?OVO)(^)[??] 2020-09-05 17:33 采纳率: 0%
浏览 144
已结题

将tensorflow 1的源代码转化成tensorflow 2

原地址 https://blog.csdn.net/baixiaozhe/article/details/54409966

使用keras

  • 写回答

3条回答 默认 最新

  • PythonJavaC++go 2020-09-07 12:35
    关注
    import numpy as np
    from sklearn import preprocessing
    import tensorflow.compat.v1 as tf
    from sklearn.datasets import load_boston
    from sklearn.model_selection import train_test_split
    
    # 波士顿房价数据
    boston = load_boston()
    x = boston.data
    y = boston.target
    x_3 = x[:, 3:6]
    x = np.column_stack([x, x_3])  # 随意给x增加了3列,x变为16列,可以reshape为4*4矩阵了 没啥用,就是凑个正方形
    
    print('##################################################################')
    
    # 随机挑选
    train_x_disorder, test_x_disorder, train_y_disorder, test_y_disorder = train_test_split(x, y,
                                                                      train_size=0.8, random_state=33)
    # 数据标准化
    ss_x = preprocessing.StandardScaler()
    train_x_disorder = ss_x.fit_transform(train_x_disorder)
    test_x_disorder = ss_x.transform(test_x_disorder)
    
    ss_y = preprocessing.StandardScaler()
    train_y_disorder = ss_y.fit_transform(train_y_disorder.reshape(-1, 1))
    test_y_disorder = ss_y.transform(test_y_disorder.reshape(-1, 1))
    
    
    # 准确率计算
    # def compute_accuracy(v_xs, v_ys):
    #     global prediction
    #     y_pre = sess.run(prediction, feed_dict={xs: v_xs, keep_prob: 1})
    #     correct_prediction = tf.equal(tf.argmax(y_pre,1), tf.argmax(v_ys,1))
    #     accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    #     result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys, keep_prob: 1})
    #     return result
    
    # 变厚矩阵
    def weight_variable(shape):
       initial = tf.truncated_normal(shape, stddev=0.1)
       return tf.Variable(initial)
    
    
    # 偏置
    def bias_variable(shape):
       initial = tf.constant(0.1, shape=shape)
       return tf.Variable(initial)
    
    
    # 卷积处理 变厚过程
    def conv2d(x, W):
       # stride [1, x_movement, y_movement, 1] x_movement、y_movement就是步长
       # Must have strides[0] = strides[3] = 1 padding='SAME'表示卷积后长宽不变
       return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
    
    tf.disable_v2_behavior()
    # pool 长宽缩小一倍
    def max_pool_2x2(x):
       # stride [1, x_movement, y_movement, 1]
       return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
    
    
    # define placeholder for inputs to network
    xs = tf.placeholder(tf.float32, [None, 16])  # 原始数据的维度:16
    ys = tf.placeholder(tf.float32, [None, 1])  # 输出数据为维度:1
    
    keep_prob = tf.placeholder(tf.float32)  # dropout的比例
    
    x_image = tf.reshape(xs, [-1, 4, 4, 1])  # 原始数据16变成二维图片4*4
    ## conv1 layer ##第一卷积层
    W_conv1 = weight_variable([2, 2, 1, 32])  # patch 2x2, in size 1, out size 32,每个像素变成32个像素,就是变厚的过程
    b_conv1 = bias_variable([32])
    h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)  # output size 2x2x32,长宽不变,高度为32的三维图像
    # h_pool1 = max_pool_2x2(h_conv1)     # output size 2x2x32 长宽缩小一倍
    
    

    ## conv2 layer ##第二卷积层

    W_conv2 = weight_variable([2, 2, 32, 64])  # patch 2x2, in size 32, out size 64
    b_conv2 = bias_variable([64])
    h_conv2 = tf.nn.relu(conv2d(h_conv1, W_conv2) + b_conv2)  # 输入第一层的处理结果 输出shape 4*4*64
    
    ## fc1 layer ##  full connection 全连接层
    W_fc1 = weight_variable([4 * 4 * 64, 512])  # 4x4 ,高度为64的三维图片,然后把它拉成512长的一维数组
    b_fc1 = bias_variable([512])
    
    h_pool2_flat = tf.reshape(h_conv2, [-1, 4 * 4 * 64])  # 把4*4,高度为64的三维图片拉成一维数组 降维处理
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)  # 把数组中扔掉比例为keep_prob的元素
    ## fc2 layer ## full connection
    W_fc2 = weight_variable([512, 1])  # 512长的一维数组压缩为长度为1的数组
    b_fc2 = bias_variable([1])  # 偏置
    # 最后的计算结果
    prediction = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
    # prediction = tf.nn.relu(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
    # 计算 predition与y 差距 所用方法很简单就是用 suare()平方,sum()求和,mean()平均值
    cross_entropy = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction), reduction_indices=[1]))
    # 0.01学习效率,minimize(loss)减小loss误差
    train_step = tf.train.AdamOptimizer(0.01).minimize(cross_entropy)
    
    sess = tf.Session()
    # important step
    # tf.initialize_all_variables() no long valid from
    # 2017-03-02 if using tensorflow >= 0.12
    sess.run(tf.global_variables_initializer())
    # 训练500次
    for i in range(3):
       sess.run(train_step, feed_dict={xs: train_x_disorder, ys: train_y_disorder, keep_prob: 0.7})
       print(i, '误差=', sess.run(cross_entropy, feed_dict={xs: train_x_disorder, ys: train_y_disorder, keep_prob: 1.0}))  # 输出loss值
    
    # 可视化
    prediction_value = sess.run(prediction, feed_dict={xs: test_x_disorder, ys: test_y_disorder, keep_prob: 1.0})
    ###画图###########################################################################
    import matplotlib.pyplot as plt
    
    fig = plt.figure(figsize=(20, 3))  # dpi参数指定绘图对象的分辨率,即每英寸多少个像素,缺省值为80
    axes = fig.add_subplot(1, 1, 1)
    line1, = axes.plot(range(len(prediction_value)), prediction_value, 'b--', label='cnn', linewidth=2)
    # line2,=axes.plot(range(len(gbr_pridict)), gbr_pridict, 'r--',label='优选参数')
    line3, = axes.plot(range(len(test_y_disorder)), test_y_disorder, 'g', label='实际')
    
    axes.grid()
    fig.tight_layout()
    # plt.legend(handles=[line1, line2,line3])
    plt.legend(handles=[line1, line3])
    plt.title('卷积神经网络')
    plt.show()
    
    


    评论

报告相同问题?