theano+keras,代码运行的时候提示too few arguments,求大佬带

#parsing command line arguments
import argparse
#decoding camera images
import base64
#for frametimestamp saving
from datetime import datetime
#reading and writing files
import os
#high level file operations
import shutil
#matrix math
import numpy as np
#real-time server
import socketio
#concurrent networking
import eventlet
#web server gateway interface
import eventlet.wsgi
#image manipulation
from PIL import Image
#web framework
from flask import Flask
#input output
from io import BytesIO

#load our saved model
from keras.models import load_model

#helper class
import utils

#initialize our server
sio = socketio.Server()
#our flask (web) app
app = Flask(__name__)
#init our model and image array as empty
model = None
prev_image_array = None

#set min/max speed for our autonomous car
MAX_SPEED = 25
MIN_SPEED = 10

#and a speed limit
speed_limit = MAX_SPEED

#registering event handler for the server
@sio.on('telemetry')
def telemetry(sid, data):
if data:
# The current steering angle of the car
steering_angle = float(data["steering_angle"])
# The current throttle of the car, how hard to push peddle
throttle = float(data["throttle"])
# The current speed of the car
speed = float(data["speed"])
# The current image from the center camera of the car
image = Image.open(BytesIO(base64.b64decode(data["image"])))
try:
image = np.asarray(image) # from PIL image to numpy array
image = utils.preprocess(image) # apply the preprocessing
image = np.array([image]) # the model expects 4D array

        # predict the steering angle for the image
        steering_angle = float(model.predict(image, batch_size=1))
        # lower the throttle as the speed increases
        # if the speed is above the current speed limit, we are on a downhill.
        # make sure we slow down first and then go back to the original max speed.
        global speed_limit
        if speed > speed_limit:
            speed_limit = MIN_SPEED  # slow down
        else:
            speed_limit = MAX_SPEED
        throttle = 1.0 - steering_angle**2 - (speed/speed_limit)**2

        print('{} {} {}'.format(steering_angle, throttle, speed))
        send_control(steering_angle, throttle)
    except Exception as e:
        print(e)

    # save frame
    if args.image_folder != '':
        timestamp = datetime.utcnow().strftime('%Y_%m_%d_%H_%M_%S_%f')[:-3]
        image_filename = os.path.join(args.image_folder, timestamp)
        image.save('{}.jpg'.format(image_filename))
else:

    sio.emit('manual', data={}, skip_sid=True)

@sio.on('connect')
def connect(sid, environ):
print("connect ", sid)
send_control(0, 0)

def send_control(steering_angle, throttle):
sio.emit(
"steer",
data={
'steering_angle': steering_angle.__str__(),
'throttle': throttle.__str__()
},
skip_sid=True)

if name == '__main__':
parser = argparse.ArgumentParser(description='Remote Driving')
parser.add_argument(
'model',
type=str,
help='Path to model h5 file. Model should be on the same path.'
)
parser.add_argument(
'image_folder',
type=str,
nargs='?',
default='',
help='Path to image folder. This is where the images from the run will be saved.'
)
args = parser.parse_args()

#load model
model = load_model(args.model)

if args.image_folder != '':
    print("Creating image folder at {}".format(args.image_folder))
    if not os.path.exists(args.image_folder):
        os.makedirs(args.image_folder)
    else:
        shutil.rmtree(args.image_folder)
        os.makedirs(args.image_folder)
    print("RECORDING THIS RUN ...")
else:
    print("NOT RECORDING THIS RUN ...")

# wrap Flask application with engineio's middleware
app = socketio.Middleware(sio, app)

# deploy as an eventlet WSGI server
eventlet.wsgi.server(eventlet.listen(('', 4567)), app)

1个回答

Csdn user default icon
上传中...
上传图片
插入图片
抄袭、复制答案,以达到刷声望分或其他目的的行为,在CSDN问答是严格禁止的,一经发现立刻封号。是时候展现真正的技术了!
立即提问