opencv人脸检测返回值顺序问题

想问一下opencv自带的haar特征人脸检测,其返回的CvSeq中不同人的人脸矩形的顺序是什么?例如我想取出某一个人的矩形框是否有可能实现?

1个回答

Csdn user default icon
上传中...
上传图片
插入图片
抄袭、复制答案,以达到刷声望分或其他目的的行为,在CSDN问答是严格禁止的,一经发现立刻封号。是时候展现真正的技术了!
其他相关推荐
android Opencv 人脸检测
请问有大神做过opencv人脸识别的相关demo吗?找了好长时间都是人脸检测
基于opencv人脸检测制作简易版faceu
作为一名opencv小白入门,最近邂逅一段人脸检测代码,框出人脸和眼睛竟然觉得有点萌.最近在考虑做一个简易版faceu作为本科毕业设计.奈何自己相关知识薄弱,迫切得到相关指导性建议,譬如学习哪方面知识呢(控件等等)?包胜感激![图片说明](https://img-ask.csdn.net/upload/201711/30/1512012558_459463.png)
如何在Android中用OPENCV实现人脸检测,人脸识别等功能,如何实现,用什么方法?
如何在Android中用OPENCV实现人脸检测,人脸识别等功能,如何实现,用什么方法?
安卓opencv人脸检测无法运行
使用了opencv自带的.xml模型,但是无法正常运行,一旦运行程序就会闪退,且无报错,求救! 这个是启动模型 ``` public void initializeOpenCVDependencies() { try { // Copy the resource into a temp file so OpenCV can load it InputStream is = getResources().openRawResource(R.raw.lbpcascade_frontalface_improved); File cascadeDir = getDir("cascade", Context.MODE_PRIVATE); File mCascadeFile = new File(cascadeDir.getAbsoluteFile(), "lbpcascade_frontalface_improved.xml"); FileOutputStream os = new FileOutputStream(mCascadeFile); byte[] buffer = new byte[4096]; int bytesRead=0; while ((bytesRead = is.read(buffer)) != -1) { os.write(buffer, 0, bytesRead); } is.close(); os.close(); // Load the cascade classifier detectface = new CascadeClassifier(mCascadeFile.getAbsolutePath()); } catch (Exception e) { Log.e("OpenCVActivity", "Error loading cascade", e); ``` 这个是检测模块 ``` srcBitmap = BitmapFactory.decodeResource(getResources(), R.drawable.a); grayBitmap = Bitmap.createBitmap(srcBitmap.getWidth(), srcBitmap.getHeight(), Bitmap.Config.RGB_565); Utils.bitmapToMat(srcBitmap, rgbMat);//convert original bitmap to Mat, R G B. Imgproc.cvtColor(rgbMat, grayMat, Imgproc.COLOR_RGB2GRAY);//rgbMat to gray grayMat MatOfRect cars=new MatOfRect(); detectface.detectMultiScale(grayMat,car,1.1,3,0,new Size(50,50),new Size()); ```
opencv人脸检测成功,但是为什么人眼检测却出错?新人小白求解。
#include "opencv2/objdetect.hpp" #include "opencv2/videoio.hpp" #include "opencv2/highgui.hpp" #include "opencv2/imgproc.hpp" #include <iostream> #include <stdio.h> using namespace std; using namespace cv; /** Function Headers */ void detectAndDisplay( Mat frame ); /** Global variables */ String face_cascade_name = "haarcascade_frontalface_alt.xml"; String eyes_cascade_name = "haarcascade_eye_tree_eyeglasses.xml"; CascadeClassifier face_cascade; CascadeClassifier eyes_cascade; String window_name = "Capture - Face detection"; /** @function main */ int main( void ) { VideoCapture capture; Mat frame; //-- 1. Load the cascades if( !face_cascade.load( face_cascade_name ) ){ printf("--(!)Error loading face cascade\n"); return -1; }; if( !eyes_cascade.load( eyes_cascade_name ) ){ printf("--(!)Error loading eyes cascade\n"); return -1; }; //do{} while (!face_cascade.load(face_cascade_name)); //do{} while (!eyes_cascade.load(eyes_cascade_name)); //-- 2. Read the video stream capture.open(0); if ( ! capture.isOpened() ) { printf("--(!)Error opening video capture\n"); return -1; } while ( capture.read(frame) ) { if( frame.empty() ) { printf(" --(!) No captured frame -- Break!"); break; } //-- 3. Apply the classifier to the frame detectAndDisplay( frame ); //imshow("shexiangtou", frame); int c = waitKey(100); if( (char)c == 27 ) { break; } // escape } return 0; } /** @function detectAndDisplay */ void detectAndDisplay( Mat frame ) { std::vector<Rect> faces; Mat frame_gray; cvtColor( frame, frame_gray, COLOR_BGR2GRAY ); equalizeHist( frame_gray, frame_gray ); double t = 0; double t1; //-- Detect faces face_cascade.detectMultiScale( frame_gray, faces, 1.1, 2, 0|CASCADE_SCALE_IMAGE, Size(30, 30) ); //t1= (double)(getTickCount() - t); for ( size_t i = 0; i < faces.size(); i++ ) { Point center( faces[i].x + faces[i].width/2, faces[i].y + faces[i].height/2 ); ellipse( frame, center, Size( faces[i].width/2, faces[i].height/2 ), 0, 0, 360, Scalar( 255, 0, 255 ), 4, 8, 0 ); //rectangle(frame,Point(faces[i].x,faces[i].y),Point(faces[i].x+faces[i].width,faces[i].y+faces[i].height),Scalar(0,0,255),4,8,0); Mat faceROI = frame_gray( faces[i]); std::vector<Rect> eyes; //-- In each face, detect eyes eyes_cascade.detectMultiScale( frame_gray, eyes, 1.1, 2, 0 |CASCADE_SCALE_IMAGE, Size(30, 30) ); for ( size_t j = 0; j < eyes.size(); j++ ) { Point eye_center( faces[i].x + eyes[j].x + eyes[j].width/2, faces[i].y + eyes[j].y + eyes[j].height/2 ); int radius = cvRound( (eyes[j].width + eyes[j].height)*0.25 ); circle( frame, eye_center, radius, Scalar( 255, 0, 0 ), 4, 8, 0 ); } } //-- Show what you got imshow( window_name, frame ); }
python + opencv人脸识别然后进行比对如何实现?
python + opencv人脸识别然后进行比对如何实现? 现在能做的就是视屏流过来然后一帧一帧的判断进行人脸识别 能识别出来 但是如何把识别出来的人进行比对呢? 例如视频中出现张三、李四人脸识别捕捉到了脸 但是怎么进行比对脸是谁? 通过python实现 或是说python有什么库可以进行提取人脸特征然后保存
python+opencv人脸识别中的算法问题
python+opencv做的人脸识别,用的python开源库face_recognition,程序可以 跑的通,但是现在对于face_recognition里面的compare_faces算法不是很清楚 有哪位大神了解的吗?求教 参考:https://yq.aliyun.com/articles/460276
求助OpenCV人脸识别相关函数问题?
1.OpenCV关于特征脸方法中, 2.用Ptr<BasicFaceRecognizer> model = EigenFaceRecognizer::create();创建模型后, 定义完参数类型后,model->predict(testSample,predictedLabel,confidence);报错,显示没有与参数列表匹配的实例,这是为什么啊,如果用错了,那该用什么得到人脸识别结果的置信率呢?
进行嵌入式人脸检测的开发环境
请问有谁成功开发了基于2440的嵌入式人脸检测系统的,你用的linux系统哪个版本,交叉编译工具选用哪个版本,qte选用哪个版本,opencv选用哪个版本
用android studio opencv去检测图片中的三角形和矩形和圆形的数量的大体思路 ,多多指教?
用android studio opencv去检测图片中的三角形和矩形和圆形的数量的大体思路 ,多多指教
Python OpenCV人脸识别错误待解
在编写人脸识别的时候(代码如下): ``` import cv2 import numpy as np cascPath = "C:\opencv\sources\data\haarcascades\haarcascade_frontalface_alt2.xml" faceCascade = cv2.CascadeClassifier(cascPath) video_capture = cv2.VideoCapture(0) while True: ret, frame = video_capture.read() gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) faces = faceCascade.detectMultiScale( gray, scaleFactor=1.1, minNeighbors=10, #Adjust accuracy minSize=(50, 50), flags=cv2.CASCADE_SCALE_IMAGE ) for (x, y, w, h) in faces: cv2.rectangle(frame, (x, y), (x+w, y+h), (255, 255, 255), 2) cv2.imshow('Video', frame) if cv2.waitKey(1) & 0xFF == ord('q'): break if cv2.waitKey(1) & 0xFF == ord('s'): cv2.imwrite('test1.png', frame) img = cv2.imread("test1.png") face = img[x:x+w,y:y+h] cv2.imshow('Face', face) cv2.imwrite("face_detected.png", face) images=[] images.append(cv2.imread("klp.jpg",cv2.IMREAD_GRAYSCALE)) images.append(cv2.imread("wh.jpg",cv2.IMREAD_GRAYSCALE)) images.append(cv2.imread("wk.jpg",cv2.IMREAD_GRAYSCALE)) Labels=[0,1,2] recognizer = cv2.face.LBPHFaceRecognizer_create() recognizer.train(images, np.array(Labels)) predict_image = cv2.imread("face_detected.png",cv2.IMREAD_GRAYSCALE) label,confidence= recognizer.predict(predict_image) print("Label=", label) print("Confidence=", confidence) video_capture.release() cv2.destroyAllWindows() ``` 出现了如下问题: ``` Exception has occurred: error OpenCV(4.1.0) C:\projects\opencv-python\opencv\modules\core\src\matrix.cpp:235: error: (-215:Assertion failed) s >= 0 in function 'cv::setSize' File "F:\learn_python\Models\DetectFace&Recognize.py", line 41, in <module> recognizer.train(images, np.array(Labels)) ```
基于Python-opencv的人脸识别检测
1.人脸识别检测已经做出来了,现在需要多加一个功能,就是在人脸定位了之后,要对人脸进行覆盖,就是用图片把人脸覆盖。这个功能我不会,求各位大神帮一下子。 我的代码如下: import cv2 face_cascade = cv2.CascadeClassifier('E:\openCV\opencv\sources/data/haarcascades/haarcascade_frontalface_alt2.xml') cap = cv2.VideoCapture(0) while True: ret,img = cap.read() gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray, 1.3, 5) for (x,y,w,h) in faces: cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2) cv2.imshow('img',img) if cv2.waitKey(1) &0xFF == ord('q'): break cap.release() cv2.destroyAllWindows()
opencv利用haar特征检测人脸
opencv利用haar特征检测人脸的过程中遇到很多问题,所以想大牛们请教每个窗口的特征如何计算?按比例缩放的窗口特征数是一样的吗?
新人求助,基于opencv和qt的人脸检测中遇到的问题
刚刚开始学习这方面的内容,构建好编译环境,已经能调用摄像头拍照,但无法进行检测,该如何检测,谢谢!
怎样实现c++利用opencv实现人脸检测与识别
就是指通过摄像头保存识别的人脸,再次识别时如果被识别的人是已经添加图片的,就把他的名字显示出来,如果没有就将人脸保存。求大神,提前谢谢。
opencv下的人脸检测总是无法加载级联分类器文件
代码本身没有错,debug下无法加载级联分类器文件,release下读不到图片,配置应该没有问题 求问,谢谢! #include "opencv2/core/core.hpp" #include "opencv2/objdetect/objdetect.hpp" #include "opencv2/highgui/highgui.hpp" #include "opencv2/imgproc/imgproc.hpp" #include <iostream> #include <stdio.h> using namespace std; using namespace cv; string face_cascade_name = "E:\\opencv\\sources\\data\\haarcascades\\haarcascade_frontalface_alt.xml"; //string face_cascade_name = "haarcascade_frontalface_alt.xml"; CascadeClassifier face_cascade; string window_name = "人脸识别"; void detectAndDisplay( Mat frame ); int main( int argc, char** argv ){ Mat image; //image = imread( argv[1]); image=imread("F:\\01.jpg"); if( !image.data ){ printf("[error] 没有图片\n"); return -1; } imshow("face",image); cout<<image.rows<<","<<image.cols<<endl; if( !face_cascade.load( face_cascade_name ) ){ printf("[error] 无法加载级联分类器文件!\n"); return -1; } detectAndDisplay(image); waitKey(0); } void detectAndDisplay( Mat frame ){ std::vector<Rect> faces; Mat frame_gray; cvtColor( frame, frame_gray, CV_BGR2GRAY ); equalizeHist( frame_gray, frame_gray ); face_cascade.detectMultiScale( frame_gray, faces, 1.1, 2, 0|CV_HAAR_SCALE_IMAGE, Size(30, 30) ); cout<<faces.size()<<endl; for( int i = 0; i < faces.size(); i++ ){ Point center( faces[i].x + faces[i].width*0.5, faces[i].y + faces[i].height*0.5 ); ellipse( frame, center, Size( faces[i].width*0.5, faces[i].height*0.5), 0, 0, 360, Scalar( 255, 0, 255 ), 4, 8, 0 ); } imshow( window_name, frame ); }
利用opencv实现人脸识别
目前本人已实现实时人脸检测,但怎样进一步完成特征采集存入数据库,并将检测到的人脸与数据库中的比对却没有头绪。求助!!!
OpenCV PCA人脸识别时欧氏距离的问题
我用PCA+SVM方式对ORL人脸库进行人脸识别,使用Opencv的PCA库进行降维及特征提取,提取后的特征用于SVM训练,如果每人用两个图进行学习,最终测试样本的识别率能到85%+。 但是我如果用测试样本的特征向量和训练样本的特征向量进行欧式距离(NORM_L2)的计算,计算结果十分没有规律,不管是不是同一个人的特征,距离从一千多到四千多的都有。这种情况十分不合理呀,opencv还有个基于PCA样本距离的特征脸识别库不就是用L2距离进行比较来进行识别的吗?鉴于此我又实验了一下使用opencv的特征脸识别库EigenFaceRecognizer进行人脸识别,同样的样本划分,但是不自己写特征提取代码,直接输入原始图片,因为特提取的工作是特征脸库自己做的,识别率也能到80%+。 总结起来问题就是,我用PCA提取的特征进行SVM人脸识别,效果还可以,但是直接用测试样本的特征值和训练样本的特征值进行距离比较,却并不能得出同一人的样本距离会比较近,不同人的会比较远的结果,和特征脸识别的工作原理不符。不知是哪里有问题,求解!
如何让opencv中的SVM返回值为概率而不是1,-1之类的标签
如何让opencv中的SVM返回值:svm.predict(testFeatureMat)为概率而不是1,-1之类的标签。需要改什么参数?谢谢。
爬虫福利二 之 妹子图网MM批量下载
爬虫福利一:27报网MM批量下载    点击 看了本文,相信大家对爬虫一定会产生强烈的兴趣,激励自己去学习爬虫,在这里提前祝:大家学有所成! 目标网站:妹子图网 环境:Python3.x 相关第三方模块:requests、beautifulsoup4 Re:各位在测试时只需要将代码里的变量 path 指定为你当前系统要保存的路径,使用 python xxx.py 或IDE运行即可。
Java学习的正确打开方式
在博主认为,对于入门级学习java的最佳学习方法莫过于视频+博客+书籍+总结,前三者博主将淋漓尽致地挥毫于这篇博客文章中,至于总结在于个人,实际上越到后面你会发现学习的最好方式就是阅读参考官方文档其次就是国内的书籍,博客次之,这又是一个层次了,这里暂时不提后面再谈。博主将为各位入门java保驾护航,各位只管冲鸭!!!上天是公平的,只要不辜负时间,时间自然不会辜负你。 何谓学习?博主所理解的学习,它
程序员必须掌握的核心算法有哪些?
由于我之前一直强调数据结构以及算法学习的重要性,所以就有一些读者经常问我,数据结构与算法应该要学习到哪个程度呢?,说实话,这个问题我不知道要怎么回答你,主要取决于你想学习到哪些程度,不过针对这个问题,我稍微总结一下我学过的算法知识点,以及我觉得值得学习的算法。这些算法与数据结构的学习大多数是零散的,并没有一本把他们全部覆盖的书籍。下面是我觉得值得学习的一些算法以及数据结构,当然,我也会整理一些看过
大学四年自学走来,这些私藏的实用工具/学习网站我贡献出来了
大学四年,看课本是不可能一直看课本的了,对于学习,特别是自学,善于搜索网上的一些资源来辅助,还是非常有必要的,下面我就把这几年私藏的各种资源,网站贡献出来给你们。主要有:电子书搜索、实用工具、在线视频学习网站、非视频学习网站、软件下载、面试/求职必备网站。 注意:文中提到的所有资源,文末我都给你整理好了,你们只管拿去,如果觉得不错,转发、分享就是最大的支持了。 一、PDF搜索网站推荐 对于大部
linux系列之常用运维命令整理笔录
本博客记录工作中需要的linux运维命令,大学时候开始接触linux,会一些基本操作,可是都没有整理起来,加上是做开发,不做运维,有些命令忘记了,所以现在整理成博客,当然vi,文件操作等就不介绍了,慢慢积累一些其它拓展的命令,博客不定时更新 顺便拉下票,我在参加csdn博客之星竞选,欢迎投票支持,每个QQ或者微信每天都可以投5票,扫二维码即可,http://m234140.nofollow.ax.
比特币原理详解
一、什么是比特币 比特币是一种电子货币,是一种基于密码学的货币,在2008年11月1日由中本聪发表比特币白皮书,文中提出了一种去中心化的电子记账系统,我们平时的电子现金是银行来记账,因为银行的背后是国家信用。去中心化电子记账系统是参与者共同记账。比特币可以防止主权危机、信用风险。其好处不多做赘述,这一层面介绍的文章很多,本文主要从更深层的技术原理角度进行介绍。 二、问题引入  假设现有4个人
程序员接私活怎样防止做完了不给钱?
首先跟大家说明一点,我们做 IT 类的外包开发,是非标品开发,所以很有可能在开发过程中会有这样那样的需求修改,而这种需求修改很容易造成扯皮,进而影响到费用支付,甚至出现做完了项目收不到钱的情况。 那么,怎么保证自己的薪酬安全呢? 我们在开工前,一定要做好一些证据方面的准备(也就是“讨薪”的理论依据),这其中最重要的就是需求文档和验收标准。一定要让需求方提供这两个文档资料作为开发的基础。之后开发
网页实现一个简单的音乐播放器(大佬别看。(⊙﹏⊙))
今天闲着无事,就想写点东西。然后听了下歌,就打算写个播放器。 于是乎用h5 audio的加上js简单的播放器完工了。 欢迎 改进 留言。 演示地点跳到演示地点 html代码如下`&lt;!DOCTYPE html&gt; &lt;html&gt; &lt;head&gt; &lt;title&gt;music&lt;/title&gt; &lt;meta charset="utf-8"&gt
Python十大装B语法
Python 是一种代表简单思想的语言,其语法相对简单,很容易上手。不过,如果就此小视 Python 语法的精妙和深邃,那就大错特错了。本文精心筛选了最能展现 Python 语法之精妙的十个知识点,并附上详细的实例代码。如能在实战中融会贯通、灵活使用,必将使代码更为精炼、高效,同时也会极大提升代码B格,使之看上去更老练,读起来更优雅。 1. for - else 什么?不是 if 和 else 才
数据库优化 - SQL优化
前面一篇文章从实例的角度进行数据库优化,通过配置一些参数让数据库性能达到最优。但是一些“不好”的SQL也会导致数据库查询变慢,影响业务流程。本文从SQL角度进行数据库优化,提升SQL运行效率。 判断问题SQL 判断SQL是否有问题时可以通过两个表象进行判断: 系统级别表象 CPU消耗严重 IO等待严重 页面响应时间过长
2019年11月中国大陆编程语言排行榜
2019年11月2日,我统计了某招聘网站,获得有效程序员招聘数据9万条。针对招聘信息,提取编程语言关键字,并统计如下: 编程语言比例 rank pl_ percentage 1 java 33.62% 2 c/c++ 16.42% 3 c_sharp 12.82% 4 javascript 12.31% 5 python 7.93% 6 go 7.25% 7
通俗易懂地给女朋友讲:线程池的内部原理
餐厅的约会 餐盘在灯光的照耀下格外晶莹洁白,女朋友拿起红酒杯轻轻地抿了一小口,对我说:“经常听你说线程池,到底线程池到底是个什么原理?”我楞了一下,心里想女朋友今天是怎么了,怎么突然问出这么专业的问题,但做为一个专业人士在女朋友面前也不能露怯啊,想了一下便说:“我先给你讲讲我前同事老王的故事吧!” 大龄程序员老王 老王是一个已经北漂十多年的程序员,岁数大了,加班加不动了,升迁也无望,于是拿着手里
经典算法(5)杨辉三角
写在前面: 我是 扬帆向海,这个昵称来源于我的名字以及女朋友的名字。我热爱技术、热爱开源、热爱编程。技术是开源的、知识是共享的。 这博客是对自己学习的一点点总结及记录,如果您对 Java、算法 感兴趣,可以关注我的动态,我们一起学习。 用知识改变命运,让我们的家人过上更好的生活。 目录一、杨辉三角的介绍二、杨辉三角的算法思想三、代码实现1.第一种写法2.第二种写法 一、杨辉三角的介绍 百度
腾讯算法面试题:64匹马8个跑道需要多少轮才能选出最快的四匹?
昨天,有网友私信我,说去阿里面试,彻底的被打击到了。问了为什么网上大量使用ThreadLocal的源码都会加上private static?他被难住了,因为他从来都没有考虑过这个问题。无独有偶,今天笔者又发现有网友吐槽了一道腾讯的面试题,我们一起来看看。 腾讯算法面试题:64匹马8个跑道需要多少轮才能选出最快的四匹? 在互联网职场论坛,一名程序员发帖求助到。二面腾讯,其中一个算法题:64匹
面试官:你连RESTful都不知道我怎么敢要你?
面试官:了解RESTful吗? 我:听说过。 面试官:那什么是RESTful? 我:就是用起来很规范,挺好的 面试官:是RESTful挺好的,还是自我感觉挺好的 我:都挺好的。 面试官:… 把门关上。 我:… 要干嘛?先关上再说。 面试官:我说出去把门关上。 我:what ?,夺门而去 文章目录01 前言02 RESTful的来源03 RESTful6大原则1. C-S架构2. 无状态3.统一的接
为啥国人偏爱Mybatis,而老外喜欢Hibernate/JPA呢?
关于SQL和ORM的争论,永远都不会终止,我也一直在思考这个问题。昨天又跟群里的小伙伴进行了一番讨论,感触还是有一些,于是就有了今天这篇文。 声明:本文不会下关于Mybatis和JPA两个持久层框架哪个更好这样的结论。只是摆事实,讲道理,所以,请各位看官勿喷。 一、事件起因 关于Mybatis和JPA孰优孰劣的问题,争论已经很多年了。一直也没有结论,毕竟每个人的喜好和习惯是大不相同的。我也看
SQL-小白最佳入门sql查询一
一 说明 如果是初学者,建议去网上寻找安装Mysql的文章安装,以及使用navicat连接数据库,以后的示例基本是使用mysql数据库管理系统; 二 准备前提 需要建立一张学生表,列分别是id,名称,年龄,学生信息;本示例中文章篇幅原因SQL注释略; 建表语句: CREATE TABLE `student` ( `id` int(11) NOT NULL AUTO_INCREMENT, `
项目中的if else太多了,该怎么重构?
介绍 最近跟着公司的大佬开发了一款IM系统,类似QQ和微信哈,就是聊天软件。我们有一部分业务逻辑是这样的 if (msgType = "文本") { // dosomething } else if(msgType = "图片") { // doshomething } else if(msgType = "视频") { // doshomething } else { // dosho
【图解经典算法题】如何用一行代码解决约瑟夫环问题
约瑟夫环问题算是很经典的题了,估计大家都听说过,然后我就在一次笔试中遇到了,下面我就用 3 种方法来详细讲解一下这道题,最后一种方法学了之后保证让你可以让你装逼。 问题描述:编号为 1-N 的 N 个士兵围坐在一起形成一个圆圈,从编号为 1 的士兵开始依次报数(1,2,3…这样依次报),数到 m 的 士兵会被杀死出列,之后的士兵再从 1 开始报数。直到最后剩下一士兵,求这个士兵的编号。 1、方
致 Python 初学者
文章目录1. 前言2. 明确学习目标,不急于求成,不好高骛远3. 在开始学习 Python 之前,你需要做一些准备2.1 Python 的各种发行版2.2 安装 Python2.3 选择一款趁手的开发工具3. 习惯使用IDLE,这是学习python最好的方式4. 严格遵从编码规范5. 代码的运行、调试5. 模块管理5.1 同时安装了py2/py35.2 使用Anaconda,或者通过IDE来安装模
“狗屁不通文章生成器”登顶GitHub热榜,分分钟写出万字形式主义大作
一、垃圾文字生成器介绍 最近在浏览GitHub的时候,发现了这样一个骨骼清奇的雷人项目,而且热度还特别高。 项目中文名:狗屁不通文章生成器 项目英文名:BullshitGenerator 根据作者的介绍,他是偶尔需要一些中文文字用于GUI开发时测试文本渲染,因此开发了这个废话生成器。但由于生成的废话实在是太过富于哲理,所以最近已经被小伙伴们给玩坏了。 他的文风可能是这样的: 你发现,
程序员:我终于知道post和get的区别
IT界知名的程序员曾说:对于那些月薪三万以下,自称IT工程师的码农们,其实我们从来没有把他们归为我们IT工程师的队伍。他们虽然总是以IT工程师自居,但只是他们一厢情愿罢了。 此话一出,不知激起了多少(码农)程序员的愤怒,却又无可奈何,于是码农问程序员。 码农:你知道get和post请求到底有什么区别? 程序员:你看这篇就知道了。 码农:你月薪三万了? 程序员:嗯。 码农:你是怎么做到的? 程序员:
《程序人生》系列-这个程序员只用了20行代码就拿了冠军
你知道的越多,你不知道的越多 点赞再看,养成习惯GitHub上已经开源https://github.com/JavaFamily,有一线大厂面试点脑图,欢迎Star和完善 前言 这一期不算《吊打面试官》系列的,所有没前言我直接开始。 絮叨 本来应该是没有这期的,看过我上期的小伙伴应该是知道的嘛,双十一比较忙嘛,要值班又要去帮忙拍摄年会的视频素材,还得搞个程序员一天的Vlog,还要写BU
加快推动区块链技术和产业创新发展,2019可信区块链峰会在京召开
      11月8日,由中国信息通信研究院、中国通信标准化协会、中国互联网协会、可信区块链推进计划联合主办,科技行者协办的2019可信区块链峰会将在北京悠唐皇冠假日酒店开幕。   区块链技术被认为是继蒸汽机、电力、互联网之后,下一代颠覆性的核心技术。如果说蒸汽机释放了人类的生产力,电力解决了人类基本的生活需求,互联网彻底改变了信息传递的方式,区块链作为构造信任的技术有重要的价值。   1
程序员把地府后台管理系统做出来了,还有3.0版本!12月7号最新消息:已在开发中有github地址
第一幕:缘起 听说阎王爷要做个生死簿后台管理系统,我们派去了一个程序员…… 996程序员做的梦: 第一场:团队招募 为了应对地府管理危机,阎王打算找“人”开发一套地府后台管理系统,于是就在地府总经办群中发了项目需求。 话说还是中国电信的信号好,地府都是满格,哈哈!!! 经常会有外行朋友问:看某网站做的不错,功能也简单,你帮忙做一下? 而这次,面对这样的需求,这个程序员
网易云6亿用户音乐推荐算法
网易云音乐是音乐爱好者的集聚地,云音乐推荐系统致力于通过 AI 算法的落地,实现用户千人千面的个性化推荐,为用户带来不一样的听歌体验。 本次分享重点介绍 AI 算法在音乐推荐中的应用实践,以及在算法落地过程中遇到的挑战和解决方案。 将从如下两个部分展开: AI 算法在音乐推荐中的应用 音乐场景下的 AI 思考 从 2013 年 4 月正式上线至今,网易云音乐平台持续提供着:乐屏社区、UGC
【技巧总结】位运算装逼指南
位算法的效率有多快我就不说,不信你可以去用 10 亿个数据模拟一下,今天给大家讲一讲位运算的一些经典例子。不过,最重要的不是看懂了这些例子就好,而是要在以后多去运用位运算这些技巧,当然,采用位运算,也是可以装逼的,不信,你往下看。我会从最简单的讲起,一道比一道难度递增,不过居然是讲技巧,那么也不会太难,相信你分分钟看懂。 判断奇偶数 判断一个数是基于还是偶数,相信很多人都做过,一般的做法的代码如下
日均350000亿接入量,腾讯TubeMQ性能超过Kafka
整理 | 夕颜出品 | AI科技大本营(ID:rgznai100) 【导读】近日,腾讯开源动作不断,相继开源了分布式消息中间件TubeMQ,基于最主流的 OpenJDK8开发的
8年经验面试官详解 Java 面试秘诀
    作者 | 胡书敏 责编 | 刘静 出品 | CSDN(ID:CSDNnews) 本人目前在一家知名外企担任架构师,而且最近八年来,在多家外企和互联网公司担任Java技术面试官,前后累计面试了有两三百位候选人。在本文里,就将结合本人的面试经验,针对Java初学者、Java初级开发和Java开发,给出若干准备简历和准备面试的建议。   Java程序员准备和投递简历的实
面试官如何考察你的思维方式?
1.两种思维方式在求职面试中,经常会考察这种问题:北京有多少量特斯拉汽车? 某胡同口的煎饼摊一年能卖出多少个煎饼? 深圳有多少个产品经理? 一辆公交车里能装下多少个乒乓球? 一
相关热词 c# 图片上传 c# gdi 占用内存 c#中遍历字典 c#控制台模拟dos c# 斜率 最小二乘法 c#进程延迟 c# mysql完整项目 c# grid 总行数 c# web浏览器插件 c# xml 生成xsd
立即提问