn 运行分布式的应用时出现载入不了库文件错误 10C

我在hadoop 2.7.1版本 运行https://github.com/alibaba/mpich2-yarn.git,来跑我的一个分布式应用
运行时出现如下错误:
17/03/08 04:30:27 INFO client.Client: Initializing ApplicationMaster
17/03/08 04:30:35 INFO client.Client: all containers are launched successfully, executing mpiexec...
17/03/08 04:30:35 INFO client.Client: [stderr] /home/ubuntu/hdfstmp/mpiexecs/appattempt_1488941680484_0003_000001/MPIExec: error while loading shared libraries: libjvm.so: cannot open shared object file: No such file or directory
17/03/08 04:30:35 INFO client.Client: [stderr] /home/ubuntu/hdfstmp/mpiexecs/appattempt_1488941680484_0003_000001/MPIExec: error while loading shared libraries: libjvm.so: cannot open shared object file: No such file or directory
17/03/08 04:30:35 INFO client.Client: [stdout]
17/03/08 04:30:35 INFO client.Client: [stdout] ===================================================================================
17/03/08 04:30:35 INFO client.Client: [stdout] = BAD TERMINATION OF ONE OF YOUR APPLICATION PROCESSES
17/03/08 04:30:35 INFO client.Client: [stdout] = EXIT CODE: 127
17/03/08 04:30:35 INFO client.Client: [stdout] = CLEANING UP REMAINING PROCESSES
17/03/08 04:30:35 INFO client.Client: [stdout] = YOU CAN IGNORE THE BELOW CLEANUP MESSAGES
17/03/08 04:30:35 INFO client.Client: [stdout] ===================================================================================

个人认为应该是没有将应用应用运行所需的资源提交给RM,如果真是这样,我需要怎么提交呢,望各位大神给点建议。。。

1个回答

export LD_LIBRARY_PATH=/usr/lib/jvm/jre/lib/amd64:/usr/lib/jvm/jre/lib/amd64/default
#根据 locate libjvm.so 的结果,据实调整路径

Csdn user default icon
上传中...
上传图片
插入图片
抄袭、复制答案,以达到刷声望分或其他目的的行为,在CSDN问答是严格禁止的,一经发现立刻封号。是时候展现真正的技术了!
其他相关推荐
伪分布式下的hadoop在yarn上运行单词计数一直卡在 map 0%, reduce 0%
把单词计数任务提交给yarn,最后卡在0%停止了,看了日志好像是map内存不足了,应该改哪个地方的配置啊 ? 环境是在虚拟机上的伪分布式,环境 Centos6, Hadoop-2.7.4 ![图片说明](https://img-ask.csdn.net/upload/201712/02/1512188172_114671.png) 话说怎么把图片隔开啊 ? ![图片说明](https://img-ask.csdn.net/upload/201712/02/1512188658_477752.png) 话说怎么把图片隔开啊 ? ![图片说明](https://img-ask.csdn.net/upload/201712/02/1512188198_134207.png) 话说怎么把图片隔开啊 ? ![图片说明](https://img-ask.csdn.net/upload/201712/02/1512188213_529598.png) 下面是我的配置文件,由于之前大量百度过,跟原始的有所更改 mapred-site.xml ![图片说明](https://img-ask.csdn.net/upload/201712/02/1512188414_262206.png) yarn-site.xml ![图片说明](https://img-ask.csdn.net/upload/201712/02/1512188432_211117.png) 好几天了,一直解决不了 ? 因为没有机器所以先搭一个伪分布式玩玩,哪位大神若能不吝赐教 ? 感激不尽
hadoop伪分布式环境搭建
最近开始新学hadoop,想搭建个伪分布式环境,而自己的电脑配置不高,不能运行虚拟机,可以利用阿里云来搭建伪分布式运行环境吗?
大型云端应用是否需要部署hadoop这类分布式集群
之前在相关文章看过,云时代hadoop的应用场景正在减少。 大意是说,大型系统部署到公有云上不需要分布式配置集群,只有私服务器才需要部署分布式。是真的吗。
hadoop yarn调度器需要涉及修改的类。
想请问修改hadoop里面的调度器需要涉及到修改那些类或者java文件,例如在公平调度器内部嵌套使用动态优先级调度器。
flink在hadoop yarn运行出错,报相应的jar找不到(self4j)
在flink目录执行./bin/yarn-session.sh -n 2 -s 2 -jm 1024 -tm 1024时,启动的时候报2018-12-16 16:01:42,879 ERROR org.apache.flink.yarn.cli.FlinkYarnSessionCli - Error while running the Flink Yarn session. org.apache.flink.client.deployment.ClusterDeploymentException: Couldn't deploy Yarn session cluster at org.apache.flink.yarn.AbstractYarnClusterDescriptor.deploySessionCluster(AbstractYarnClusterDescriptor.java:423) at org.apache.flink.yarn.cli.FlinkYarnSessionCli.run(FlinkYarnSessionCli.java:607) at org.apache.flink.yarn.cli.FlinkYarnSessionCli.lambda$main$2(FlinkYarnSessionCli.java:810) at java.security.AccessController.doPrivileged(Native Method) at javax.security.auth.Subject.doAs(Subject.java:422) at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1692) at org.apache.flink.runtime.security.HadoopSecurityContext.runSecured(HadoopSecurityContext.java:41) at org.apache.flink.yarn.cli.FlinkYarnSessionCli.main(FlinkYarnSessionCli.java:810) Caused by: org.apache.flink.yarn.AbstractYarnClusterDescriptor$YarnDeploymentException: The YARN application unexpectedly switched to state FAILED during deployment. Diagnostics from YARN: Application application_1544946711234_0002 failed 1 times due to AM Container for appattempt_1544946711234_0002_000001 exited with exitCode: -1000 For more detailed output, check application tracking page:http://master:8088/proxy/application_1544946711234_0002/Then, click on links to logs of each attempt. Diagnostics: File file:/root/.flink/application_1544946711234_0002/lib/slf4j-log4j12-1.7.15.jar does not exist java.io.FileNotFoundException: File file:/root/.flink/application_1544946711234_0002/lib/slf4j-log4j12-1.7.15.jar does not exist at org.apache.hadoop.fs.RawLocalFileSystem.deprecatedGetFileStatus(RawLocalFileSystem.java:534)
hadoop使用yarn运行jar 报java.lang.ClassNotFoundException 找不到类 (找不到的不是主类)
1、写了一个数据分析的程序,用idea打成jar包,依赖jar都打进去了 ![图片说明](https://img-ask.csdn.net/upload/201911/03/1572779664_439750.png) 已经设置了 job.setJarByClass(CountDurationRunner.class); 2、开启hadoop zookeeper 和hbase集群 3、yarn运行jar : $ /opt/module/hadoop-2.7.2/bin/yarn jar ct_analysis.jar runner.CountDurationRunner 报错截图:![图片说明](https://img-ask.csdn.net/upload/201911/03/1572779908_781957.png) CountDurationRunner类代码: ``` package runner; import kv.key.ComDimension; //就是这里第一个就没找到 import kv.value.CountDurationValue; import mapper.CountDurationMapper; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.hbase.HBaseConfiguration; import org.apache.hadoop.hbase.TableName; import org.apache.hadoop.hbase.client.Admin; import org.apache.hadoop.hbase.client.Connection; import org.apache.hadoop.hbase.client.ConnectionFactory; import org.apache.hadoop.hbase.client.Scan; import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.util.Tool; import org.apache.hadoop.util.ToolRunner; import outputformat.MysqlOutputFormat; import reducer.CountDurationReducer; import java.io.IOException; public class CountDurationRunner implements Tool { private Configuration conf = null; @Override public void setConf(Configuration conf) { this.conf = HBaseConfiguration.create(conf); } @Override public Configuration getConf() { return this.conf; } @Override public int run(String[] args) throws Exception { //得到conf Configuration conf = this.getConf(); //实例化job Job job = Job.getInstance(conf); job.setJarByClass(CountDurationRunner.class); //组装Mapper InputFormat initHbaseInputConfig(job); //组装Reducer outputFormat initHbaseOutputConfig(job); return job.waitForCompletion(true) ? 0 : 1; } private void initHbaseOutputConfig(Job job) { Connection connection = null; Admin admin = null; String tableName = "ns_ct:calllog"; try { connection = ConnectionFactory.createConnection(job.getConfiguration()); admin = connection.getAdmin(); if(!admin.tableExists(TableName.valueOf(tableName))) throw new RuntimeException("没有找到目标表"); Scan scan = new Scan(); //初始化Mapper TableMapReduceUtil.initTableMapperJob( tableName, scan, CountDurationMapper.class, ComDimension.class, Text.class, job, true); }catch (IOException e){ e.printStackTrace(); }finally { try { if(admin!=null) admin.close(); if(connection!=null) connection.close(); } catch (IOException e) { e.printStackTrace(); } } } private void initHbaseInputConfig(Job job) { job.setReducerClass(CountDurationReducer.class); job.setOutputKeyClass(ComDimension.class); job.setOutputValueClass(CountDurationValue.class); job.setOutputFormatClass(MysqlOutputFormat.class); } public static void main(String[] args) { try { int status = ToolRunner.run(new CountDurationRunner(), args); System.exit(status); } catch (Exception e) { e.printStackTrace(); } } } 这问题困扰很久了,有人说classPath不对,不知道如何修改,求助! ```
hadoop jar 运行hadoop自带wordcount报错
安装完hadoop-2.7.3之后,想试试其自带的wordcount例子,但是一直报下面的错,空间不足。。 但是我都还没开始用,怎么会出这种问题。。我是单机上运行的伪分布式,其他的都能正常运行,hdfs也是正常的,能在其中导入文件啥的,但是就是不能用hadoop jar命名运行![图片说明](https://img-ask.csdn.net/upload/201706/05/1496656412_150716.png)
学习配置Hadoop伪分布式集群,nodemanager起不来
单节点伪分布式模式,配置文件内容参照官方文档: ![core-site](https://img-ask.csdn.net/upload/201708/13/1502602546_304955.png) ![hdfs-site](https://img-ask.csdn.net/upload/201708/13/1502602573_768613.png) ![mapred-site](https://img-ask.csdn.net/upload/201708/13/1502602629_666063.png) ![yarn-site](https://img-ask.csdn.net/upload/201708/13/1502602649_590467.png) 成功运行的进程: ![图片说明](https://img-ask.csdn.net/upload/201708/13/1502602658_320676.png) 日志报错: ![日志报错](https://img-ask.csdn.net/upload/201708/13/1502602843_85059.png) 虚拟机配置: ![图片说明](https://img-ask.csdn.net/upload/201708/13/1502602876_249084.png) 我之前在自己的台式电脑上按照官方文档配过Hadoop一切正常,但这次在移动工作站上配就出现了解决不了的问题。在网上找的都是说改1024,还有个人说改JVM堆内存,我都试过了,完全不管用,不知道是哪的毛病?
hadoop伪分布式启动或执行命令时报错
近期 想自己整个虚拟机装hadoop 一切准备就绪后遇见下面的问题 jdk是9.0.4 hadoop是2.5.2 ![hadoop启动](https://img-ask.csdn.net/upload/201803/02/1519981460_864413.png) ![hadoop启动命令执行完成之后的jps](https://img-ask.csdn.net/upload/201803/02/1519981504_600495.png) ![hadoop命令执行](https://img-ask.csdn.net/upload/201803/02/1519981547_50822.png) 各路大神来看看是该怎么解决这个错误
关于hadoop伪分布式安装问题
安装了6.7次hadoop了,每一次的问题都花样百出,这次又是开启NameNode和DataNode守护进程时出现问题了,0.0.0.0的问题按网上说关闭防火墙已经执行了却还是运行不了还是有bug 有大神么帮忙解决一下。。。
hadoop 运行本地jar包无法读取文件。
在本地运行时可以读取workspace中的txt文件,将java文件和txt一起打包之后上传至Hadoop运行,jar包中的txt文件没有被读取也没有报错。
hive运行insert语句在on yarn的情况下报错,开启本地模式后就好了,报错如下:
``` hive> insert into test values('B',2); Query ID = root_20191114105642_8cc05952-0497-4eff-893e-af6de8f05c6e Total jobs = 3 Launching Job 1 out of 3 Number of reduce tasks is set to 0 since there's no reduce operator 19/11/14 10:56:43 INFO client.RMProxy: Connecting to ResourceManager at cloudera/37.64.0.71:8032 19/11/14 10:56:43 INFO client.RMProxy: Connecting to ResourceManager at cloudera/37.64.0.71:8032 java.io.IOException: org.apache.hadoop.yarn.exceptions.InvalidResourceRequestException: Invalid resource request! Cannot allocate containers as requested resource is greater than maximum allowed allocation. Requested resource type=[memory-mb], Requested resource=<memory:15360, vCores:8>, maximum allowed allocation=<memory:6557, vCores:8>, please note that maximum allowed allocation is calculated by scheduler based on maximum resource of registered NodeManagers, which might be less than configured maximum allocation=<memory:6557, vCores:8> at org.apache.hadoop.yarn.server.resourcemanager.scheduler.SchedulerUtils.throwInvalidResourceException(SchedulerUtils.java:478) at org.apache.hadoop.yarn.server.resourcemanager.scheduler.SchedulerUtils.checkResourceRequestAgainstAvailableResource(SchedulerUtils.java:374) at org.apache.hadoop.yarn.server.resourcemanager.scheduler.SchedulerUtils.validateResourceRequest(SchedulerUtils.java:302) at org.apache.hadoop.yarn.server.resourcemanager.scheduler.SchedulerUtils.normalizeAndValidateRequest(SchedulerUtils.java:280) at org.apache.hadoop.yarn.server.resourcemanager.RMAppManager.validateAndCreateResourceRequest(RMAppManager.java:522) at org.apache.hadoop.yarn.server.resourcemanager.RMAppManager.createAndPopulateNewRMApp(RMAppManager.java:377) at org.apache.hadoop.yarn.server.resourcemanager.RMAppManager.submitApplication(RMAppManager.java:318) at org.apache.hadoop.yarn.server.resourcemanager.ClientRMService.submitApplication(ClientRMService.java:633) at org.apache.hadoop.yarn.api.impl.pb.service.ApplicationClientProtocolPBServiceImpl.submitApplication(ApplicationClientProtocolPBServiceImpl.java:267) at org.apache.hadoop.yarn.proto.ApplicationClientProtocol$ApplicationClientProtocolService$2.callBlockingMethod(ApplicationClientProtocol.java:531) at org.apache.hadoop.ipc.ProtobufRpcEngine$Server$ProtoBufRpcInvoker.call(ProtobufRpcEngine.java:523) at org.apache.hadoop.ipc.RPC$Server.call(RPC.java:991) at org.apache.hadoop.ipc.Server$RpcCall.run(Server.java:869) at org.apache.hadoop.ipc.Server$RpcCall.run(Server.java:815) at java.security.AccessController.doPrivileged(Native Method) at javax.security.auth.Subject.doAs(Subject.java:422) at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1875) at org.apache.hadoop.ipc.Server$Handler.run(Server.java:2675) at org.apache.hadoop.mapred.YARNRunner.submitJob(YARNRunner.java:345) at org.apache.hadoop.mapreduce.JobSubmitter.submitJobInternal(JobSubmitter.java:251) at org.apache.hadoop.mapreduce.Job$11.run(Job.java:1570) at org.apache.hadoop.mapreduce.Job$11.run(Job.java:1567) at java.security.AccessController.doPrivileged(Native Method) at javax.security.auth.Subject.doAs(Subject.java:422) at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1875) at org.apache.hadoop.mapreduce.Job.submit(Job.java:1567) at org.apache.hadoop.mapred.JobClient$1.run(JobClient.java:576) at org.apache.hadoop.mapred.JobClient$1.run(JobClient.java:571) at java.security.AccessController.doPrivileged(Native Method) at javax.security.auth.Subject.doAs(Subject.java:422) at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1875) at org.apache.hadoop.mapred.JobClient.submitJobInternal(JobClient.java:571) at org.apache.hadoop.mapred.JobClient.submitJob(JobClient.java:562) at org.apache.hadoop.hive.ql.exec.mr.ExecDriver.execute(ExecDriver.java:444) at org.apache.hadoop.hive.ql.exec.mr.MapRedTask.execute(MapRedTask.java:151) at org.apache.hadoop.hive.ql.exec.Task.executeTask(Task.java:199) at org.apache.hadoop.hive.ql.exec.TaskRunner.runSequential(TaskRunner.java:97) at org.apache.hadoop.hive.ql.Driver.launchTask(Driver.java:2200) at org.apache.hadoop.hive.ql.Driver.execute(Driver.java:1843) at org.apache.hadoop.hive.ql.Driver.runInternal(Driver.java:1563) at org.apache.hadoop.hive.ql.Driver.run(Driver.java:1339) at org.apache.hadoop.hive.ql.Driver.run(Driver.java:1328) at org.apache.hadoop.hive.cli.CliDriver.processLocalCmd(CliDriver.java:239) at org.apache.hadoop.hive.cli.CliDriver.processCmd(CliDriver.java:187) at org.apache.hadoop.hive.cli.CliDriver.processLine(CliDriver.java:409) at org.apache.hadoop.hive.cli.CliDriver.executeDriver(CliDriver.java:836) at org.apache.hadoop.hive.cli.CliDriver.run(CliDriver.java:772) at org.apache.hadoop.hive.cli.CliDriver.main(CliDriver.java:699) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at org.apache.hadoop.util.RunJar.run(RunJar.java:313) at org.apache.hadoop.util.RunJar.main(RunJar.java:227) Caused by: org.apache.hadoop.yarn.exceptions.InvalidResourceRequestException: Invalid resource request! Cannot allocate containers as requested resource is greater than maximum allowed allocation. Requested resource type=[memory-mb], Requested resource=<memory:15360, vCores:8>, maximum allowed allocation=<memory:6557, vCores:8>, please note that maximum allowed allocation is calculated by scheduler based on maximum resource of registered NodeManagers, which might be less than configured maximum allocation=<memory:6557, vCores:8> at org.apache.hadoop.yarn.server.resourcemanager.scheduler.SchedulerUtils.throwInvalidResourceException(SchedulerUtils.java:478) at org.apache.hadoop.yarn.server.resourcemanager.scheduler.SchedulerUtils.checkResourceRequestAgainstAvailableResource(SchedulerUtils.java:374) at org.apache.hadoop.yarn.server.resourcemanager.scheduler.SchedulerUtils.validateResourceRequest(SchedulerUtils.java:302) at org.apache.hadoop.yarn.server.resourcemanager.scheduler.SchedulerUtils.normalizeAndValidateRequest(SchedulerUtils.java:280) at org.apache.hadoop.yarn.server.resourcemanager.RMAppManager.validateAndCreateResourceRequest(RMAppManager.java:522) at org.apache.hadoop.yarn.server.resourcemanager.RMAppManager.createAndPopulateNewRMApp(RMAppManager.java:377) at org.apache.hadoop.yarn.server.resourcemanager.RMAppManager.submitApplication(RMAppManager.java:318) at org.apache.hadoop.yarn.server.resourcemanager.ClientRMService.submitApplication(ClientRMService.java:633) at org.apache.hadoop.yarn.api.impl.pb.service.ApplicationClientProtocolPBServiceImpl.submitApplication(ApplicationClientProtocolPBServiceImpl.java:267) at org.apache.hadoop.yarn.proto.ApplicationClientProtocol$ApplicationClientProtocolService$2.callBlockingMethod(ApplicationClientProtocol.java:531) at org.apache.hadoop.ipc.ProtobufRpcEngine$Server$ProtoBufRpcInvoker.call(ProtobufRpcEngine.java:523) at org.apache.hadoop.ipc.RPC$Server.call(RPC.java:991) at org.apache.hadoop.ipc.Server$RpcCall.run(Server.java:869) at org.apache.hadoop.ipc.Server$RpcCall.run(Server.java:815) at java.security.AccessController.doPrivileged(Native Method) at javax.security.auth.Subject.doAs(Subject.java:422) at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1875) at org.apache.hadoop.ipc.Server$Handler.run(Server.java:2675) at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45) at java.lang.reflect.Constructor.newInstance(Constructor.java:423) at org.apache.hadoop.yarn.ipc.RPCUtil.instantiateException(RPCUtil.java:53) at org.apache.hadoop.yarn.ipc.RPCUtil.instantiateYarnException(RPCUtil.java:75) at org.apache.hadoop.yarn.ipc.RPCUtil.unwrapAndThrowException(RPCUtil.java:116) at org.apache.hadoop.yarn.api.impl.pb.client.ApplicationClientProtocolPBClientImpl.submitApplication(ApplicationClientProtocolPBClientImpl.java:284) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at org.apache.hadoop.io.retry.RetryInvocationHandler.invokeMethod(RetryInvocationHandler.java:422) at org.apache.hadoop.io.retry.RetryInvocationHandler$Call.invokeMethod(RetryInvocationHandler.java:165) at org.apache.hadoop.io.retry.RetryInvocationHandler$Call.invoke(RetryInvocationHandler.java:157) at org.apache.hadoop.io.retry.RetryInvocationHandler$Call.invokeOnce(RetryInvocationHandler.java:95) at org.apache.hadoop.io.retry.RetryInvocationHandler.invoke(RetryInvocationHandler.java:359) at com.sun.proxy.$Proxy43.submitApplication(Unknown Source) at org.apache.hadoop.yarn.client.api.impl.YarnClientImpl.submitApplication(YarnClientImpl.java:290) at org.apache.hadoop.mapred.ResourceMgrDelegate.submitApplication(ResourceMgrDelegate.java:297) at org.apache.hadoop.mapred.YARNRunner.submitJob(YARNRunner.java:330) ... 35 more Caused by: org.apache.hadoop.ipc.RemoteException(org.apache.hadoop.yarn.exceptions.InvalidResourceRequestException): Invalid resource request! Cannot allocate containers as requested resource is greater than maximum allowed allocation. Requested resource type=[memory-mb], Requested resource=<memory:15360, vCores:8>, maximum allowed allocation=<memory:6557, vCores:8>, please note that maximum allowed allocation is calculated by scheduler based on maximum resource of registered NodeManagers, which might be less than configured maximum allocation=<memory:6557, vCores:8> at org.apache.hadoop.yarn.server.resourcemanager.scheduler.SchedulerUtils.throwInvalidResourceException(SchedulerUtils.java:478) at org.apache.hadoop.yarn.server.resourcemanager.scheduler.SchedulerUtils.checkResourceRequestAgainstAvailableResource(SchedulerUtils.java:374) at org.apache.hadoop.yarn.server.resourcemanager.scheduler.SchedulerUtils.validateResourceRequest(SchedulerUtils.java:302) at org.apache.hadoop.yarn.server.resourcemanager.scheduler.SchedulerUtils.normalizeAndValidateRequest(SchedulerUtils.java:280) at org.apache.hadoop.yarn.server.resourcemanager.RMAppManager.validateAndCreateResourceRequest(RMAppManager.java:522) at org.apache.hadoop.yarn.server.resourcemanager.RMAppManager.createAndPopulateNewRMApp(RMAppManager.java:377) at org.apache.hadoop.yarn.server.resourcemanager.RMAppManager.submitApplication(RMAppManager.java:318) at org.apache.hadoop.yarn.server.resourcemanager.ClientRMService.submitApplication(ClientRMService.java:633) at org.apache.hadoop.yarn.api.impl.pb.service.ApplicationClientProtocolPBServiceImpl.submitApplication(ApplicationClientProtocolPBServiceImpl.java:267) at org.apache.hadoop.yarn.proto.ApplicationClientProtocol$ApplicationClientProtocolService$2.callBlockingMethod(ApplicationClientProtocol.java:531) at org.apache.hadoop.ipc.ProtobufRpcEngine$Server$ProtoBufRpcInvoker.call(ProtobufRpcEngine.java:523) at org.apache.hadoop.ipc.RPC$Server.call(RPC.java:991) at org.apache.hadoop.ipc.Server$RpcCall.run(Server.java:869) at org.apache.hadoop.ipc.Server$RpcCall.run(Server.java:815) at java.security.AccessController.doPrivileged(Native Method) at javax.security.auth.Subject.doAs(Subject.java:422) at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1875) at org.apache.hadoop.ipc.Server$Handler.run(Server.java:2675) at org.apache.hadoop.ipc.Client.getRpcResponse(Client.java:1499) at org.apache.hadoop.ipc.Client.call(Client.java:1445) at org.apache.hadoop.ipc.Client.call(Client.java:1355) at org.apache.hadoop.ipc.ProtobufRpcEngine$Invoker.invoke(ProtobufRpcEngine.java:228) at org.apache.hadoop.ipc.ProtobufRpcEngine$Invoker.invoke(ProtobufRpcEngine.java:116) at com.sun.proxy.$Proxy42.submitApplication(Unknown Source) at org.apache.hadoop.yarn.api.impl.pb.client.ApplicationClientProtocolPBClientImpl.submitApplication(ApplicationClientProtocolPBClientImpl.java:281) ... 48 more Job Submission failed with exception 'java.io.IOException(org.apache.hadoop.yarn.exceptions.InvalidResourceRequestException: Invalid resource request! Cannot allocate containers as requested resource is greater than maximum allowed allocation. Requested resource type=[memory-mb], Requested resource=<memory:15360, vCores:8>, maximum allowed allocation=<memory:6557, vCores:8>, please note that maximum allowed allocation is calculated by scheduler based on maximum resource of registered NodeManagers, which might be less than configured maximum allocation=<memory:6557, vCores:8> at org.apache.hadoop.yarn.server.resourcemanager.scheduler.SchedulerUtils.throwInvalidResourceException(SchedulerUtils.java:478) at org.apache.hadoop.yarn.server.resourcemanager.scheduler.SchedulerUtils.checkResourceRequestAgainstAvailableResource(SchedulerUtils.java:374) at org.apache.hadoop.yarn.server.resourcemanager.scheduler.SchedulerUtils.validateResourceRequest(SchedulerUtils.java:302) at org.apache.hadoop.yarn.server.resourcemanager.scheduler.SchedulerUtils.normalizeAndValidateRequest(SchedulerUtils.java:280) at org.apache.hadoop.yarn.server.resourcemanager.RMAppManager.validateAndCreateResourceRequest(RMAppManager.java:522) at org.apache.hadoop.yarn.server.resourcemanager.RMAppManager.createAndPopulateNewRMApp(RMAppManager.java:377) at org.apache.hadoop.yarn.server.resourcemanager.RMAppManager.submitApplication(RMAppManager.java:318) at org.apache.hadoop.yarn.server.resourcemanager.ClientRMService.submitApplication(ClientRMService.java:633) at org.apache.hadoop.yarn.api.impl.pb.service.ApplicationClientProtocolPBServiceImpl.submitApplication(ApplicationClientProtocolPBServiceImpl.java:267) at org.apache.hadoop.yarn.proto.ApplicationClientProtocol$ApplicationClientProtocolService$2.callBlockingMethod(ApplicationClientProtocol.java:531) at org.apache.hadoop.ipc.ProtobufRpcEngine$Server$ProtoBufRpcInvoker.call(ProtobufRpcEngine.java:523) at org.apache.hadoop.ipc.RPC$Server.call(RPC.java:991) at org.apache.hadoop.ipc.Server$RpcCall.run(Server.java:869) at org.apache.hadoop.ipc.Server$RpcCall.run(Server.java:815) at java.security.AccessController.doPrivileged(Native Method) at javax.security.auth.Subject.doAs(Subject.java:422) at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1875) at org.apache.hadoop.ipc.Server$Handler.run(Server.java:2675) )' FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.mr.MapRedTask. org.apache.hadoop.yarn.exceptions.InvalidResourceRequestException: Invalid resource request! Cannot allocate containers as requested resource is greater than maximum allowed allocation. Requested resource type=[memory-mb], Requested resource=<memory:15360, vCores:8>, maximum allowed allocation=<memory:6557, vCores:8>, please note that maximum allowed allocation is calculated by scheduler based on maximum resource of registered NodeManagers, which might be less than configured maximum allocation=<memory:6557, vCores:8> at org.apache.hadoop.yarn.server.resourcemanager.scheduler.SchedulerUtils.throwInvalidResourceException(SchedulerUtils.java:478) at org.apache.hadoop.yarn.server.resourcemanager.scheduler.SchedulerUtils.checkResourceRequestAgainstAvailableResource(SchedulerUtils.java:374) at org.apache.hadoop.yarn.server.resourcemanager.scheduler.SchedulerUtils.validateResourceRequest(SchedulerUtils.java:302) at org.apache.hadoop.yarn.server.resourcemanager.scheduler.SchedulerUtils.normalizeAndValidateRequest(SchedulerUtils.java:280) at org.apache.hadoop.yarn.server.resourcemanager.RMAppManager.validateAndCreateResourceRequest(RMAppManager.java:522) at org.apache.hadoop.yarn.server.resourcemanager.RMAppManager.createAndPopulateNewRMApp(RMAppManager.java:377) at org.apache.hadoop.yarn.server.resourcemanager.RMAppManager.submitApplication(RMAppManager.java:318) at org.apache.hadoop.yarn.server.resourcemanager.ClientRMService.submitApplication(ClientRMService.java:633) at org.apache.hadoop.yarn.api.impl.pb.service.ApplicationClientProtocolPBServiceImpl.submitApplication(ApplicationClientProtocolPBServiceImpl.java:267) at org.apache.hadoop.yarn.proto.ApplicationClientProtocol$ApplicationClientProtocolService$2.callBlockingMethod(ApplicationClientProtocol.java:531) at org.apache.hadoop.ipc.ProtobufRpcEngine$Server$ProtoBufRpcInvoker.call(ProtobufRpcEngine.java:523) at org.apache.hadoop.ipc.RPC$Server.call(RPC.java:991) at org.apache.hadoop.ipc.Server$RpcCall.run(Server.java:869) at org.apache.hadoop.ipc.Server$RpcCall.run(Server.java:815) at java.security.AccessController.doPrivileged(Native Method) at javax.security.auth.Subject.doAs(Subject.java:422) at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1875) at org.apache.hadoop.ipc.Server$Handler.run(Server.java:2675) ``` # 内存最大只有6G,他非要申请15G,这个问题该如何处理, # 求助各位大佬!!!
hadoop里运行mapReduce出错
hadoop里用mapReduce分析一本不到4M的小说数据,在hadoop里运行,运行了将近一个半小时才运行完,但是指出来一个_temporary的文件,还报错,java代码是没有问题的,
Linux下Eclipse导出Hadoop项目找不到库文件
求教各位hadoop技术大牛~~~~~ Linux环境下,Eclipse已经集成了Hadoop插件,运行Hadoop程序没有问题 代码:CLibrary Instance = (CLibrary) Native.loadLibrary("libNLPIR.so", CLibrary.class);能够成功加载libNLPIR.so文件,其中libNLPIR.so文件是用来分词的第三方库 但是导出成Runnable jar文件后,执行Hadoop jar EmotionExtraction.jar 命令后报错: Error: Unable to load library 'libNLPIR.so': Native library (linux-x86-64/libNLPIR.so) not found in resource path ([file:/hadoop/hadoop-2.2.0/tmp/nm-local-dir/usercache/root/appcache/application_1449120030816_0028/container_1449120030816_0028_01_000002/, file:/itcast/hadoop-2.2.0/etc/hadoop/, file:/itcast/hadoop-2.2.0/share/hadoop/common/hadoop-common-2.2.0.jar, file:/itcast/hadoop-2.2.0/share/hadoop/common/hadoop-nfs-2.2.0.jar, file:/itcast/hadoop-2.2.0/share/hadoop/common/hadoop-common-2.2.0-tests.jar
新手,hadoop上运行wordcount程序报错
运行的环境是:Ubuntu14.04+hadoop2.6.1 用的是virtualBox虚拟机,然后安装了一个master和三个slave节点 hadoop是可以成功启动的,没有任何问题 在Ubuntu安装了eclipse,用java写了word count的程序,源码如下: ``` package wordcount; import java.io.IOException; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; /** * @author * @version 创建时间:2017年9月9日 上午8:50:51 类说明 */ public class Wordcount { public static class TokenizerMapper extends Mapper<LongWritable, Text, Text, IntWritable> { private final static IntWritable one = new IntWritable(1); private Text word = new Text(); protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, IntWritable>.Context context) throws IOException, InterruptedException { StringTokenizer line = new StringTokenizer(value.toString()); while (line.hasMoreTokens()) { word.set(line.nextToken()); context.write(word, one); } } } public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> { private IntWritable result = new IntWritable(); protected void reduce(Text key, Iterable<IntWritable> values, Reducer<Text, IntWritable, Text, IntWritable>.Context context) throws IOException, InterruptedException { int sum = 0; for (IntWritable obj : values) { sum += obj.get(); } result.set(sum); context.write(key, result); } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = Job.getInstance(conf, "word count"); job.setJarByClass(Wordcount.class); job.setMapperClass(TokenizerMapper.class); job.setCombinerClass(IntSumReducer.class); job.setReducerClass(IntSumReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); FileInputFormat.addInputPath(job, new Path("hdfs://master:9000/user/hduser/demo/test.txt")); FileOutputFormat.setOutputPath(job, new Path("hdfs://master:9000/user/hduser/demo/wordcount")); //FileInputFormat.addInputPath(job, new Path(args[0])); //FileOutputFormat.setOutputPath(job, new Path(args[1])); System.exit(job.waitForCompletion(true) ? 0 : 1); } } ``` 启动hadoop后,在eclipse中直接运行上面的程序,运行成功,生成了wordcount文件夹,里面有_SUCCESS文件,也有统计的结果文件 然后我想把程序打包成jar文件来运行,先把上面程序中的: ``` FileInputFormat.addInputPath(job, new Path("hdfs://master:9000/user/hduser/demo/test.txt")); FileOutputFormat.setOutputPath(job, new Path("hdfs://master:9000/user/hduser/demo/wordcount")); ``` 改成如下: ``` FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); ``` 就是通过终端输入这两个参数 用eclipse的export打包成jar文件,后在终端输入: ``` hadoop jar wordcount.jar wordcount.Wordcount hdfs://master:9000/user/hduser/demo/test.txt hdfs://master:9000/user/hduser/demo/wordcount ``` 运行就报错了,报错情况如下: ``` 17/09/09 11:18:53 INFO client.RMProxy: Connecting to ResourceManager at master/192.168.56.100:8050 17/09/09 11:18:54 WARN mapreduce.JobResourceUploader: Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this. 17/09/09 11:18:55 INFO input.FileInputFormat: Total input paths to process : 1 17/09/09 11:18:55 INFO mapreduce.JobSubmitter: number of splits:1 17/09/09 11:18:55 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1504926710828_0001 17/09/09 11:18:56 INFO impl.YarnClientImpl: Submitted application application_1504926710828_0001 17/09/09 11:18:56 INFO mapreduce.Job: The url to track the job: http://master:8088/proxy/application_1504926710828_0001/ 17/09/09 11:18:56 INFO mapreduce.Job: Running job: job_1504926710828_0001 17/09/09 11:19:14 INFO mapreduce.Job: Job job_1504926710828_0001 running in uber mode : false 17/09/09 11:19:14 INFO mapreduce.Job: map 0% reduce 0% 17/09/09 11:19:14 INFO mapreduce.Job: Job job_1504926710828_0001 failed with state FAILED due to: Application application_1504926710828_0001 failed 2 times due to AM Container for appattempt_1504926710828_0001_000002 exited with exitCode: 1 For more detailed output, check application tracking page:http://master:8088/proxy/application_1504926710828_0001/Then, click on links to logs of each attempt. Diagnostics: Exception from container-launch. Container id: container_1504926710828_0001_02_000001 Exit code: 1 Stack trace: ExitCodeException exitCode=1: at org.apache.hadoop.util.Shell.runCommand(Shell.java:538) at org.apache.hadoop.util.Shell.run(Shell.java:455) at org.apache.hadoop.util.Shell$ShellCommandExecutor.execute(Shell.java:715) at org.apache.hadoop.yarn.server.nodemanager.DefaultContainerExecutor.launchContainer(DefaultContainerExecutor.java:211) at org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:302) at org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:82) at java.util.concurrent.FutureTask.run(FutureTask.java:262) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1152) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:622) at java.lang.Thread.run(Thread.java:748) Container exited with a non-zero exit code 1 Failing this attempt. Failing the application. 17/09/09 11:19:14 INFO mapreduce.Job: Counters: 0 ``` 去查了下日志文件, ``` 2017-09-09 11:18:55,869 INFO org.apache.hadoop.hdfs.StateChange: DIR* completeFile: /tmp/hadoop-yarn/staging/hduser/.staging/job_1504926710828_0001/job.xml is closed by DFSClient_NONMAPREDUCE_-1306163227_1 2017-09-09 11:18:59,502 INFO org.apache.hadoop.hdfs.server.blockmanagement.CacheReplicationMonitor: Rescanning after 30000 milliseconds 2017-09-09 11:18:59,503 INFO org.apache.hadoop.hdfs.server.blockmanagement.CacheReplicationMonitor: Scanned 0 directive(s) and 0 block(s) in 1 millisecond(s). 2017-09-09 11:19:12,241 INFO org.apache.hadoop.ipc.Server: IPC Server handler 2 on 9000, call org.apache.hadoop.hdfs.protocol.ClientProtocol.getBlockLocations from 192.168.56.102:53610 Call#7 Retry#0: java.io.FileNotFoundException: File does not exist: /tmp/hadoop-yarn/staging/hduser/.staging/job_1504926710828_0001/job_1504926710828_0001_1.jhist 2017-09-09 11:19:12,293 INFO org.apache.hadoop.ipc.Server: IPC Server handler 4 on 9000, call org.apache.hadoop.hdfs.protocol.ClientProtocol.getBlockLocations from 192.168.56.102:53610 Call#8 Retry#0: java.io.FileNotFoundException: File does not exist: /tmp/hadoop-yarn/staging/hduser/.staging/job_1504926710828_0001/job_1504926710828_0001_1.jhist 2017-09-09 11:19:29,502 INFO org.apache.hadoop.hdfs.server.blockmanagement.CacheReplicationMonitor: Rescanning after 30000 milliseconds 2017-09-09 11:19:29,502 INFO org.apache.hadoop.hdfs.server.blockmanagement.CacheReplicationMonitor: Scanned 0 directive(s) and 0 block(s) in 0 millisecond(s). 2017-09-09 11:19:42,634 INFO org.apache.hadoop.hdfs.server.namenode.FSNamesystem: Roll Edit Log from 192.168.56.100 2017-09-09 11:19:42,634 INFO org.apache.hadoop.hdfs.server.namenode.FSEditLog: Rolling edit logs 2017-09-09 11:19:42,634 INFO org.apache.hadoop.hdfs.server.namenode.FSEditLog: Ending log segment 29 2017-09-09 11:19:42,635 INFO org.apache.hadoop.hdfs.server.namenode.FSEditLog: Number of transactions: 40 Total time for transactions(ms): 6 Number of transactions batched in Syncs: 0 Number of syncs: 27 SyncTimes(ms): 545 2017-09-09 11:19:42,704 INFO org.apache.hadoop.hdfs.server.namenode.FSEditLog: Number of transactions: 40 Total time for transactions(ms): 6 Number of transactions batched in Syncs: 0 Number of syncs: 28 SyncTimes(ms): 613 2017-09-09 11:19:42,704 INFO org.apache.hadoop.hdfs.server.namenode.FileJournalManager: Finalizing edits file /usr/local/hadoop/hadoop_data/hdfs/namenode/current/edits_inprogress_0000000000000000029 -> /usr/local/hadoop/hadoop_data/hdfs/namenode/current/edits_0000000000000000029-0000000000000000068 2017-09-09 11:19:42,704 INFO org.apache.hadoop.hdfs.server.namenode.FSEditLog: Starting log segment at 69 2017-09-09 11:19:59,503 INFO org.apache.hadoop.hdfs.server.blockmanagement.CacheReplicationMonitor: Rescanning after 30001 milliseconds 2017-09-09 11:19:59,503 INFO org.apache.hadoop.hdfs.server.blockmanagement.CacheReplicationMonitor: Scanned 0 directive(s) and 0 block(s) in 0 millisecond(s). 2017-09-09 11:20:29,504 INFO org.apache.hadoop.hdfs.server.blockmanagement.CacheReplicationMonitor: Rescanning after 30001 milliseconds 2017-09-09 11:20:29,504 INFO org.apache.hadoop.hdfs.server.blockmanagement.CacheReplicationMonitor: Scanned 0 directive(s) and 0 block(s) in 0 millisecond(s). 2017-09-09 11:20:42,759 INFO org.apache.hadoop.hdfs.server.namenode.FSNamesystem: Roll Edit Log from 192.168.56.100 2017-09-09 11:20:42,759 INFO org.apache.hadoop.hdfs.server.namenode.FSEditLog: Rolling edit logs 2017-09-09 11:20:42,759 INFO org.apache.hadoop.hdfs.server.namenode.FSEditLog: Ending log segment 69 2017-09-09 11:20:42,759 INFO org.apache.hadoop.hdfs.server.namenode.FSEditLog: Number of transactions: 2 Total time for transactions(ms): 0 Number of transactions batched in Syncs: 0 Number of syncs: 2 SyncTimes(ms): 24 2017-09-09 11:20:42,791 INFO org.apache.hadoop.hdfs.server.namenode.FSEditLog: Number of transactions: 2 Total time for transactions(ms): 0 Number of transactions batched in Syncs: 0 Number of syncs: 3 SyncTimes(ms): 56 ``` 在这里面报了一个错误: ``` java.io.FileNotFoundException: File does not exist: /tmp/hadoop-yarn/staging/hduser/.staging/job_1504926710828_0001/job_1504926710828_0001_1.jhist ``` 新手,不知道怎么办了
hadoop伪分布式的问题!!!!!
伪分布式读取的是HDFS中的文件为什么可以将单机步骤中创建的本地 input文件夹 和output文件夹删掉
xxl-job与hadoop同时使用
1. xxl-job如何与hadoop的分布式框架同时用?有人用过吗,有没有一些比较好的资料?期待大神们的回复。
hadoop部署伪分布式模式无法用50070访问
hadoop3.1.1部署伪分布式模式,http://ip:9000能访问,但是其他的不能访问。 在Linux上启动namenode是报错!如下图 [图片说明](https://img-ask.csdn.net/upload/201811/27/1543326928_117083.png) 。求那大神告诉我哪里出问题。
Mac安装hadoop伪分布式是否只能实现一个结点?
安装hadoop伪分布式时,通常是三个结点。mac上是否是只能实现一个结点?
Kafka实战(三) - Kafka的自我修养与定位
Apache Kafka是消息引擎系统,也是一个分布式流处理平台(Distributed Streaming Platform) Kafka是LinkedIn公司内部孵化的项目。LinkedIn最开始有强烈的数据强实时处理方面的需求,其内部的诸多子系统要执行多种类型的数据处理与分析,主要包括业务系统和应用程序性能监控,以及用户行为数据处理等。 遇到的主要问题: 数据正确性不足 数据的收集主要...
volatile 与 synchronize 详解
Java支持多个线程同时访问一个对象或者对象的成员变量,由于每个线程可以拥有这个变量的拷贝(虽然对象以及成员变量分配的内存是在共享内存中的,但是每个执行的线程还是可以拥有一份拷贝,这样做的目的是加速程序的执行,这是现代多核处理器的一个显著特性),所以程序在执行过程中,一个线程看到的变量并不一定是最新的。 volatile 关键字volatile可以用来修饰字段(成员变量),就是告知程序任何对该变量...
Java学习的正确打开方式
在博主认为,对于入门级学习java的最佳学习方法莫过于视频+博客+书籍+总结,前三者博主将淋漓尽致地挥毫于这篇博客文章中,至于总结在于个人,实际上越到后面你会发现学习的最好方式就是阅读参考官方文档其次就是国内的书籍,博客次之,这又是一个层次了,这里暂时不提后面再谈。博主将为各位入门java保驾护航,各位只管冲鸭!!!上天是公平的,只要不辜负时间,时间自然不会辜负你。 何谓学习?博主所理解的学习,它是一个过程,是一个不断累积、不断沉淀、不断总结、善于传达自己的个人见解以及乐于分享的过程。
程序员必须掌握的核心算法有哪些?
由于我之前一直强调数据结构以及算法学习的重要性,所以就有一些读者经常问我,数据结构与算法应该要学习到哪个程度呢?,说实话,这个问题我不知道要怎么回答你,主要取决于你想学习到哪些程度,不过针对这个问题,我稍微总结一下我学过的算法知识点,以及我觉得值得学习的算法。这些算法与数据结构的学习大多数是零散的,并没有一本把他们全部覆盖的书籍。下面是我觉得值得学习的一些算法以及数据结构,当然,我也会整理一些看过...
有哪些让程序员受益终生的建议
从业五年多,辗转两个大厂,出过书,创过业,从技术小白成长为基层管理,联合几个业内大牛回答下这个问题,希望能帮到大家,记得帮我点赞哦。 敲黑板!!!读了这篇文章,你将知道如何才能进大厂,如何实现财务自由,如何在工作中游刃有余,这篇文章很长,但绝对是精品,记得帮我点赞哦!!!! 一腔肺腑之言,能看进去多少,就看你自己了!!! 目录: 在校生篇: 为什么要尽量进大厂? 如何选择语言及方...
大学四年自学走来,这些私藏的实用工具/学习网站我贡献出来了
大学四年,看课本是不可能一直看课本的了,对于学习,特别是自学,善于搜索网上的一些资源来辅助,还是非常有必要的,下面我就把这几年私藏的各种资源,网站贡献出来给你们。主要有:电子书搜索、实用工具、在线视频学习网站、非视频学习网站、软件下载、面试/求职必备网站。 注意:文中提到的所有资源,文末我都给你整理好了,你们只管拿去,如果觉得不错,转发、分享就是最大的支持了。 一、电子书搜索 对于大部分程序员...
linux系列之常用运维命令整理笔录
本博客记录工作中需要的linux运维命令,大学时候开始接触linux,会一些基本操作,可是都没有整理起来,加上是做开发,不做运维,有些命令忘记了,所以现在整理成博客,当然vi,文件操作等就不介绍了,慢慢积累一些其它拓展的命令,博客不定时更新 free -m 其中:m表示兆,也可以用g,注意都要小写 Men:表示物理内存统计 total:表示物理内存总数(total=used+free) use...
比特币原理详解
一、什么是比特币 比特币是一种电子货币,是一种基于密码学的货币,在2008年11月1日由中本聪发表比特币白皮书,文中提出了一种去中心化的电子记账系统,我们平时的电子现金是银行来记账,因为银行的背后是国家信用。去中心化电子记账系统是参与者共同记账。比特币可以防止主权危机、信用风险。其好处不多做赘述,这一层面介绍的文章很多,本文主要从更深层的技术原理角度进行介绍。 二、问题引入 假设现有4个人...
GitHub开源史上最大规模中文知识图谱
近日,一直致力于知识图谱研究的 OwnThink 平台在 Github 上开源了史上最大规模 1.4 亿中文知识图谱,其中数据是以(实体、属性、值),(实体、关系、实体)混合的形式组织,数据格式采用 csv 格式。 到目前为止,OwnThink 项目开放了对话机器人、知识图谱、语义理解、自然语言处理工具。知识图谱融合了两千五百多万的实体,拥有亿级别的实体属性关系,机器人采用了基于知识图谱的语义感...
程序员接私活怎样防止做完了不给钱?
首先跟大家说明一点,我们做 IT 类的外包开发,是非标品开发,所以很有可能在开发过程中会有这样那样的需求修改,而这种需求修改很容易造成扯皮,进而影响到费用支付,甚至出现做完了项目收不到钱的情况。 那么,怎么保证自己的薪酬安全呢? 我们在开工前,一定要做好一些证据方面的准备(也就是“讨薪”的理论依据),这其中最重要的就是需求文档和验收标准。一定要让需求方提供这两个文档资料作为开发的基础。之后开发...
网页实现一个简单的音乐播放器(大佬别看。(⊙﹏⊙))
今天闲着无事,就想写点东西。然后听了下歌,就打算写个播放器。 于是乎用h5 audio的加上js简单的播放器完工了。 演示地点演示 html代码如下` music 这个年纪 七月的风 音乐 ` 然后就是css`*{ margin: 0; padding: 0; text-decoration: none; list-...
微信支付崩溃了,但是更让马化腾和张小龙崩溃的竟然是……
loonggg读完需要3分钟速读仅需1分钟事件还得还原到昨天晚上,10 月 29 日晚上 20:09-21:14 之间,微信支付发生故障,全国微信支付交易无法正常进行。然...
Python十大装B语法
Python 是一种代表简单思想的语言,其语法相对简单,很容易上手。不过,如果就此小视 Python 语法的精妙和深邃,那就大错特错了。本文精心筛选了最能展现 Python 语法之精妙的十个知识点,并附上详细的实例代码。如能在实战中融会贯通、灵活使用,必将使代码更为精炼、高效,同时也会极大提升代码B格,使之看上去更老练,读起来更优雅。
数据库优化 - SQL优化
以实际SQL入手,带你一步一步走上SQL优化之路!
2019年11月中国大陆编程语言排行榜
2019年11月2日,我统计了某招聘网站,获得有效程序员招聘数据9万条。针对招聘信息,提取编程语言关键字,并统计如下: 编程语言比例 rank pl_ percentage 1 java 33.62% 2 cpp 16.42% 3 c_sharp 12.82% 4 javascript 12.31% 5 python 7.93% 6 go 7.25% 7 p...
通俗易懂地给女朋友讲:线程池的内部原理
餐盘在灯光的照耀下格外晶莹洁白,女朋友拿起红酒杯轻轻地抿了一小口,对我说:“经常听你说线程池,到底线程池到底是个什么原理?”
《奇巧淫技》系列-python!!每天早上八点自动发送天气预报邮件到QQ邮箱
将代码部署服务器,每日早上定时获取到天气数据,并发送到邮箱。 也可以说是一个小型人工智障。 知识可以运用在不同地方,不一定非是天气预报。
经典算法(5)杨辉三角
杨辉三角 是经典算法,这篇博客对它的算法思想进行了讲解,并有完整的代码实现。
英特尔不为人知的 B 面
从 PC 时代至今,众人只知在 CPU、GPU、XPU、制程、工艺等战场中,英特尔在与同行硬件芯片制造商们的竞争中杀出重围,且在不断的成长进化中,成为全球知名的半导体公司。殊不知,在「刚硬」的背后,英特尔「柔性」的软件早已经做到了全方位的支持与支撑,并持续发挥独特的生态价值,推动产业合作共赢。 而对于这一不知人知的 B 面,很多人将其称之为英特尔隐形的翅膀,虽低调,但是影响力却不容小觑。 那么,在...
腾讯算法面试题:64匹马8个跑道需要多少轮才能选出最快的四匹?
昨天,有网友私信我,说去阿里面试,彻底的被打击到了。问了为什么网上大量使用ThreadLocal的源码都会加上private static?他被难住了,因为他从来都没有考虑过这个问题。无独有偶,今天笔者又发现有网友吐槽了一道腾讯的面试题,我们一起来看看。 腾讯算法面试题:64匹马8个跑道需要多少轮才能选出最快的四匹? 在互联网职场论坛,一名程序员发帖求助到。二面腾讯,其中一个算法题:64匹...
面试官:你连RESTful都不知道我怎么敢要你?
干货,2019 RESTful最贱实践
刷了几千道算法题,这些我私藏的刷题网站都在这里了!
遥想当年,机缘巧合入了 ACM 的坑,周边巨擘林立,从此过上了"天天被虐似死狗"的生活… 然而我是谁,我可是死狗中的战斗鸡,智力不够那刷题来凑,开始了夜以继日哼哧哼哧刷题的日子,从此"读题与提交齐飞, AC 与 WA 一色 ",我惊喜的发现被题虐既刺激又有快感,那一刻我泪流满面。这么好的事儿作为一个正直的人绝不能自己独享,经过激烈的颅内斗争,我决定把我私藏的十几个 T 的,阿不,十几个刷题网...
为啥国人偏爱Mybatis,而老外喜欢Hibernate/JPA呢?
关于SQL和ORM的争论,永远都不会终止,我也一直在思考这个问题。昨天又跟群里的小伙伴进行了一番讨论,感触还是有一些,于是就有了今天这篇文。 声明:本文不会下关于Mybatis和JPA两个持久层框架哪个更好这样的结论。只是摆事实,讲道理,所以,请各位看官勿喷。 一、事件起因 关于Mybatis和JPA孰优孰劣的问题,争论已经很多年了。一直也没有结论,毕竟每个人的喜好和习惯是大不相同的。我也看...
白话阿里巴巴Java开发手册高级篇
不久前,阿里巴巴发布了《阿里巴巴Java开发手册》,总结了阿里巴巴内部实际项目开发过程中开发人员应该遵守的研发流程规范,这些流程规范在一定程度上能够保证最终的项目交付质量,通过在时间中总结模式,并推广给广大开发人员,来避免研发人员在实践中容易犯的错误,确保最终在大规模协作的项目中达成既定目标。 无独有偶,笔者去年在公司里负责升级和制定研发流程、设计模板、设计标准、代码标准等规范,并在实际工作中进行...
SQL-小白最佳入门sql查询一
不要偷偷的查询我的个人资料,即使你再喜欢我,也不要这样,真的不好;
项目中的if else太多了,该怎么重构?
介绍 最近跟着公司的大佬开发了一款IM系统,类似QQ和微信哈,就是聊天软件。我们有一部分业务逻辑是这样的 if (msgType = "文本") { // dosomething } else if(msgType = "图片") { // doshomething } else if(msgType = "视频") { // doshomething } else { // doshom...
Nginx 原理和架构
Nginx 是一个免费的,开源的,高性能的 HTTP 服务器和反向代理,以及 IMAP / POP3 代理服务器。Nginx 以其高性能,稳定性,丰富的功能,简单的配置和低资源消耗而闻名。 Nginx 的整体架构 Nginx 里有一个 master 进程和多个 worker 进程。master 进程并不处理网络请求,主要负责调度工作进程:加载配置、启动工作进程及非停升级。worker 进程负责处...
YouTube排名第一的励志英文演讲《Dream(梦想)》
Idon’t know what that dream is that you have, I don't care how disappointing it might have been as you've been working toward that dream,but that dream that you’re holding in your mind, that it’s po...
“狗屁不通文章生成器”登顶GitHub热榜,分分钟写出万字形式主义大作
一、垃圾文字生成器介绍 最近在浏览GitHub的时候,发现了这样一个骨骼清奇的雷人项目,而且热度还特别高。 项目中文名:狗屁不通文章生成器 项目英文名:BullshitGenerator 根据作者的介绍,他是偶尔需要一些中文文字用于GUI开发时测试文本渲染,因此开发了这个废话生成器。但由于生成的废话实在是太过富于哲理,所以最近已经被小伙伴们给玩坏了。 他的文风可能是这样的: 你发现,...
程序员:我终于知道post和get的区别
是一个老生常谈的话题,然而随着不断的学习,对于以前的认识有很多误区,所以还是需要不断地总结的,学而时习之,不亦说乎
相关热词 基于c#波形控件 c# 十进制转十六进制 对文件aes加密vc# c#读取栈中所有的值 c# rsa256加密 好 学c# 还是c++ c# 和java的差距 c# curl网络框架 c# https证书请求 c# 中崎
立即提问