使用Spark 的 hivecontext.sql查询,如何批量执行语句

前台会传来一条select语句,使用hivecontext.sql去执行。但用户写表的时候,可能不会指定数据库名,所以是想先执行一下 use dbName,再执行查询语句,保证能够找到这站表。那么在Scala程序中如何去实现呢??

Csdn user default icon
上传中...
上传图片
插入图片
抄袭、复制答案,以达到刷声望分或其他目的的行为,在CSDN问答是严格禁止的,一经发现立刻封号。是时候展现真正的技术了!
其他相关推荐
spark通过jdbc读取hive的表报错,我是在zeppelin里运行的

## 代码: import org.apache.spark.sql.hive.HiveContext val pro = new java.util.Properties() pro.setProperty("user", "****") pro.setProperty("password", "*****") val driverName = "org.apache.hadoop.hive.jdbc.HiveDriver"; Class.forName(driverName); val hiveContext = new HiveContext(sc) val hivetable = hiveContext.read.jdbc("jdbc:hive://*****/default", "*****", pro); ## 错误: import org.apache.spark.sql.hive.HiveContext pro: java.util.Properties = {} res15: Object = null res16: Object = null driverName: String = org.apache.hadoop.hive.jdbc.HiveDriver res17: Class[_] = class org.apache.hadoop.hive.jdbc.HiveDriver warning: there was one deprecation warning; re-run with -deprecation for details hiveContext: org.apache.spark.sql.hive.HiveContext = org.apache.spark.sql.hive.HiveContext@14f9cc13 java.sql.SQLException: Method not supported at org.apache.hadoop.hive.jdbc.HiveResultSetMetaData.isSigned(Unknown Source) at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$.getSchema(JdbcUtils.scala:232) at org.apache.spark.sql.execution.datasources.jdbc.JDBCRDD$.resolveTable(JDBCRDD.scala:64) at org.apache.spark.sql.execution.datasources.jdbc.JDBCRelation.<init>(JDBCRelation.scala:113) at org.apache.spark.sql.execution.datasources.jdbc.JdbcRelationProvider.createRelation(JdbcRelationProvider.scala:45) at org.apache.spark.sql.execution.datasources.DataSource.resolveRelation(DataSource.scala:330) at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:152) at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:125) at org.apache.spark.sql.DataFrameReader.jdbc(DataFrameReader.scala:166) ... 46 elided

Error while instantiating 'org.apache.spark.sql.hive.HiveSessionState'

idea中使用spark-sql报错,事先说明一下,我已经将三个配置文件core-site.xml、hdfs-site.xml、hive-site.xml拷贝到resources下面,可以连接到metastore。我在网上看了很多解决方法,我都做了修改,但是都为生效。 我已经做过的事如下: ![图片说明](https://img-ask.csdn.net/upload/201908/09/1565356414_188554.png) ![图片说明](https://img-ask.csdn.net/upload/201908/09/1565356355_466558.png) ![图片说明](https://img-ask.csdn.net/upload/201908/09/1565356390_666077.png) ![图片说明](https://img-ask.csdn.net/upload/201908/09/1565356428_729364.png) ![图片说明](https://img-ask.csdn.net/upload/201908/09/1565356441_976555.png) 错误如下: ![图片说明](https://img-ask.csdn.net/upload/201908/09/1565356461_588231.png)

SparkSQL Group by 语句报错

跪求各位大神。 代码如下所示: val sqlContext = new org.apache.spark.sql.SQLContext(sc) import spark.implicits._ val testRDD = spark.sparkContext.textFile("hdfs://ip-172-31-26-254:9000/eth-data/done-eth-trx-5125092-5491171.csv"). filter(line=>line.split(",")(25)=="0xa74476443119a942de498590fe1f2454d7d4ac0d") val rdd = testRDD.map(line=>(line.split(",")(25),line.split(",")(15),line.split(",")(18).substring(0,10))) case class Row(fromadd: String, amount:Int, date:String) val rowRDD = rdd.map(p => Row(p._1,p._2.toInt,p._3)) val testDF=rowRDD.toDF() testDF.registerTempTable("test") #test 内容如下所示; | fromadd|amount| date| +--------------------+------+----------+ |0xa74476443119a94...| 28553|2018-02-20| |0xa74476443119a94...| 30764|2018-02-20| |0xa74476443119a94...| 32775|2018-02-20| |0xa74476443119a94...| 29439|2018-02-20| |0xa74476443119a94...| 35810|2018-02-20| |0xa74476443119a94...| 35810|2018-02-20| |0xa74476443119a94...| 35810|2018-02-20| |0xa74476443119a94...| 28926|2018-02-20| |0xa74476443119a94...| 36229|2018-02-20| |0xa74476443119a94...| 33235|2018-02-20| |0xa74476443119a94...| 34104|2018-02-20| |0xa74476443119a94...| 29425|2018-02-20| |0xa74476443119a94...| 29568|2018-02-20| |0xa74476443119a94...| 33473|2018-02-20| |0xa74476443119a94...| 31344|2018-02-20| |0xa74476443119a94...| 34399|2018-02-20| |0xa74476443119a94...| 34080|2018-02-20| |0xa74476443119a94...| 34080|2018-02-20| |0xa74476443119a94...| 27165|2018-02-20| |0xa74476443119a94...| 33512|2018-02-20| +--------------------+------+----------+ 运行SQL: val data=sqlContext.sql("select * from test where amount>27000").show() 语句ok. 但是运行: val res=sqlContext.sql("select count(amount) from test where group by date").show() 报错如下: org.apache.spark.SparkException: Job aborted due to stage failure: Task 55 in stage 5.0 failed 1 times, most recent failure: Lost task 55.0 in stage 5.0 (TID 82, localhost, executor driver): java.lang.ArrayIndexOutOfBoundsException: 25 at $anonfun$1.apply(<console>:27) at $anonfun$1.apply(<console>:27) at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:463) at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408) at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408) at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408) at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown Source) at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43) at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:395) at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:234) at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:228) at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:827) at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:827) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323) at org.apache.spark.rdd.RDD.iterator(RDD.scala:287) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87) at org.apache.spark.scheduler.Task.run(Task.scala:108) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:338) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748) Driver stacktrace: at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1517) at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1505) at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1504) at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48) at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1504) at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:814) at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:814) at scala.Option.foreach(Option.scala:257) at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:814) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1732) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1687) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1676) at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48) at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:630) at org.apache.spark.SparkContext.runJob(SparkContext.scala:2029) at org.apache.spark.SparkContext.runJob(SparkContext.scala:2050) at org.apache.spark.SparkContext.runJob(SparkContext.scala:2069) at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:336) at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:38) at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$collectFromPlan(Dataset.scala:2861) at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2150) at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2150) at org.apache.spark.sql.Dataset$$anonfun$55.apply(Dataset.scala:2842) at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:65) at org.apache.spark.sql.Dataset.withAction(Dataset.scala:2841) at org.apache.spark.sql.Dataset.head(Dataset.scala:2150) at org.apache.spark.sql.Dataset.take(Dataset.scala:2363) at org.apache.spark.sql.Dataset.showString(Dataset.scala:241) at org.apache.spark.sql.Dataset.show(Dataset.scala:637) at org.apache.spark.sql.Dataset.show(Dataset.scala:596) at org.apache.spark.sql.Dataset.show(Dataset.scala:605) ... 50 elided Caused by: java.lang.ArrayIndexOutOfBoundsException: 25 at $anonfun$1.apply(<console>:27) at $anonfun$1.apply(<console>:27) at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:463) at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408) at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408) at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408) at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown Source) at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43) at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:395) at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:234) at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:228) at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:827) at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:827) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323) at org.apache.spark.rdd.RDD.iterator(RDD.scala:287) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87) at org.apache.spark.scheduler.Task.run(Task.scala:108) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:338) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748) 感谢感谢

sparkSql使用insert、create table tablename as select 。。。会报一个错,查了很久都没有查到原因。

我在spark的bin下,使用spark-sql。 可以查阅hive库。 show databases; show tables; select * from tablename; drop table tablename; 但是一旦使用insert、create就会报错。 日志如下,有没有大牛答疑解惑呢? ``` > > > create table bak as select * from dm_bi_org_cfg; 18/10/20 15:31:53 ERROR Utils: Aborting task org.apache.hadoop.hive.ql.metadata.HiveException: java.lang.IllegalArgumentException: No enum constant org.apache.hadoop.io.SequenceFile.CompressionType.block at org.apache.hadoop.hive.ql.io.HiveFileFormatUtils.getHiveRecordWriter(HiveFileFormatUtils.java:249) at org.apache.spark.sql.hive.execution.HiveOutputWriter.<init>(HiveFileFormat.scala:123) at org.apache.spark.sql.hive.execution.HiveFileFormat$$anon$1.newInstance(HiveFileFormat.scala:103) at org.apache.spark.sql.execution.datasources.FileFormatWriter$SingleDirectoryWriteTask.newOutputWriter(FileFormatWriter.scala:305) at org.apache.spark.sql.execution.datasources.FileFormatWriter$SingleDirectoryWriteTask.execute(FileFormatWriter.scala:314) at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask$3.apply(FileFormatWriter.scala:258) at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask$3.apply(FileFormatWriter.scala:256) at org.apache.spark.util.Utils$.tryWithSafeFinallyAndFailureCallbacks(Utils.scala:1375) at org.apache.spark.sql.execution.datasources.FileFormatWriter$.org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask(FileFormatWriter.scala:261) at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1$$anonfun$apply$mcV$sp$1.apply(FileFormatWriter.scala:191) at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1$$anonfun$apply$mcV$sp$1.apply(FileFormatWriter.scala:190) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87) at org.apache.spark.scheduler.Task.run(Task.scala:108) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:335) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.Thread.run(Thread.java:748) Caused by: java.lang.IllegalArgumentException: No enum constant org.apache.hadoop.io.SequenceFile.CompressionType.block at java.lang.Enum.valueOf(Enum.java:238) at org.apache.hadoop.io.SequenceFile$CompressionType.valueOf(SequenceFile.java:220) at org.apache.hadoop.hive.ql.io.HiveFileFormatUtils.getHiveRecordWriter(HiveFileFormatUtils.java:242) ... 16 more 18/10/20 15:31:53 WARN FileOutputCommitter: Could not delete hdfs://master.datavip.ezhiyang.com:8020/user/hive/warehouse/bi_dm.db/bak/.hive-staging_hive_2018-10-20_15-31-53_518_4175343188146321007-1/-ext-10000/_temporary/0/_temporary/attempt_20181020153153_0003_m_000000_0 18/10/20 15:31:53 ERROR FileFormatWriter: Job job_20181020153153_0003 aborted. 18/10/20 15:31:53 ERROR Executor: Exception in task 0.0 in stage 3.0 (TID 3) org.apache.spark.SparkException: Task failed while writing rows at org.apache.spark.sql.execution.datasources.FileFormatWriter$.org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask(FileFormatWriter.scala:272) at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1$$anonfun$apply$mcV$sp$1.apply(FileFormatWriter.scala:191) at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1$$anonfun$apply$mcV$sp$1.apply(FileFormatWriter.scala:190) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87) at org.apache.spark.scheduler.Task.run(Task.scala:108) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:335) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.Thread.run(Thread.java:748) Caused by: org.apache.hadoop.hive.ql.metadata.HiveException: java.lang.IllegalArgumentException: No enum constant org.apache.hadoop.io.SequenceFile.CompressionType.block at org.apache.hadoop.hive.ql.io.HiveFileFormatUtils.getHiveRecordWriter(HiveFileFormatUtils.java:249) at org.apache.spark.sql.hive.execution.HiveOutputWriter.<init>(HiveFileFormat.scala:123) at org.apache.spark.sql.hive.execution.HiveFileFormat$$anon$1.newInstance(HiveFileFormat.scala:103) at org.apache.spark.sql.execution.datasources.FileFormatWriter$SingleDirectoryWriteTask.newOutputWriter(FileFormatWriter.scala:305) at org.apache.spark.sql.execution.datasources.FileFormatWriter$SingleDirectoryWriteTask.execute(FileFormatWriter.scala:314) at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask$3.apply(FileFormatWriter.scala:258) at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask$3.apply(FileFormatWriter.scala:256) at org.apache.spark.util.Utils$.tryWithSafeFinallyAndFailureCallbacks(Utils.scala:1375) at org.apache.spark.sql.execution.datasources.FileFormatWriter$.org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask(FileFormatWriter.scala:261) ... 8 more Caused by: java.lang.IllegalArgumentException: No enum constant org.apache.hadoop.io.SequenceFile.CompressionType.block at java.lang.Enum.valueOf(Enum.java:238) at org.apache.hadoop.io.SequenceFile$CompressionType.valueOf(SequenceFile.java:220) at org.apache.hadoop.hive.ql.io.HiveFileFormatUtils.getHiveRecordWriter(HiveFileFormatUtils.java:242) ... 16 more 18/10/20 15:31:53 WARN TaskSetManager: Lost task 0.0 in stage 3.0 (TID 3, localhost, executor driver): org.apache.spark.SparkException: Task failed while writing rows at org.apache.spark.sql.execution.datasources.FileFormatWriter$.org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask(FileFormatWriter.scala:272) at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1$$anonfun$apply$mcV$sp$1.apply(FileFormatWriter.scala:191) at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1$$anonfun$apply$mcV$sp$1.apply(FileFormatWriter.scala:190) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87) at org.apache.spark.scheduler.Task.run(Task.scala:108) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:335) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.Thread.run(Thread.java:748) Caused by: org.apache.hadoop.hive.ql.metadata.HiveException: java.lang.IllegalArgumentException: No enum constant org.apache.hadoop.io.SequenceFile.CompressionType.block at org.apache.hadoop.hive.ql.io.HiveFileFormatUtils.getHiveRecordWriter(HiveFileFormatUtils.java:249) at org.apache.spark.sql.hive.execution.HiveOutputWriter.<init>(HiveFileFormat.scala:123) at org.apache.spark.sql.hive.execution.HiveFileFormat$$anon$1.newInstance(HiveFileFormat.scala:103) at org.apache.spark.sql.execution.datasources.FileFormatWriter$SingleDirectoryWriteTask.newOutputWriter(FileFormatWriter.scala:305) at org.apache.spark.sql.execution.datasources.FileFormatWriter$SingleDirectoryWriteTask.execute(FileFormatWriter.scala:314) at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask$3.apply(FileFormatWriter.scala:258) at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask$3.apply(FileFormatWriter.scala:256) at org.apache.spark.util.Utils$.tryWithSafeFinallyAndFailureCallbacks(Utils.scala:1375) at org.apache.spark.sql.execution.datasources.FileFormatWriter$.org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask(FileFormatWriter.scala:261) ... 8 more Caused by: java.lang.IllegalArgumentException: No enum constant org.apache.hadoop.io.SequenceFile.CompressionType.block at java.lang.Enum.valueOf(Enum.java:238) at org.apache.hadoop.io.SequenceFile$CompressionType.valueOf(SequenceFile.java:220) at org.apache.hadoop.hive.ql.io.HiveFileFormatUtils.getHiveRecordWriter(HiveFileFormatUtils.java:242) ... 16 more 18/10/20 15:31:53 ERROR TaskSetManager: Task 0 in stage 3.0 failed 1 times; aborting job 18/10/20 15:31:53 ERROR FileFormatWriter: Aborting job null. org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 3.0 failed 1 times, most recent failure: Lost task 0.0 in stage 3.0 (TID 3, localhost, executor driver): org.apache.spark.SparkException: Task failed while writing rows at org.apache.spark.sql.execution.datasources.FileFormatWriter$.org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask(FileFormatWriter.scala:272) at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1$$anonfun$apply$mcV$sp$1.apply(FileFormatWriter.scala:191) at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1$$anonfun$apply$mcV$sp$1.apply(FileFormatWriter.scala:190) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87) at org.apache.spark.scheduler.Task.run(Task.scala:108) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:335) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.Thread.run(Thread.java:748) Caused by: org.apache.hadoop.hive.ql.metadata.HiveException: java.lang.IllegalArgumentException: No enum constant org.apache.hadoop.io.SequenceFile.CompressionType.block at org.apache.hadoop.hive.ql.io.HiveFileFormatUtils.getHiveRecordWriter(HiveFileFormatUtils.java:249) at org.apache.spark.sql.hive.execution.HiveOutputWriter.<init>(HiveFileFormat.scala:123) at org.apache.spark.sql.hive.execution.HiveFileFormat$$anon$1.newInstance(HiveFileFormat.scala:103) at org.apache.spark.sql.execution.datasources.FileFormatWriter$SingleDirectoryWriteTask.newOutputWriter(FileFormatWriter.scala:305) at org.apache.spark.sql.execution.datasources.FileFormatWriter$SingleDirectoryWriteTask.execute(FileFormatWriter.scala:314) at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask$3.apply(FileFormatWriter.scala:258) at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask$3.apply(FileFormatWriter.scala:256) at org.apache.spark.util.Utils$.tryWithSafeFinallyAndFailureCallbacks(Utils.scala:1375) at org.apache.spark.sql.execution.datasources.FileFormatWriter$.org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask(FileFormatWriter.scala:261) ... 8 more Caused by: java.lang.IllegalArgumentException: No enum constant org.apache.hadoop.io.SequenceFile.CompressionType.block at java.lang.Enum.valueOf(Enum.java:238) at org.apache.hadoop.io.SequenceFile$CompressionType.valueOf(SequenceFile.java:220) at org.apache.hadoop.hive.ql.io.HiveFileFormatUtils.getHiveRecordWriter(HiveFileFormatUtils.java:242) ... 16 more Driver stacktrace: at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1499) at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1487) at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1486) at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48) at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1486) at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:814) at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:814) at scala.Option.foreach(Option.scala:257) at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:814) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1714) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1669) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1658) at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48) at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:630) at org.apache.spark.SparkContext.runJob(SparkContext.scala:2022) at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1.apply$mcV$sp(FileFormatWriter.scala:188) at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1.apply(FileFormatWriter.scala:173) at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1.apply(FileFormatWriter.scala:173) at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:65) at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:173) at org.apache.spark.sql.hive.execution.InsertIntoHiveTable.run(InsertIntoHiveTable.scala:317) at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult$lzycompute(commands.scala:58) at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult(commands.scala:56) at org.apache.spark.sql.execution.command.ExecutedCommandExec.doExecute(commands.scala:74) at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:117) at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:117) at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:138) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:135) at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:116) at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:92) at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:92) at org.apache.spark.sql.hive.execution.CreateHiveTableAsSelectCommand.run(CreateHiveTableAsSelectCommand.scala:81) at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult$lzycompute(commands.scala:58) at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult(commands.scala:56) at org.apache.spark.sql.execution.command.ExecutedCommandExec.executeCollect(commands.scala:67) at org.apache.spark.sql.Dataset.<init>(Dataset.scala:182) at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:67) at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:623) at org.apache.spark.sql.SQLContext.sql(SQLContext.scala:691) at org.apache.spark.sql.hive.thriftserver.SparkSQLDriver.run(SparkSQLDriver.scala:62) at org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver.processCmd(SparkSQLCLIDriver.scala:340) at org.apache.hadoop.hive.cli.CliDriver.processLine(CliDriver.java:376) at org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver$.main(SparkSQLCLIDriver.scala:248) at org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver.main(SparkSQLCLIDriver.scala) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:755) at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:180) at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:205) at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:119) at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala) Caused by: org.apache.spark.SparkException: Task failed while writing rows at org.apache.spark.sql.execution.datasources.FileFormatWriter$.org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask(FileFormatWriter.scala:272) at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1$$anonfun$apply$mcV$sp$1.apply(FileFormatWriter.scala:191) at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1$$anonfun$apply$mcV$sp$1.apply(FileFormatWriter.scala:190) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87) at org.apache.spark.scheduler.Task.run(Task.scala:108) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:335) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.Thread.run(Thread.java:748) Caused by: org.apache.hadoop.hive.ql.metadata.HiveException: java.lang.IllegalArgumentException: No enum constant org.apache.hadoop.io.SequenceFile.CompressionType.block at org.apache.hadoop.hive.ql.io.HiveFileFormatUtils.getHiveRecordWriter(HiveFileFormatUtils.java:249) at org.apache.spark.sql.hive.execution.HiveOutputWriter.<init>(HiveFileFormat.scala:123) at org.apache.spark.sql.hive.execution.HiveFileFormat$$anon$1.newInstance(HiveFileFormat.scala:103) at org.apache.spark.sql.execution.datasources.FileFormatWriter$SingleDirectoryWriteTask.newOutputWriter(FileFormatWriter.scala:305) at org.apache.spark.sql.execution.datasources.FileFormatWriter$SingleDirectoryWriteTask.execute(FileFormatWriter.scala:314) at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask$3.apply(FileFormatWriter.scala:258) at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask$3.apply(FileFormatWriter.scala:256) at org.apache.spark.util.Utils$.tryWithSafeFinallyAndFailureCallbacks(Utils.scala:1375) at org.apache.spark.sql.execution.datasources.FileFormatWriter$.org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask(FileFormatWriter.scala:261) ... 8 more Caused by: java.lang.IllegalArgumentException: No enum constant org.apache.hadoop.io.SequenceFile.CompressionType.block at java.lang.Enum.valueOf(Enum.java:238) at org.apache.hadoop.io.SequenceFile$CompressionType.valueOf(SequenceFile.java:220) at org.apache.hadoop.hive.ql.io.HiveFileFormatUtils.getHiveRecordWriter(HiveFileFormatUtils.java:242) ... 16 more 18/10/20 15:31:53 ERROR SparkSQLDriver: Failed in [create table bak as select * from dm_bi_org_cfg] org.apache.spark.SparkException: Job aborted. at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1.apply$mcV$sp(FileFormatWriter.scala:215) at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1.apply(FileFormatWriter.scala:173) at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1.apply(FileFormatWriter.scala:173) at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:65) at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:173) at org.apache.spark.sql.hive.execution.InsertIntoHiveTable.run(InsertIntoHiveTable.scala:317) at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult$lzycompute(commands.scala:58) at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult(commands.scala:56) at org.apache.spark.sql.execution.command.ExecutedCommandExec.doExecute(commands.scala:74) at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:117) at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:117) at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:138) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:135) at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:116) at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:92) at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:92) at org.apache.spark.sql.hive.execution.CreateHiveTableAsSelectCommand.run(CreateHiveTableAsSelectCommand.scala:81) at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult$lzycompute(commands.scala:58) at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult(commands.scala:56) at org.apache.spark.sql.execution.command.ExecutedCommandExec.executeCollect(commands.scala:67) at org.apache.spark.sql.Dataset.<init>(Dataset.scala:182) at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:67) at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:623) at org.apache.spark.sql.SQLContext.sql(SQLContext.scala:691) at org.apache.spark.sql.hive.thriftserver.SparkSQLDriver.run(SparkSQLDriver.scala:62) at org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver.processCmd(SparkSQLCLIDriver.scala:340) at org.apache.hadoop.hive.cli.CliDriver.processLine(CliDriver.java:376) at org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver$.main(SparkSQLCLIDriver.scala:248) at org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver.main(SparkSQLCLIDriver.scala) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:755) at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:180) at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:205) at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:119) at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala) Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 3.0 failed 1 times, most recent failure: Lost task 0.0 in stage 3.0 (TID 3, localhost, executor driver): org.apache.spark.SparkException: Task failed while writing rows at org.apache.spark.sql.execution.datasources.FileFormatWriter$.org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask(FileFormatWriter.scala:272) at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1$$anonfun$apply$mcV$sp$1.apply(FileFormatWriter.scala:191) at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1$$anonfun$apply$mcV$sp$1.apply(FileFormatWriter.scala:190) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87) at org.apache.spark.scheduler.Task.run(Task.scala:108) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:335) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.Thread.run(Thread.java:748) Caused by: org.apache.hadoop.hive.ql.metadata.HiveException: java.lang.IllegalArgumentException: No enum constant org.apache.hadoop.io.SequenceFile.CompressionType.block at org.apache.hadoop.hive.ql.io.HiveFileFormatUtils.getHiveRecordWriter(HiveFileFormatUtils.java:249) at org.apache.spark.sql.hive.execution.HiveOutputWriter.<init>(HiveFileFormat.scala:123) at org.apache.spark.sql.hive.execution.HiveFileFormat$$anon$1.newInstance(HiveFileFormat.scala:103) at org.apache.spark.sql.execution.datasources.FileFormatWriter$SingleDirectoryWriteTask.newOutputWriter(FileFormatWriter.scala:305) at org.apache.spark.sql.execution.datasources.FileFormatWriter$SingleDirectoryWriteTask.execute(FileFormatWriter.scala:314) at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask$3.apply(FileFormatWriter.scala:258) at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask$3.apply(FileFormatWriter.scala:256) at org.apache.spark.util.Utils$.tryWithSafeFinallyAndFailureCallbacks(Utils.scala:1375) at org.apache.spark.sql.execution.datasources.FileFormatWriter$.org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask(FileFormatWriter.scala:261) ... 8 more Caused by: java.lang.IllegalArgumentException: No enum constant org.apache.hadoop.io.SequenceFile.CompressionType.block at java.lang.Enum.valueOf(Enum.java:238) at org.apache.hadoop.io.SequenceFile$CompressionType.valueOf(SequenceFile.java:220) at org.apache.hadoop.hive.ql.io.HiveFileFormatUtils.getHiveRecordWriter(HiveFileFormatUtils.java:242) ... 16 more Driver stacktrace: at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1499) at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1487) at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1486) at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48) at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1486) at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:814) at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:814) at scala.Option.foreach(Option.scala:257) at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:814) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1714) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1669) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1658) at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48) at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:630) at org.apache.spark.SparkContext.runJob(SparkContext.scala:2022) at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1.apply$mcV$sp(FileFormatWriter.scala:188) ... 38 more Caused by: org.apache.spark.SparkException: Task failed while writing rows at org.apache.spark.sql.execution.datasources.FileFormatWriter$.org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask(FileFormatWriter.scala:272) at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1$$anonfun$apply$mcV$sp$1.apply(FileFormatWriter.scala:191) at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1$$anonfun$apply$mcV$sp$1.apply(FileFormatWriter.scala:190) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87) at org.apache.spark.scheduler.Task.run(Task.scala:108) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:335) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.Thread.run(Thread.java:748) Caused by: org.apache.hadoop.hive.ql.metadata.HiveException: java.lang.IllegalArgumentException: No enum constant org.apache.hadoop.io.SequenceFile.CompressionType.block at org.apache.hadoop.hive.ql.io.HiveFileFormatUtils.getHiveRecordWriter(HiveFileFormatUtils.java:249) at org.apache.spark.sql.hive.execution.HiveOutputWriter.<init>(HiveFileFormat.scala:123) at org.apache.spark.sql.hive.execution.HiveFileFormat$$anon$1.newInstance(HiveFileFormat.scala:103) at org.apache.spark.sql.execution.datasources.FileFormatWriter$SingleDirectoryWriteTask.newOutputWriter(FileFormatWriter.scala:305) at org.apache.spark.sql.execution.datasources.FileFormatWriter$SingleDirectoryWriteTask.execute(FileFormatWriter.scala:314) at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask$3.apply(FileFormatWriter.scala:258) at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask$3.apply(FileFormatWriter.scala:256) at org.apache.spark.util.Utils$.tryWithSafeFinallyAndFailureCallbacks(Utils.scala:1375) at org.apache.spark.sql.execution.datasources.FileFormatWriter$.org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask(FileFormatWriter.scala:261) ... 8 more Caused by: java.lang.IllegalArgumentException: No enum constant org.apache.hadoop.io.SequenceFile.CompressionType.block at java.lang.Enum.valueOf(Enum.java:238) at org.apache.hadoop.io.SequenceFile$CompressionType.valueOf(SequenceFile.java:220) at org.apache.hadoop.hive.ql.io.HiveFileFormatUtils.getHiveRecordWriter(HiveFileFormatUtils.java:242) ... 16 more org.apache.spark.SparkException: Job aborted. at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1.apply$mcV$sp(FileFormatWriter.scala:215) at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1.apply(FileFormatWriter.scala:173) at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1.apply(FileFormatWriter.scala:173) at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:65) at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:173) at org.apache.spark.sql.hive.execution.InsertIntoHiveTable.run(InsertIntoHiveTable.scala:317) at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult$lzycompute(commands.scala:58) at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult(commands.scala:56) at org.apache.spark.sql.execution.command.ExecutedCommandExec.doExecute(commands.scala:74) at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:117) at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:117) at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:138) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:135) at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:116) at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:92) at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:92) at org.apache.spark.sql.hive.execution.CreateHiveTableAsSelectCommand.run(CreateHiveTableAsSelectCommand.scala:81) at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult$lzycompute(commands.scala:58) at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult(commands.scala:56) at org.apache.spark.sql.execution.command.ExecutedCommandExec.executeCollect(commands.scala:67) at org.apache.spark.sql.Dataset.<init>(Dataset.scala:182) at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:67) at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:623) at org.apache.spark.sql.SQLContext.sql(SQLContext.scala:691) at org.apache.spark.sql.hive.thriftserver.SparkSQLDriver.run(SparkSQLDriver.scala:62) at org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver.processCmd(SparkSQLCLIDriver.scala:340) at org.apache.hadoop.hive.cli.CliDriver.processLine(CliDriver.java:376) at org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver$.main(SparkSQLCLIDriver.scala:248) at org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver.main(SparkSQLCLIDriver.scala) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:755) at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:180) at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:205) at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:119) at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala) Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 3.0 failed 1 times, most recent failure: Lost task 0.0 in stage 3.0 (TID 3, localhost, executor driver): org.apache.spark.SparkException: Task failed while writing rows at org.apache.spark.sql.execution.datasources.FileFormatWriter$.org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask(FileFormatWriter.scala:272) at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1$$anonfun$apply$mcV$sp$1.apply(FileFormatWriter.scala:191) at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1$$anonfun$apply$mcV$sp$1.apply(FileFormatWriter.scala:190) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87) at org.apache.spark.scheduler.Task.run(Task.scala:108) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:335) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.Thread.run(Thread.java:748) Caused by: org.apache.hadoop.hive.ql.metadata.HiveException: java.lang.IllegalArgumentException: No enum constant org.apache.hadoop.io.SequenceFile.CompressionType.block at org.apache.hadoop.hive.ql.io.HiveFileFormatUtils.getHiveRecordWriter(HiveFileFormatUtils.java:249) at org.apache.spark.sql.hive.execution.HiveOutputWriter.<init>(HiveFileFormat.scala:123) at org.apache.spark.sql.hive.execution.HiveFileFormat$$anon$1.newInstance(HiveFileFormat.scala:103) at org.apache.spark.sql.execution.datasources.FileFormatWriter$SingleDirectoryWriteTask.newOutputWriter(FileFormatWriter.scala:305) at org.apache.spark.sql.execution.datasources.FileFormatWriter$SingleDirectoryWriteTask.execute(FileFormatWriter.scala:314) at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask$3.apply(FileFormatWriter.scala:258) at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask$3.apply(FileFormatWriter.scala:256) at org.apache.spark.util.Utils$.tryWithSafeFinallyAndFailureCallbacks(Utils.scala:1375) at org.apache.spark.sql.execution.datasources.FileFormatWriter$.org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask(FileFormatWriter.scala:261) ... 8 more Caused by: java.lang.IllegalArgumentException: No enum constant org.apache.hadoop.io.SequenceFile.CompressionType.block at java.lang.Enum.valueOf(Enum.java:238) at org.apache.hadoop.io.SequenceFile$CompressionType.valueOf(SequenceFile.java:220) at org.apache.hadoop.hive.ql.io.HiveFileFormatUtils.getHiveRecordWriter(HiveFileFormatUtils.java:242) ... 16 more Driver stacktrace: at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1499) at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1487) at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1486) at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48) at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1486) at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:814) at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:814) at scala.Option.foreach(Option.scala:257) at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:814) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1714) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1669) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1658) at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48) at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:630) at org.apache.spark.SparkContext.runJob(SparkContext.scala:2022) at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1.apply$mcV$sp(FileFormatWriter.scala:188) ... 38 more Caused by: org.apache.spark.SparkException: Task failed while writing rows at org.apache.spark.sql.execution.datasources.FileFormatWriter$.org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask(FileFormatWriter.scala:272) at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1$$anonfun$apply$mcV$sp$1.apply(FileFormatWriter.scala:191) at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1$$anonfun$apply$mcV$sp$1.apply(FileFormatWriter.scala:190) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87) at org.apache.spark.scheduler.Task.run(Task.scala:108) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:335) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.Thread.run(Thread.java:748) Caused by: org.apache.hadoop.hive.ql.metadata.HiveException: java.lang.IllegalArgumentException: No enum constant org.apache.hadoop.io.SequenceFile.CompressionType.block at org.apache.hadoop.hive.ql.io.HiveFileFormatUtils.getHiveRecordWriter(HiveFileFormatUtils.java:249) at org.apache.spark.sql.hive.execution.HiveOutputWriter.<init>(HiveFileFormat.scala:123) at org.apache.spark.sql.hive.execution.HiveFileFormat$$anon$1.newInstance(HiveFileFormat.scala:103) at org.apache.spark.sql.execution.datasources.FileFormatWriter$SingleDirectoryWriteTask.newOutputWriter(FileFormatWriter.scala:305) at org.apache.spark.sql.execution.datasources.FileFormatWriter$SingleDirectoryWriteTask.execute(FileFormatWriter.scala:314) at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask$3.apply(FileFormatWriter.scala:258) at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask$3.apply(FileFormatWriter.scala:256) at org.apache.spark.util.Utils$.tryWithSafeFinallyAndFailureCallbacks(Utils.scala:1375) at org.apache.spark.sql.execution.datasources.FileFormatWriter$.org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask(FileFormatWriter.scala:261) ... 8 more Caused by: java.lang.IllegalArgumentException: No enum constant org.apache.hadoop.io.SequenceFile.CompressionType.block at java.lang.Enum.valueOf(Enum.java:238) at org.apache.hadoop.io.SequenceFile$CompressionType.valueOf(SequenceFile.java:220) at org.apache.hadoop.hive.ql.io.HiveFileFormatUtils.getHiveRecordWriter(HiveFileFormatUtils.java:242) ... 16 more spark-sql> ```

SparkSql中读取hive中的表不能存在"."

val hiveDeptDF = sqlContext.read.table("emp_test.emp") 我要读取hive中emp_test中的emp表,报错不能包含“.” Exception in thread "main" org.apache.spark.sql.AnalysisException: Specifying database name or other qualifiers are not allowed for temporary tables. If the table name has dots (.) in it, please quote the table name with backticks (`).; at org.apache.spark.sql.catalyst.analysis.Catalog$class.getTableName(Catalog.scala:70) at org.apache.spark.sql.catalyst.analysis.SimpleCatalog.getTableName(Catalog.scala:82) at org.apache.spark.sql.catalyst.analysis.SimpleCatalog.lookupRelation(Catalog.scala:104) at org.apache.spark.sql.DataFrameReader.table(DataFrameReader.scala:338) at Hive2Rdbms$.main(Hive2Rdbms.scala:16) at Hive2Rdbms.main(Hive2Rdbms.scala) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:606) at com.intellij.rt.execution.application.AppMain.main(AppMain.java:140) 我加上反引号后,又显示找不到该表。 hive库本身没问题

spark sql 语法问题,新手求指点

使用spark 连接mysql 查询时发现一个错误,经过检测后发现是sql语句的问题,但sql 语句在mysql中是能够查询出来的,但是当使用spark进行查询的时候却发现报错了,sql语句如下: ``` # 计算出支付通道为alipay的金额最大的前5位商户号? select pay_channel,oid,sum(money) from pay where pay_channel = 'alipay' group by oid order by sum(money) desc limit 5 ; select pay_channel,oid,sum(money) from pay where pay_channel = 'alipay' group by oid,pay_channel order by sum(money) desc limit 5 ; ``` 正确代码代码如下,使用的是第二条sql语句 如果使用第一条sql语句是会报错: ``` import java.util.Properties import org.apache.spark.rdd.RDD import org.apache.spark.sql.{DataFrame, Row, SparkSession} object Test23 { def main(args: Array[String]): Unit = { //使用SparkSession.builder.替代SQLContext val sqlContext = SparkSession.builder. master("local[*]") .appName("TestMysql") .getOrCreate() val url = "jdbc:mysql://hadoop01:3306/spark?characterEncoding=UTF-8" val table = "pay" val properties = new Properties() properties.setProperty("user", "root") properties.setProperty("password", "123456") //需要传入Mysql的URL、表明、properties(连接数据库的用户名密码) val df = sqlContext.read.jdbc(url, table, properties) df.createOrReplaceTempView("pay") val frame: DataFrame = sqlContext.sql("select pay_channel,oid,sum(money) from pay where pay_channel = 'alipay' group by oid,pay_channel order by sum(money) desc limit 5 ") val rdd = frame.rdd rdd.foreach(println(_)) } } ``` 此两行sql语句在mysql中都是能正常查出来结果的,它们两个的区别就是第二条sql语句使用pay_channel字段多进行了一次分组,不过我在sql语句中已经把pay_channel作为了一个条件固定死了,为啥还要进行分组,不然会报错,报错内容如下: ``` Exception in thread "main" org.apache.spark.sql.AnalysisException: expression 'pay.`pay_channel`' is neither present in the group by, nor is it an aggregate function. Add to group by or wrap in first() (or first_value) if you don't care which value you get.;; GlobalLimit 5 +- LocalLimit 5 +- Project [pay_channel#3, oid#0, sum(money)#23] +- Sort [sum(money)#23 DESC NULLS LAST], true +- Aggregate [oid#0], [pay_channel#3, oid#0, sum(money#6) AS sum(money)#23] +- Filter (pay_channel#3 = alipay) +- SubqueryAlias pay +- Relation[oid#0,pos_name#1,order_num#2,pay_channel#3,pay_method#4,posId#5,money#6,pay_time#7,ord_status#8,rec_state#9] JDBCRelation(pay) [numPartitions=1] at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$class.failAnalysis(CheckAnalysis.scala:39) at org.apache.spark.sql.catalyst.analysis.Analyzer.failAnalysis(Analyzer.scala:91) at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1.org$apache$spark$sql$catalyst$analysis$CheckAnalysis$class$$anonfun$$checkValidAggregateExpression$1(CheckAnalysis.scala:247) at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1$$anonfun$apply$9.apply(CheckAnalysis.scala:280) at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1$$anonfun$apply$9.apply(CheckAnalysis.scala:280) at scala.collection.immutable.List.foreach(List.scala:381) at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1.apply(CheckAnalysis.scala:280) at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1.apply(CheckAnalysis.scala:78) at org.apache.spark.sql.catalyst.trees.TreeNode.foreachUp(TreeNode.scala:127) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$foreachUp$1.apply(TreeNode.scala:126) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$foreachUp$1.apply(TreeNode.scala:126) at scala.collection.immutable.List.foreach(List.scala:381) at org.apache.spark.sql.catalyst.trees.TreeNode.foreachUp(TreeNode.scala:126) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$foreachUp$1.apply(TreeNode.scala:126) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$foreachUp$1.apply(TreeNode.scala:126) at scala.collection.immutable.List.foreach(List.scala:381) at org.apache.spark.sql.catalyst.trees.TreeNode.foreachUp(TreeNode.scala:126) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$foreachUp$1.apply(TreeNode.scala:126) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$foreachUp$1.apply(TreeNode.scala:126) at scala.collection.immutable.List.foreach(List.scala:381) at org.apache.spark.sql.catalyst.trees.TreeNode.foreachUp(TreeNode.scala:126) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$foreachUp$1.apply(TreeNode.scala:126) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$foreachUp$1.apply(TreeNode.scala:126) at scala.collection.immutable.List.foreach(List.scala:381) at org.apache.spark.sql.catalyst.trees.TreeNode.foreachUp(TreeNode.scala:126) at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$class.checkAnalysis(CheckAnalysis.scala:78) at org.apache.spark.sql.catalyst.analysis.Analyzer.checkAnalysis(Analyzer.scala:91) at org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:52) at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:66) at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:623) at com.czxy.exercise05.Test23$.main(Test23.scala:31) at com.czxy.exercise05.Test23.main(Test23.scala) ``` 只是语法的区别么?求大佬解答一下原因!

spark 读取不到hive metastore 获取不到数据库

直接上异常 ``` Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties SLF4J: Class path contains multiple SLF4J bindings. SLF4J: Found binding in [jar:file:/data01/hadoop/yarn/local/filecache/355/spark2-hdp-yarn-archive.tar.gz/slf4j-log4j12-1.7.16.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: Found binding in [jar:file:/usr/hdp/2.6.5.0-292/hadoop/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation. SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory] 19/08/13 19:53:17 INFO SignalUtils: Registered signal handler for TERM 19/08/13 19:53:17 INFO SignalUtils: Registered signal handler for HUP 19/08/13 19:53:17 INFO SignalUtils: Registered signal handler for INT 19/08/13 19:53:17 INFO SecurityManager: Changing view acls to: yarn,hdfs 19/08/13 19:53:17 INFO SecurityManager: Changing modify acls to: yarn,hdfs 19/08/13 19:53:17 INFO SecurityManager: Changing view acls groups to: 19/08/13 19:53:17 INFO SecurityManager: Changing modify acls groups to: 19/08/13 19:53:17 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(yarn, hdfs); groups with view permissions: Set(); users with modify permissions: Set(yarn, hdfs); groups with modify permissions: Set() 19/08/13 19:53:18 INFO ApplicationMaster: Preparing Local resources 19/08/13 19:53:19 INFO ApplicationMaster: ApplicationAttemptId: appattempt_1565610088533_0087_000001 19/08/13 19:53:19 INFO ApplicationMaster: Starting the user application in a separate Thread 19/08/13 19:53:19 INFO ApplicationMaster: Waiting for spark context initialization... 19/08/13 19:53:19 INFO SparkContext: Running Spark version 2.3.0.2.6.5.0-292 19/08/13 19:53:19 INFO SparkContext: Submitted application: voice_stream 19/08/13 19:53:19 INFO SecurityManager: Changing view acls to: yarn,hdfs 19/08/13 19:53:19 INFO SecurityManager: Changing modify acls to: yarn,hdfs 19/08/13 19:53:19 INFO SecurityManager: Changing view acls groups to: 19/08/13 19:53:19 INFO SecurityManager: Changing modify acls groups to: 19/08/13 19:53:19 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(yarn, hdfs); groups with view permissions: Set(); users with modify permissions: Set(yarn, hdfs); groups with modify permissions: Set() 19/08/13 19:53:19 INFO Utils: Successfully started service 'sparkDriver' on port 20410. 19/08/13 19:53:19 INFO SparkEnv: Registering MapOutputTracker 19/08/13 19:53:19 INFO SparkEnv: Registering BlockManagerMaster 19/08/13 19:53:19 INFO BlockManagerMasterEndpoint: Using org.apache.spark.storage.DefaultTopologyMapper for getting topology information 19/08/13 19:53:19 INFO BlockManagerMasterEndpoint: BlockManagerMasterEndpoint up 19/08/13 19:53:19 INFO DiskBlockManager: Created local directory at /data01/hadoop/yarn/local/usercache/hdfs/appcache/application_1565610088533_0087/blockmgr-94d35b97-43b2-496e-a4cb-73ecd3ed186c 19/08/13 19:53:19 INFO MemoryStore: MemoryStore started with capacity 366.3 MB 19/08/13 19:53:19 INFO SparkEnv: Registering OutputCommitCoordinator 19/08/13 19:53:19 INFO JettyUtils: Adding filter: org.apache.hadoop.yarn.server.webproxy.amfilter.AmIpFilter 19/08/13 19:53:19 INFO Utils: Successfully started service 'SparkUI' on port 28852. 19/08/13 19:53:19 INFO SparkUI: Bound SparkUI to 0.0.0.0, and started at http://datanode02:28852 19/08/13 19:53:19 INFO YarnClusterScheduler: Created YarnClusterScheduler 19/08/13 19:53:20 INFO SchedulerExtensionServices: Starting Yarn extension services with app application_1565610088533_0087 and attemptId Some(appattempt_1565610088533_0087_000001) 19/08/13 19:53:20 INFO Utils: Successfully started service 'org.apache.spark.network.netty.NettyBlockTransferService' on port 31984. 19/08/13 19:53:20 INFO NettyBlockTransferService: Server created on datanode02:31984 19/08/13 19:53:20 INFO BlockManager: Using org.apache.spark.storage.RandomBlockReplicationPolicy for block replication policy 19/08/13 19:53:20 INFO BlockManagerMaster: Registering BlockManager BlockManagerId(driver, datanode02, 31984, None) 19/08/13 19:53:20 INFO BlockManagerMasterEndpoint: Registering block manager datanode02:31984 with 366.3 MB RAM, BlockManagerId(driver, datanode02, 31984, None) 19/08/13 19:53:20 INFO BlockManagerMaster: Registered BlockManager BlockManagerId(driver, datanode02, 31984, None) 19/08/13 19:53:20 INFO BlockManager: Initialized BlockManager: BlockManagerId(driver, datanode02, 31984, None) 19/08/13 19:53:20 INFO EventLoggingListener: Logging events to hdfs:/spark2-history/application_1565610088533_0087_1 19/08/13 19:53:20 INFO ApplicationMaster: =============================================================================== YARN executor launch context: env: CLASSPATH -> {{PWD}}<CPS>{{PWD}}/__spark_conf__<CPS>{{PWD}}/__spark_libs__/*<CPS>/usr/hdp/2.6.5.0-292/hadoop/conf<CPS>/usr/hdp/2.6.5.0-292/hadoop/*<CPS>/usr/hdp/2.6.5.0-292/hadoop/lib/*<CPS>/usr/hdp/current/hadoop-hdfs-client/*<CPS>/usr/hdp/current/hadoop-hdfs-client/lib/*<CPS>/usr/hdp/current/hadoop-yarn-client/*<CPS>/usr/hdp/current/hadoop-yarn-client/lib/*<CPS>/usr/hdp/current/ext/hadoop/*<CPS>$PWD/mr-framework/hadoop/share/hadoop/mapreduce/*:$PWD/mr-framework/hadoop/share/hadoop/mapreduce/lib/*:$PWD/mr-framework/hadoop/share/hadoop/common/*:$PWD/mr-framework/hadoop/share/hadoop/common/lib/*:$PWD/mr-framework/hadoop/share/hadoop/yarn/*:$PWD/mr-framework/hadoop/share/hadoop/yarn/lib/*:$PWD/mr-framework/hadoop/share/hadoop/hdfs/*:$PWD/mr-framework/hadoop/share/hadoop/hdfs/lib/*:$PWD/mr-framework/hadoop/share/hadoop/tools/lib/*:/usr/hdp/2.6.5.0-292/hadoop/lib/hadoop-lzo-0.6.0.2.6.5.0-292.jar:/etc/hadoop/conf/secure:/usr/hdp/current/ext/hadoop/*<CPS>{{PWD}}/__spark_conf__/__hadoop_conf__ SPARK_YARN_STAGING_DIR -> *********(redacted) SPARK_USER -> *********(redacted) command: LD_LIBRARY_PATH="/usr/hdp/current/hadoop-client/lib/native:/usr/hdp/current/hadoop-client/lib/native/Linux-amd64-64:$LD_LIBRARY_PATH" \ {{JAVA_HOME}}/bin/java \ -server \ -Xmx5120m \ -Djava.io.tmpdir={{PWD}}/tmp \ '-Dspark.history.ui.port=18081' \ '-Dspark.rpc.message.maxSize=100' \ -Dspark.yarn.app.container.log.dir=<LOG_DIR> \ -XX:OnOutOfMemoryError='kill %p' \ org.apache.spark.executor.CoarseGrainedExecutorBackend \ --driver-url \ spark://CoarseGrainedScheduler@datanode02:20410 \ --executor-id \ <executorId> \ --hostname \ <hostname> \ --cores \ 2 \ --app-id \ application_1565610088533_0087 \ --user-class-path \ file:$PWD/__app__.jar \ --user-class-path \ file:$PWD/hadoop-common-2.7.3.jar \ --user-class-path \ file:$PWD/guava-12.0.1.jar \ --user-class-path \ file:$PWD/hbase-server-1.2.8.jar \ --user-class-path \ file:$PWD/hbase-protocol-1.2.8.jar \ --user-class-path \ file:$PWD/hbase-client-1.2.8.jar \ --user-class-path \ file:$PWD/hbase-common-1.2.8.jar \ --user-class-path \ file:$PWD/mysql-connector-java-5.1.44-bin.jar \ --user-class-path \ file:$PWD/spark-streaming-kafka-0-8-assembly_2.11-2.3.2.jar \ --user-class-path \ file:$PWD/spark-examples_2.11-1.6.0-typesafe-001.jar \ --user-class-path \ file:$PWD/fastjson-1.2.7.jar \ 1><LOG_DIR>/stdout \ 2><LOG_DIR>/stderr resources: spark-streaming-kafka-0-8-assembly_2.11-2.3.2.jar -> resource { scheme: "hdfs" host: "CID-042fb939-95b4-4b74-91b8-9f94b999bdf7" port: -1 file: "/user/hdfs/.sparkStaging/application_1565610088533_0087/spark-streaming-kafka-0-8-assembly_2.11-2.3.2.jar" } size: 12271027 timestamp: 1565697198603 type: FILE visibility: PRIVATE spark-examples_2.11-1.6.0-typesafe-001.jar -> resource { scheme: "hdfs" host: "CID-042fb939-95b4-4b74-91b8-9f94b999bdf7" port: -1 file: "/user/hdfs/.sparkStaging/application_1565610088533_0087/spark-examples_2.11-1.6.0-typesafe-001.jar" } size: 1867746 timestamp: 1565697198751 type: FILE visibility: PRIVATE hbase-server-1.2.8.jar -> resource { scheme: "hdfs" host: "CID-042fb939-95b4-4b74-91b8-9f94b999bdf7" port: -1 file: "/user/hdfs/.sparkStaging/application_1565610088533_0087/hbase-server-1.2.8.jar" } size: 4197896 timestamp: 1565697197770 type: FILE visibility: PRIVATE hbase-common-1.2.8.jar -> resource { scheme: "hdfs" host: "CID-042fb939-95b4-4b74-91b8-9f94b999bdf7" port: -1 file: "/user/hdfs/.sparkStaging/application_1565610088533_0087/hbase-common-1.2.8.jar" } size: 570163 timestamp: 1565697198318 type: FILE visibility: PRIVATE __app__.jar -> resource { scheme: "hdfs" host: "CID-042fb939-95b4-4b74-91b8-9f94b999bdf7" port: -1 file: "/user/hdfs/.sparkStaging/application_1565610088533_0087/spark_history_data2.jar" } size: 44924 timestamp: 1565697197260 type: FILE visibility: PRIVATE guava-12.0.1.jar -> resource { scheme: "hdfs" host: "CID-042fb939-95b4-4b74-91b8-9f94b999bdf7" port: -1 file: "/user/hdfs/.sparkStaging/application_1565610088533_0087/guava-12.0.1.jar" } size: 1795932 timestamp: 1565697197614 type: FILE visibility: PRIVATE hbase-client-1.2.8.jar -> resource { scheme: "hdfs" host: "CID-042fb939-95b4-4b74-91b8-9f94b999bdf7" port: -1 file: "/user/hdfs/.sparkStaging/application_1565610088533_0087/hbase-client-1.2.8.jar" } size: 1306401 timestamp: 1565697198180 type: FILE visibility: PRIVATE __spark_conf__ -> resource { scheme: "hdfs" host: "CID-042fb939-95b4-4b74-91b8-9f94b999bdf7" port: -1 file: "/user/hdfs/.sparkStaging/application_1565610088533_0087/__spark_conf__.zip" } size: 273513 timestamp: 1565697199131 type: ARCHIVE visibility: PRIVATE fastjson-1.2.7.jar -> resource { scheme: "hdfs" host: "CID-042fb939-95b4-4b74-91b8-9f94b999bdf7" port: -1 file: "/user/hdfs/.sparkStaging/application_1565610088533_0087/fastjson-1.2.7.jar" } size: 417221 timestamp: 1565697198865 type: FILE visibility: PRIVATE hbase-protocol-1.2.8.jar -> resource { scheme: "hdfs" host: "CID-042fb939-95b4-4b74-91b8-9f94b999bdf7" port: -1 file: "/user/hdfs/.sparkStaging/application_1565610088533_0087/hbase-protocol-1.2.8.jar" } size: 4366252 timestamp: 1565697198023 type: FILE visibility: PRIVATE __spark_libs__ -> resource { scheme: "hdfs" host: "CID-042fb939-95b4-4b74-91b8-9f94b999bdf7" port: -1 file: "/hdp/apps/2.6.5.0-292/spark2/spark2-hdp-yarn-archive.tar.gz" } size: 227600110 timestamp: 1549953820247 type: ARCHIVE visibility: PUBLIC mysql-connector-java-5.1.44-bin.jar -> resource { scheme: "hdfs" host: "CID-042fb939-95b4-4b74-91b8-9f94b999bdf7" port: -1 file: "/user/hdfs/.sparkStaging/application_1565610088533_0087/mysql-connector-java-5.1.44-bin.jar" } size: 999635 timestamp: 1565697198445 type: FILE visibility: PRIVATE hadoop-common-2.7.3.jar -> resource { scheme: "hdfs" host: "CID-042fb939-95b4-4b74-91b8-9f94b999bdf7" port: -1 file: "/user/hdfs/.sparkStaging/application_1565610088533_0087/hadoop-common-2.7.3.jar" } size: 3479293 timestamp: 1565697197476 type: FILE visibility: PRIVATE =============================================================================== 19/08/13 19:53:20 INFO RMProxy: Connecting to ResourceManager at namenode02/10.1.38.38:8030 19/08/13 19:53:20 INFO YarnRMClient: Registering the ApplicationMaster 19/08/13 19:53:20 INFO YarnAllocator: Will request 3 executor container(s), each with 2 core(s) and 5632 MB memory (including 512 MB of overhead) 19/08/13 19:53:20 INFO YarnSchedulerBackend$YarnSchedulerEndpoint: ApplicationMaster registered as NettyRpcEndpointRef(spark://YarnAM@datanode02:20410) 19/08/13 19:53:20 INFO YarnAllocator: Submitted 3 unlocalized container requests. 19/08/13 19:53:20 INFO ApplicationMaster: Started progress reporter thread with (heartbeat : 3000, initial allocation : 200) intervals 19/08/13 19:53:20 INFO AMRMClientImpl: Received new token for : datanode03:45454 19/08/13 19:53:21 INFO YarnAllocator: Launching container container_e20_1565610088533_0087_01_000002 on host datanode03 for executor with ID 1 19/08/13 19:53:21 INFO YarnAllocator: Received 1 containers from YARN, launching executors on 1 of them. 19/08/13 19:53:21 INFO ContainerManagementProtocolProxy: yarn.client.max-cached-nodemanagers-proxies : 0 19/08/13 19:53:21 INFO ContainerManagementProtocolProxy: Opening proxy : datanode03:45454 19/08/13 19:53:21 INFO AMRMClientImpl: Received new token for : datanode01:45454 19/08/13 19:53:21 INFO YarnAllocator: Launching container container_e20_1565610088533_0087_01_000003 on host datanode01 for executor with ID 2 19/08/13 19:53:21 INFO YarnAllocator: Received 1 containers from YARN, launching executors on 1 of them. 19/08/13 19:53:21 INFO ContainerManagementProtocolProxy: yarn.client.max-cached-nodemanagers-proxies : 0 19/08/13 19:53:21 INFO ContainerManagementProtocolProxy: Opening proxy : datanode01:45454 19/08/13 19:53:22 INFO AMRMClientImpl: Received new token for : datanode02:45454 19/08/13 19:53:22 INFO YarnAllocator: Launching container container_e20_1565610088533_0087_01_000004 on host datanode02 for executor with ID 3 19/08/13 19:53:22 INFO YarnAllocator: Received 1 containers from YARN, launching executors on 1 of them. 19/08/13 19:53:22 INFO ContainerManagementProtocolProxy: yarn.client.max-cached-nodemanagers-proxies : 0 19/08/13 19:53:22 INFO ContainerManagementProtocolProxy: Opening proxy : datanode02:45454 19/08/13 19:53:24 INFO YarnSchedulerBackend$YarnDriverEndpoint: Registered executor NettyRpcEndpointRef(spark-client://Executor) (10.1.198.144:41122) with ID 1 19/08/13 19:53:25 INFO YarnSchedulerBackend$YarnDriverEndpoint: Registered executor NettyRpcEndpointRef(spark-client://Executor) (10.1.229.163:24656) with ID 3 19/08/13 19:53:25 INFO BlockManagerMasterEndpoint: Registering block manager datanode03:3328 with 2.5 GB RAM, BlockManagerId(1, datanode03, 3328, None) 19/08/13 19:53:25 INFO BlockManagerMasterEndpoint: Registering block manager datanode02:28863 with 2.5 GB RAM, BlockManagerId(3, datanode02, 28863, None) 19/08/13 19:53:25 INFO YarnSchedulerBackend$YarnDriverEndpoint: Registered executor NettyRpcEndpointRef(spark-client://Executor) (10.1.229.158:64276) with ID 2 19/08/13 19:53:25 INFO YarnClusterSchedulerBackend: SchedulerBackend is ready for scheduling beginning after reached minRegisteredResourcesRatio: 0.8 19/08/13 19:53:25 INFO YarnClusterScheduler: YarnClusterScheduler.postStartHook done 19/08/13 19:53:25 INFO BlockManagerMasterEndpoint: Registering block manager datanode01:20487 with 2.5 GB RAM, BlockManagerId(2, datanode01, 20487, None) 19/08/13 19:53:25 WARN SparkContext: Using an existing SparkContext; some configuration may not take effect. 19/08/13 19:53:25 INFO SparkContext: Starting job: start at VoiceApplication2.java:128 19/08/13 19:53:25 INFO DAGScheduler: Registering RDD 1 (start at VoiceApplication2.java:128) 19/08/13 19:53:25 INFO DAGScheduler: Got job 0 (start at VoiceApplication2.java:128) with 20 output partitions 19/08/13 19:53:25 INFO DAGScheduler: Final stage: ResultStage 1 (start at VoiceApplication2.java:128) 19/08/13 19:53:25 INFO DAGScheduler: Parents of final stage: List(ShuffleMapStage 0) 19/08/13 19:53:25 INFO DAGScheduler: Missing parents: List(ShuffleMapStage 0) 19/08/13 19:53:26 INFO DAGScheduler: Submitting ShuffleMapStage 0 (MapPartitionsRDD[1] at start at VoiceApplication2.java:128), which has no missing parents 19/08/13 19:53:26 INFO MemoryStore: Block broadcast_0 stored as values in memory (estimated size 3.1 KB, free 366.3 MB) 19/08/13 19:53:26 INFO MemoryStore: Block broadcast_0_piece0 stored as bytes in memory (estimated size 2011.0 B, free 366.3 MB) 19/08/13 19:53:26 INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on datanode02:31984 (size: 2011.0 B, free: 366.3 MB) 19/08/13 19:53:26 INFO SparkContext: Created broadcast 0 from broadcast at DAGScheduler.scala:1039 19/08/13 19:53:26 INFO DAGScheduler: Submitting 50 missing tasks from ShuffleMapStage 0 (MapPartitionsRDD[1] at start at VoiceApplication2.java:128) (first 15 tasks are for partitions Vector(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14)) 19/08/13 19:53:26 INFO YarnClusterScheduler: Adding task set 0.0 with 50 tasks 19/08/13 19:53:26 INFO TaskSetManager: Starting task 0.0 in stage 0.0 (TID 0, datanode02, executor 3, partition 0, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 1.0 in stage 0.0 (TID 1, datanode03, executor 1, partition 1, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 2.0 in stage 0.0 (TID 2, datanode01, executor 2, partition 2, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 3.0 in stage 0.0 (TID 3, datanode02, executor 3, partition 3, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 4.0 in stage 0.0 (TID 4, datanode03, executor 1, partition 4, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 5.0 in stage 0.0 (TID 5, datanode01, executor 2, partition 5, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on datanode02:28863 (size: 2011.0 B, free: 2.5 GB) 19/08/13 19:53:26 INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on datanode03:3328 (size: 2011.0 B, free: 2.5 GB) 19/08/13 19:53:26 INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on datanode01:20487 (size: 2011.0 B, free: 2.5 GB) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 6.0 in stage 0.0 (TID 6, datanode02, executor 3, partition 6, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 7.0 in stage 0.0 (TID 7, datanode02, executor 3, partition 7, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Finished task 3.0 in stage 0.0 (TID 3) in 693 ms on datanode02 (executor 3) (1/50) 19/08/13 19:53:26 INFO TaskSetManager: Finished task 0.0 in stage 0.0 (TID 0) in 712 ms on datanode02 (executor 3) (2/50) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 8.0 in stage 0.0 (TID 8, datanode02, executor 3, partition 8, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Finished task 7.0 in stage 0.0 (TID 7) in 21 ms on datanode02 (executor 3) (3/50) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 9.0 in stage 0.0 (TID 9, datanode02, executor 3, partition 9, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Finished task 6.0 in stage 0.0 (TID 6) in 26 ms on datanode02 (executor 3) (4/50) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 10.0 in stage 0.0 (TID 10, datanode02, executor 3, partition 10, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Finished task 8.0 in stage 0.0 (TID 8) in 23 ms on datanode02 (executor 3) (5/50) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 11.0 in stage 0.0 (TID 11, datanode02, executor 3, partition 11, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Finished task 9.0 in stage 0.0 (TID 9) in 25 ms on datanode02 (executor 3) (6/50) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 12.0 in stage 0.0 (TID 12, datanode02, executor 3, partition 12, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Finished task 10.0 in stage 0.0 (TID 10) in 18 ms on datanode02 (executor 3) (7/50) 19/08/13 19:53:26 INFO TaskSetManager: Finished task 11.0 in stage 0.0 (TID 11) in 14 ms on datanode02 (executor 3) (8/50) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 13.0 in stage 0.0 (TID 13, datanode02, executor 3, partition 13, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 14.0 in stage 0.0 (TID 14, datanode02, executor 3, partition 14, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Finished task 12.0 in stage 0.0 (TID 12) in 16 ms on datanode02 (executor 3) (9/50) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 15.0 in stage 0.0 (TID 15, datanode02, executor 3, partition 15, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Finished task 13.0 in stage 0.0 (TID 13) in 22 ms on datanode02 (executor 3) (10/50) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 16.0 in stage 0.0 (TID 16, datanode02, executor 3, partition 16, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Finished task 14.0 in stage 0.0 (TID 14) in 16 ms on datanode02 (executor 3) (11/50) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 17.0 in stage 0.0 (TID 17, datanode02, executor 3, partition 17, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Finished task 15.0 in stage 0.0 (TID 15) in 13 ms on datanode02 (executor 3) (12/50) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 18.0 in stage 0.0 (TID 18, datanode01, executor 2, partition 18, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 19.0 in stage 0.0 (TID 19, datanode01, executor 2, partition 19, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Finished task 5.0 in stage 0.0 (TID 5) in 787 ms on datanode01 (executor 2) (13/50) 19/08/13 19:53:26 INFO TaskSetManager: Finished task 2.0 in stage 0.0 (TID 2) in 789 ms on datanode01 (executor 2) (14/50) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 20.0 in stage 0.0 (TID 20, datanode03, executor 1, partition 20, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:26 INFO TaskSetManager: Starting task 21.0 in stage 0.0 (TID 21, datanode03, executor 1, partition 21, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 4.0 in stage 0.0 (TID 4) in 905 ms on datanode03 (executor 1) (15/50) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 1.0 in stage 0.0 (TID 1) in 907 ms on datanode03 (executor 1) (16/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 22.0 in stage 0.0 (TID 22, datanode02, executor 3, partition 22, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 23.0 in stage 0.0 (TID 23, datanode02, executor 3, partition 23, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 24.0 in stage 0.0 (TID 24, datanode01, executor 2, partition 24, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 18.0 in stage 0.0 (TID 18) in 124 ms on datanode01 (executor 2) (17/50) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 16.0 in stage 0.0 (TID 16) in 134 ms on datanode02 (executor 3) (18/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 25.0 in stage 0.0 (TID 25, datanode01, executor 2, partition 25, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 26.0 in stage 0.0 (TID 26, datanode03, executor 1, partition 26, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 17.0 in stage 0.0 (TID 17) in 134 ms on datanode02 (executor 3) (19/50) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 20.0 in stage 0.0 (TID 20) in 122 ms on datanode03 (executor 1) (20/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 27.0 in stage 0.0 (TID 27, datanode03, executor 1, partition 27, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 19.0 in stage 0.0 (TID 19) in 127 ms on datanode01 (executor 2) (21/50) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 21.0 in stage 0.0 (TID 21) in 123 ms on datanode03 (executor 1) (22/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 28.0 in stage 0.0 (TID 28, datanode02, executor 3, partition 28, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 29.0 in stage 0.0 (TID 29, datanode02, executor 3, partition 29, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 22.0 in stage 0.0 (TID 22) in 19 ms on datanode02 (executor 3) (23/50) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 23.0 in stage 0.0 (TID 23) in 18 ms on datanode02 (executor 3) (24/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 30.0 in stage 0.0 (TID 30, datanode01, executor 2, partition 30, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 31.0 in stage 0.0 (TID 31, datanode01, executor 2, partition 31, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 25.0 in stage 0.0 (TID 25) in 27 ms on datanode01 (executor 2) (25/50) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 24.0 in stage 0.0 (TID 24) in 29 ms on datanode01 (executor 2) (26/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 32.0 in stage 0.0 (TID 32, datanode02, executor 3, partition 32, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 29.0 in stage 0.0 (TID 29) in 16 ms on datanode02 (executor 3) (27/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 33.0 in stage 0.0 (TID 33, datanode03, executor 1, partition 33, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 26.0 in stage 0.0 (TID 26) in 30 ms on datanode03 (executor 1) (28/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 34.0 in stage 0.0 (TID 34, datanode02, executor 3, partition 34, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 28.0 in stage 0.0 (TID 28) in 21 ms on datanode02 (executor 3) (29/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 35.0 in stage 0.0 (TID 35, datanode03, executor 1, partition 35, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 27.0 in stage 0.0 (TID 27) in 32 ms on datanode03 (executor 1) (30/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 36.0 in stage 0.0 (TID 36, datanode02, executor 3, partition 36, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 32.0 in stage 0.0 (TID 32) in 11 ms on datanode02 (executor 3) (31/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 37.0 in stage 0.0 (TID 37, datanode01, executor 2, partition 37, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 30.0 in stage 0.0 (TID 30) in 18 ms on datanode01 (executor 2) (32/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 38.0 in stage 0.0 (TID 38, datanode01, executor 2, partition 38, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 31.0 in stage 0.0 (TID 31) in 20 ms on datanode01 (executor 2) (33/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 39.0 in stage 0.0 (TID 39, datanode03, executor 1, partition 39, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 33.0 in stage 0.0 (TID 33) in 17 ms on datanode03 (executor 1) (34/50) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 34.0 in stage 0.0 (TID 34) in 17 ms on datanode02 (executor 3) (35/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 40.0 in stage 0.0 (TID 40, datanode02, executor 3, partition 40, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 41.0 in stage 0.0 (TID 41, datanode03, executor 1, partition 41, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 35.0 in stage 0.0 (TID 35) in 17 ms on datanode03 (executor 1) (36/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 42.0 in stage 0.0 (TID 42, datanode02, executor 3, partition 42, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 36.0 in stage 0.0 (TID 36) in 16 ms on datanode02 (executor 3) (37/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 43.0 in stage 0.0 (TID 43, datanode01, executor 2, partition 43, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 37.0 in stage 0.0 (TID 37) in 16 ms on datanode01 (executor 2) (38/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 44.0 in stage 0.0 (TID 44, datanode02, executor 3, partition 44, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 45.0 in stage 0.0 (TID 45, datanode02, executor 3, partition 45, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 40.0 in stage 0.0 (TID 40) in 14 ms on datanode02 (executor 3) (39/50) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 42.0 in stage 0.0 (TID 42) in 11 ms on datanode02 (executor 3) (40/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 46.0 in stage 0.0 (TID 46, datanode03, executor 1, partition 46, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 39.0 in stage 0.0 (TID 39) in 20 ms on datanode03 (executor 1) (41/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 47.0 in stage 0.0 (TID 47, datanode03, executor 1, partition 47, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 41.0 in stage 0.0 (TID 41) in 20 ms on datanode03 (executor 1) (42/50) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 48.0 in stage 0.0 (TID 48, datanode01, executor 2, partition 48, PROCESS_LOCAL, 7831 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 49.0 in stage 0.0 (TID 49, datanode01, executor 2, partition 49, PROCESS_LOCAL, 7888 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 43.0 in stage 0.0 (TID 43) in 18 ms on datanode01 (executor 2) (43/50) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 38.0 in stage 0.0 (TID 38) in 31 ms on datanode01 (executor 2) (44/50) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 45.0 in stage 0.0 (TID 45) in 11 ms on datanode02 (executor 3) (45/50) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 44.0 in stage 0.0 (TID 44) in 16 ms on datanode02 (executor 3) (46/50) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 46.0 in stage 0.0 (TID 46) in 18 ms on datanode03 (executor 1) (47/50) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 48.0 in stage 0.0 (TID 48) in 15 ms on datanode01 (executor 2) (48/50) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 47.0 in stage 0.0 (TID 47) in 15 ms on datanode03 (executor 1) (49/50) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 49.0 in stage 0.0 (TID 49) in 25 ms on datanode01 (executor 2) (50/50) 19/08/13 19:53:27 INFO YarnClusterScheduler: Removed TaskSet 0.0, whose tasks have all completed, from pool 19/08/13 19:53:27 INFO DAGScheduler: ShuffleMapStage 0 (start at VoiceApplication2.java:128) finished in 1.174 s 19/08/13 19:53:27 INFO DAGScheduler: looking for newly runnable stages 19/08/13 19:53:27 INFO DAGScheduler: running: Set() 19/08/13 19:53:27 INFO DAGScheduler: waiting: Set(ResultStage 1) 19/08/13 19:53:27 INFO DAGScheduler: failed: Set() 19/08/13 19:53:27 INFO DAGScheduler: Submitting ResultStage 1 (ShuffledRDD[2] at start at VoiceApplication2.java:128), which has no missing parents 19/08/13 19:53:27 INFO MemoryStore: Block broadcast_1 stored as values in memory (estimated size 3.2 KB, free 366.3 MB) 19/08/13 19:53:27 INFO MemoryStore: Block broadcast_1_piece0 stored as bytes in memory (estimated size 1979.0 B, free 366.3 MB) 19/08/13 19:53:27 INFO BlockManagerInfo: Added broadcast_1_piece0 in memory on datanode02:31984 (size: 1979.0 B, free: 366.3 MB) 19/08/13 19:53:27 INFO SparkContext: Created broadcast 1 from broadcast at DAGScheduler.scala:1039 19/08/13 19:53:27 INFO DAGScheduler: Submitting 20 missing tasks from ResultStage 1 (ShuffledRDD[2] at start at VoiceApplication2.java:128) (first 15 tasks are for partitions Vector(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14)) 19/08/13 19:53:27 INFO YarnClusterScheduler: Adding task set 1.0 with 20 tasks 19/08/13 19:53:27 INFO TaskSetManager: Starting task 0.0 in stage 1.0 (TID 50, datanode03, executor 1, partition 0, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 1.0 in stage 1.0 (TID 51, datanode02, executor 3, partition 1, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 3.0 in stage 1.0 (TID 52, datanode01, executor 2, partition 3, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 2.0 in stage 1.0 (TID 53, datanode03, executor 1, partition 2, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 4.0 in stage 1.0 (TID 54, datanode02, executor 3, partition 4, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 5.0 in stage 1.0 (TID 55, datanode01, executor 2, partition 5, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO BlockManagerInfo: Added broadcast_1_piece0 in memory on datanode02:28863 (size: 1979.0 B, free: 2.5 GB) 19/08/13 19:53:27 INFO BlockManagerInfo: Added broadcast_1_piece0 in memory on datanode01:20487 (size: 1979.0 B, free: 2.5 GB) 19/08/13 19:53:27 INFO BlockManagerInfo: Added broadcast_1_piece0 in memory on datanode03:3328 (size: 1979.0 B, free: 2.5 GB) 19/08/13 19:53:27 INFO MapOutputTrackerMasterEndpoint: Asked to send map output locations for shuffle 0 to 10.1.229.163:24656 19/08/13 19:53:27 INFO MapOutputTrackerMasterEndpoint: Asked to send map output locations for shuffle 0 to 10.1.198.144:41122 19/08/13 19:53:27 INFO MapOutputTrackerMasterEndpoint: Asked to send map output locations for shuffle 0 to 10.1.229.158:64276 19/08/13 19:53:27 INFO TaskSetManager: Starting task 7.0 in stage 1.0 (TID 56, datanode03, executor 1, partition 7, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 2.0 in stage 1.0 (TID 53) in 192 ms on datanode03 (executor 1) (1/20) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 8.0 in stage 1.0 (TID 57, datanode03, executor 1, partition 8, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 7.0 in stage 1.0 (TID 56) in 25 ms on datanode03 (executor 1) (2/20) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 6.0 in stage 1.0 (TID 58, datanode02, executor 3, partition 6, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 1.0 in stage 1.0 (TID 51) in 220 ms on datanode02 (executor 3) (3/20) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 14.0 in stage 1.0 (TID 59, datanode03, executor 1, partition 14, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 8.0 in stage 1.0 (TID 57) in 17 ms on datanode03 (executor 1) (4/20) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 16.0 in stage 1.0 (TID 60, datanode03, executor 1, partition 16, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 14.0 in stage 1.0 (TID 59) in 15 ms on datanode03 (executor 1) (5/20) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 16.0 in stage 1.0 (TID 60) in 21 ms on datanode03 (executor 1) (6/20) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 9.0 in stage 1.0 (TID 61, datanode02, executor 3, partition 9, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 4.0 in stage 1.0 (TID 54) in 269 ms on datanode02 (executor 3) (7/20) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 0.0 in stage 1.0 (TID 50) in 339 ms on datanode03 (executor 1) (8/20) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 10.0 in stage 1.0 (TID 62, datanode02, executor 3, partition 10, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 6.0 in stage 1.0 (TID 58) in 56 ms on datanode02 (executor 3) (9/20) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 11.0 in stage 1.0 (TID 63, datanode01, executor 2, partition 11, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 5.0 in stage 1.0 (TID 55) in 284 ms on datanode01 (executor 2) (10/20) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 12.0 in stage 1.0 (TID 64, datanode01, executor 2, partition 12, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 3.0 in stage 1.0 (TID 52) in 287 ms on datanode01 (executor 2) (11/20) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 13.0 in stage 1.0 (TID 65, datanode02, executor 3, partition 13, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 15.0 in stage 1.0 (TID 66, datanode02, executor 3, partition 15, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 10.0 in stage 1.0 (TID 62) in 25 ms on datanode02 (executor 3) (12/20) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 9.0 in stage 1.0 (TID 61) in 29 ms on datanode02 (executor 3) (13/20) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 17.0 in stage 1.0 (TID 67, datanode02, executor 3, partition 17, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 15.0 in stage 1.0 (TID 66) in 13 ms on datanode02 (executor 3) (14/20) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 13.0 in stage 1.0 (TID 65) in 16 ms on datanode02 (executor 3) (15/20) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 18.0 in stage 1.0 (TID 68, datanode02, executor 3, partition 18, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Starting task 19.0 in stage 1.0 (TID 69, datanode01, executor 2, partition 19, NODE_LOCAL, 7638 bytes) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 11.0 in stage 1.0 (TID 63) in 30 ms on datanode01 (executor 2) (16/20) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 12.0 in stage 1.0 (TID 64) in 30 ms on datanode01 (executor 2) (17/20) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 17.0 in stage 1.0 (TID 67) in 17 ms on datanode02 (executor 3) (18/20) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 19.0 in stage 1.0 (TID 69) in 13 ms on datanode01 (executor 2) (19/20) 19/08/13 19:53:27 INFO TaskSetManager: Finished task 18.0 in stage 1.0 (TID 68) in 20 ms on datanode02 (executor 3) (20/20) 19/08/13 19:53:27 INFO YarnClusterScheduler: Removed TaskSet 1.0, whose tasks have all completed, from pool 19/08/13 19:53:27 INFO DAGScheduler: ResultStage 1 (start at VoiceApplication2.java:128) finished in 0.406 s 19/08/13 19:53:27 INFO DAGScheduler: Job 0 finished: start at VoiceApplication2.java:128, took 1.850883 s 19/08/13 19:53:27 INFO ReceiverTracker: Starting 1 receivers 19/08/13 19:53:27 INFO ReceiverTracker: ReceiverTracker started 19/08/13 19:53:27 INFO KafkaInputDStream: Slide time = 60000 ms 19/08/13 19:53:27 INFO KafkaInputDStream: Storage level = Serialized 1x Replicated 19/08/13 19:53:27 INFO KafkaInputDStream: Checkpoint interval = null 19/08/13 19:53:27 INFO KafkaInputDStream: Remember interval = 60000 ms 19/08/13 19:53:27 INFO KafkaInputDStream: Initialized and validated org.apache.spark.streaming.kafka.KafkaInputDStream@5fd3dc81 19/08/13 19:53:27 INFO ForEachDStream: Slide time = 60000 ms 19/08/13 19:53:27 INFO ForEachDStream: Storage level = Serialized 1x Replicated 19/08/13 19:53:27 INFO ForEachDStream: Checkpoint interval = null 19/08/13 19:53:27 INFO ForEachDStream: Remember interval = 60000 ms 19/08/13 19:53:27 INFO ForEachDStream: Initialized and validated org.apache.spark.streaming.dstream.ForEachDStream@4044ec97 19/08/13 19:53:27 INFO KafkaInputDStream: Slide time = 60000 ms 19/08/13 19:53:27 INFO KafkaInputDStream: Storage level = Serialized 1x Replicated 19/08/13 19:53:27 INFO KafkaInputDStream: Checkpoint interval = null 19/08/13 19:53:27 INFO KafkaInputDStream: Remember interval = 60000 ms 19/08/13 19:53:27 INFO KafkaInputDStream: Initialized and validated org.apache.spark.streaming.kafka.KafkaInputDStream@5fd3dc81 19/08/13 19:53:27 INFO MappedDStream: Slide time = 60000 ms 19/08/13 19:53:27 INFO MappedDStream: Storage level = Serialized 1x Replicated 19/08/13 19:53:27 INFO MappedDStream: Checkpoint interval = null 19/08/13 19:53:27 INFO MappedDStream: Remember interval = 60000 ms 19/08/13 19:53:27 INFO MappedDStream: Initialized and validated org.apache.spark.streaming.dstream.MappedDStream@5dd4b960 19/08/13 19:53:27 INFO ForEachDStream: Slide time = 60000 ms 19/08/13 19:53:27 INFO ForEachDStream: Storage level = Serialized 1x Replicated 19/08/13 19:53:27 INFO ForEachDStream: Checkpoint interval = null 19/08/13 19:53:27 INFO ForEachDStream: Remember interval = 60000 ms 19/08/13 19:53:27 INFO ForEachDStream: Initialized and validated org.apache.spark.streaming.dstream.ForEachDStream@132d0c3c 19/08/13 19:53:27 INFO KafkaInputDStream: Slide time = 60000 ms 19/08/13 19:53:27 INFO KafkaInputDStream: Storage level = Serialized 1x Replicated 19/08/13 19:53:27 INFO KafkaInputDStream: Checkpoint interval = null 19/08/13 19:53:27 INFO KafkaInputDStream: Remember interval = 60000 ms 19/08/13 19:53:27 INFO KafkaInputDStream: Initialized and validated org.apache.spark.streaming.kafka.KafkaInputDStream@5fd3dc81 19/08/13 19:53:27 INFO MappedDStream: Slide time = 60000 ms 19/08/13 19:53:27 INFO MappedDStream: Storage level = Serialized 1x Replicated 19/08/13 19:53:27 INFO MappedDStream: Checkpoint interval = null 19/08/13 19:53:27 INFO MappedDStream: Remember interval = 60000 ms 19/08/13 19:53:27 INFO MappedDStream: Initialized and validated org.apache.spark.streaming.dstream.MappedDStream@5dd4b960 19/08/13 19:53:27 INFO ForEachDStream: Slide time = 60000 ms 19/08/13 19:53:27 INFO ForEachDStream: Storage level = Serialized 1x Replicated 19/08/13 19:53:27 INFO ForEachDStream: Checkpoint interval = null 19/08/13 19:53:27 INFO ForEachDStream: Remember interval = 60000 ms 19/08/13 19:53:27 INFO ForEachDStream: Initialized and validated org.apache.spark.streaming.dstream.ForEachDStream@525bed0c 19/08/13 19:53:27 INFO DAGScheduler: Got job 1 (start at VoiceApplication2.java:128) with 1 output partitions 19/08/13 19:53:27 INFO DAGScheduler: Final stage: ResultStage 2 (start at VoiceApplication2.java:128) 19/08/13 19:53:27 INFO DAGScheduler: Parents of final stage: List() 19/08/13 19:53:27 INFO DAGScheduler: Missing parents: List() 19/08/13 19:53:27 INFO DAGScheduler: Submitting ResultStage 2 (Receiver 0 ParallelCollectionRDD[3] at makeRDD at ReceiverTracker.scala:613), which has no missing parents 19/08/13 19:53:27 INFO ReceiverTracker: Receiver 0 started 19/08/13 19:53:27 INFO MemoryStore: Block broadcast_2 stored as values in memory (estimated size 133.5 KB, free 366.2 MB) 19/08/13 19:53:27 INFO MemoryStore: Block broadcast_2_piece0 stored as bytes in memory (estimated size 36.3 KB, free 366.1 MB) 19/08/13 19:53:27 INFO BlockManagerInfo: Added broadcast_2_piece0 in memory on datanode02:31984 (size: 36.3 KB, free: 366.3 MB) 19/08/13 19:53:27 INFO SparkContext: Created broadcast 2 from broadcast at DAGScheduler.scala:1039 19/08/13 19:53:27 INFO DAGScheduler: Submitting 1 missing tasks from ResultStage 2 (Receiver 0 ParallelCollectionRDD[3] at makeRDD at ReceiverTracker.scala:613) (first 15 tasks are for partitions Vector(0)) 19/08/13 19:53:27 INFO YarnClusterScheduler: Adding task set 2.0 with 1 tasks 19/08/13 19:53:27 INFO TaskSetManager: Starting task 0.0 in stage 2.0 (TID 70, datanode01, executor 2, partition 0, PROCESS_LOCAL, 8757 bytes) 19/08/13 19:53:27 INFO RecurringTimer: Started timer for JobGenerator at time 1565697240000 19/08/13 19:53:27 INFO JobGenerator: Started JobGenerator at 1565697240000 ms 19/08/13 19:53:27 INFO JobScheduler: Started JobScheduler 19/08/13 19:53:27 INFO StreamingContext: StreamingContext started 19/08/13 19:53:27 INFO BlockManagerInfo: Added broadcast_2_piece0 in memory on datanode01:20487 (size: 36.3 KB, free: 2.5 GB) 19/08/13 19:53:27 INFO ReceiverTracker: Registered receiver for stream 0 from 10.1.229.158:64276 19/08/13 19:54:00 INFO JobScheduler: Added jobs for time 1565697240000 ms 19/08/13 19:54:00 INFO JobScheduler: Starting job streaming job 1565697240000 ms.0 from job set of time 1565697240000 ms 19/08/13 19:54:00 INFO JobScheduler: Starting job streaming job 1565697240000 ms.1 from job set of time 1565697240000 ms 19/08/13 19:54:00 INFO JobScheduler: Finished job streaming job 1565697240000 ms.1 from job set of time 1565697240000 ms 19/08/13 19:54:00 INFO JobScheduler: Finished job streaming job 1565697240000 ms.0 from job set of time 1565697240000 ms 19/08/13 19:54:00 INFO JobScheduler: Starting job streaming job 1565697240000 ms.2 from job set of time 1565697240000 ms 19/08/13 19:54:00 INFO SharedState: loading hive config file: file:/data01/hadoop/yarn/local/usercache/hdfs/filecache/85431/__spark_conf__.zip/__hadoop_conf__/hive-site.xml 19/08/13 19:54:00 INFO SharedState: Setting hive.metastore.warehouse.dir ('null') to the value of spark.sql.warehouse.dir ('hdfs://CID-042fb939-95b4-4b74-91b8-9f94b999bdf7/apps/hive/warehouse'). 19/08/13 19:54:00 INFO SharedState: Warehouse path is 'hdfs://CID-042fb939-95b4-4b74-91b8-9f94b999bdf7/apps/hive/warehouse'. 19/08/13 19:54:00 INFO StateStoreCoordinatorRef: Registered StateStoreCoordinator endpoint 19/08/13 19:54:00 INFO BlockManagerInfo: Removed broadcast_1_piece0 on datanode02:31984 in memory (size: 1979.0 B, free: 366.3 MB) 19/08/13 19:54:00 INFO BlockManagerInfo: Removed broadcast_1_piece0 on datanode02:28863 in memory (size: 1979.0 B, free: 2.5 GB) 19/08/13 19:54:00 INFO BlockManagerInfo: Removed broadcast_1_piece0 on datanode01:20487 in memory (size: 1979.0 B, free: 2.5 GB) 19/08/13 19:54:00 INFO BlockManagerInfo: Removed broadcast_1_piece0 on datanode03:3328 in memory (size: 1979.0 B, free: 2.5 GB) 19/08/13 19:54:02 INFO CodeGenerator: Code generated in 175.416957 ms 19/08/13 19:54:02 INFO JobScheduler: Finished job streaming job 1565697240000 ms.2 from job set of time 1565697240000 ms 19/08/13 19:54:02 ERROR JobScheduler: Error running job streaming job 1565697240000 ms.2 org.apache.spark.sql.catalyst.analysis.NoSuchDatabaseException: Database 'meta_voice' not found; at org.apache.spark.sql.catalyst.catalog.ExternalCatalog.requireDbExists(ExternalCatalog.scala:40) at org.apache.spark.sql.catalyst.catalog.InMemoryCatalog.tableExists(InMemoryCatalog.scala:331) at org.apache.spark.sql.catalyst.catalog.SessionCatalog.tableExists(SessionCatalog.scala:388) at org.apache.spark.sql.DataFrameWriter.saveAsTable(DataFrameWriter.scala:398) at org.apache.spark.sql.DataFrameWriter.saveAsTable(DataFrameWriter.scala:393) at com.stream.VoiceApplication2$2.call(VoiceApplication2.java:122) at com.stream.VoiceApplication2$2.call(VoiceApplication2.java:115) at org.apache.spark.streaming.api.java.JavaDStreamLike$$anonfun$foreachRDD$2.apply(JavaDStreamLike.scala:280) at org.apache.spark.streaming.api.java.JavaDStreamLike$$anonfun$foreachRDD$2.apply(JavaDStreamLike.scala:280) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply$mcV$sp(ForEachDStream.scala:51) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:51) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:51) at org.apache.spark.streaming.dstream.DStream.createRDDWithLocalProperties(DStream.scala:416) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply$mcV$sp(ForEachDStream.scala:50) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:50) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:50) at scala.util.Try$.apply(Try.scala:192) at org.apache.spark.streaming.scheduler.Job.run(Job.scala:39) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply$mcV$sp(JobScheduler.scala:257) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:257) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:257) at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler.run(JobScheduler.scala:256) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748) 19/08/13 19:54:02 ERROR ApplicationMaster: User class threw exception: org.apache.spark.sql.catalyst.analysis.NoSuchDatabaseException: Database 'meta_voice' not found; org.apache.spark.sql.catalyst.analysis.NoSuchDatabaseException: Database 'meta_voice' not found; at org.apache.spark.sql.catalyst.catalog.ExternalCatalog.requireDbExists(ExternalCatalog.scala:40) at org.apache.spark.sql.catalyst.catalog.InMemoryCatalog.tableExists(InMemoryCatalog.scala:331) at org.apache.spark.sql.catalyst.catalog.SessionCatalog.tableExists(SessionCatalog.scala:388) at org.apache.spark.sql.DataFrameWriter.saveAsTable(DataFrameWriter.scala:398) at org.apache.spark.sql.DataFrameWriter.saveAsTable(DataFrameWriter.scala:393) at com.stream.VoiceApplication2$2.call(VoiceApplication2.java:122) at com.stream.VoiceApplication2$2.call(VoiceApplication2.java:115) at org.apache.spark.streaming.api.java.JavaDStreamLike$$anonfun$foreachRDD$2.apply(JavaDStreamLike.scala:280) at org.apache.spark.streaming.api.java.JavaDStreamLike$$anonfun$foreachRDD$2.apply(JavaDStreamLike.scala:280) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply$mcV$sp(ForEachDStream.scala:51) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:51) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:51) at org.apache.spark.streaming.dstream.DStream.createRDDWithLocalProperties(DStream.scala:416) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply$mcV$sp(ForEachDStream.scala:50) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:50) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:50) at scala.util.Try$.apply(Try.scala:192) at org.apache.spark.streaming.scheduler.Job.run(Job.scala:39) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply$mcV$sp(JobScheduler.scala:257) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:257) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:257) at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler.run(JobScheduler.scala:256) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748) 19/08/13 19:54:02 INFO ApplicationMaster: Final app status: FAILED, exitCode: 15, (reason: User class threw exception: org.apache.spark.sql.catalyst.analysis.NoSuchDatabaseException: Database 'meta_voice' not found; at org.apache.spark.sql.catalyst.catalog.ExternalCatalog.requireDbExists(ExternalCatalog.scala:40) at org.apache.spark.sql.catalyst.catalog.InMemoryCatalog.tableExists(InMemoryCatalog.scala:331) at org.apache.spark.sql.catalyst.catalog.SessionCatalog.tableExists(SessionCatalog.scala:388) at org.apache.spark.sql.DataFrameWriter.saveAsTable(DataFrameWriter.scala:398) at org.apache.spark.sql.DataFrameWriter.saveAsTable(DataFrameWriter.scala:393) at com.stream.VoiceApplication2$2.call(VoiceApplication2.java:122) at com.stream.VoiceApplication2$2.call(VoiceApplication2.java:115) at org.apache.spark.streaming.api.java.JavaDStreamLike$$anonfun$foreachRDD$2.apply(JavaDStreamLike.scala:280) at org.apache.spark.streaming.api.java.JavaDStreamLike$$anonfun$foreachRDD$2.apply(JavaDStreamLike.scala:280) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply$mcV$sp(ForEachDStream.scala:51) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:51) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:51) at org.apache.spark.streaming.dstream.DStream.createRDDWithLocalProperties(DStream.scala:416) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply$mcV$sp(ForEachDStream.scala:50) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:50) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:50) at scala.util.Try$.apply(Try.scala:192) at org.apache.spark.streaming.scheduler.Job.run(Job.scala:39) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply$mcV$sp(JobScheduler.scala:257) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:257) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:257) at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler.run(JobScheduler.scala:256) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748) ) 19/08/13 19:54:02 INFO StreamingContext: Invoking stop(stopGracefully=true) from shutdown hook 19/08/13 19:54:02 INFO ReceiverTracker: Sent stop signal to all 1 receivers 19/08/13 19:54:02 ERROR ReceiverTracker: Deregistered receiver for stream 0: Stopped by driver 19/08/13 19:54:02 INFO TaskSetManager: Finished task 0.0 in stage 2.0 (TID 70) in 35055 ms on datanode01 (executor 2) (1/1) 19/08/13 19:54:02 INFO YarnClusterScheduler: Removed TaskSet 2.0, whose tasks have all completed, from pool 19/08/13 19:54:02 INFO DAGScheduler: ResultStage 2 (start at VoiceApplication2.java:128) finished in 35.086 s 19/08/13 19:54:02 INFO ReceiverTracker: Waiting for receiver job to terminate gracefully 19/08/13 19:54:02 INFO ReceiverTracker: Waited for receiver job to terminate gracefully 19/08/13 19:54:02 INFO ReceiverTracker: All of the receivers have deregistered successfully 19/08/13 19:54:02 INFO ReceiverTracker: ReceiverTracker stopped 19/08/13 19:54:02 INFO JobGenerator: Stopping JobGenerator gracefully 19/08/13 19:54:02 INFO JobGenerator: Waiting for all received blocks to be consumed for job generation 19/08/13 19:54:02 INFO JobGenerator: Waited for all received blocks to be consumed for job generation 19/08/13 19:54:12 WARN ShutdownHookManager: ShutdownHook '$anon$2' timeout, java.util.concurrent.TimeoutException java.util.concurrent.TimeoutException at java.util.concurrent.FutureTask.get(FutureTask.java:205) at org.apache.hadoop.util.ShutdownHookManager$1.run(ShutdownHookManager.java:67) 19/08/13 19:54:12 ERROR Utils: Uncaught exception in thread pool-1-thread-1 java.lang.InterruptedException at java.lang.Object.wait(Native Method) at java.lang.Thread.join(Thread.java:1252) at java.lang.Thread.join(Thread.java:1326) at org.apache.spark.streaming.util.RecurringTimer.stop(RecurringTimer.scala:86) at org.apache.spark.streaming.scheduler.JobGenerator.stop(JobGenerator.scala:137) at org.apache.spark.streaming.scheduler.JobScheduler.stop(JobScheduler.scala:123) at org.apache.spark.streaming.StreamingContext$$anonfun$stop$1.apply$mcV$sp(StreamingContext.scala:681) at org.apache.spark.util.Utils$.tryLogNonFatalError(Utils.scala:1357) at org.apache.spark.streaming.StreamingContext.stop(StreamingContext.scala:680) at org.apache.spark.streaming.StreamingContext.org$apache$spark$streaming$StreamingContext$$stopOnShutdown(StreamingContext.scala:714) at org.apache.spark.streaming.StreamingContext$$anonfun$start$1.apply$mcV$sp(StreamingContext.scala:599) at org.apache.spark.util.SparkShutdownHook.run(ShutdownHookManager.scala:216) at org.apache.spark.util.SparkShutdownHookManager$$anonfun$runAll$1$$anonfun$apply$mcV$sp$1.apply$mcV$sp(ShutdownHookManager.scala:188) at org.apache.spark.util.SparkShutdownHookManager$$anonfun$runAll$1$$anonfun$apply$mcV$sp$1.apply(ShutdownHookManager.scala:188) at org.apache.spark.util.SparkShutdownHookManager$$anonfun$runAll$1$$anonfun$apply$mcV$sp$1.apply(ShutdownHookManager.scala:188) at org.apache.spark.util.Utils$.logUncaughtExceptions(Utils.scala:1988) at org.apache.spark.util.SparkShutdownHookManager$$anonfun$runAll$1.apply$mcV$sp(ShutdownHookManager.scala:188) at org.apache.spark.util.SparkShutdownHookManager$$anonfun$runAll$1.apply(ShutdownHookManager.scala:188) at org.apache.spark.util.SparkShutdownHookManager$$anonfun$runAll$1.apply(ShutdownHookManager.scala:188) at scala.util.Try$.apply(Try.scala:192) at org.apache.spark.util.SparkShutdownHookManager.runAll(ShutdownHookManager.scala:188) at org.apache.spark.util.SparkShutdownHookManager$$anon$2.run(ShutdownHookManager.scala:178) at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511) at java.util.concurrent.FutureTask.run(FutureTask.java:266) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748) ```

Spark 连接 mongodb 用python

按照官网教程 1 from pyspark.sql import SparkSession spark = SparkSession \ .builder \ .appName("myApp") \ .config("spark.mongodb.input.uri", "mongodb://127.0.0.1/Spark-Test.Numbers") \ .config("spark.mongodb.output.uri", "mongodb://127.0.0.1/Spark-Test.Numbers") \ .getOrCreate() df = spark.read.format("com.mongodb.spark.sql.DefaultSource").load() 结果报错Caused by: java.lang.ClassNotFoundException: com.mongodb.spark.sql.DefaultSource.DefaultSource 2 我看需要用--packages这个命令导入包 cmd>> pyspark --package org.mongodb.spark:mongo-spark-connector_2.11:2.2.0 报错:Exception in thread "main" java.lang.IllegalArgumentException: pyspark does not 3 完全按照官方来 cmd>>pyspark --conf "spark.mongodb.input.uri=mongodb://127.0.0.1/test.myCollection?readPreference=primaryPreferred" --conf "spark.mongodb.output.uri=mongodb://127.0.0.1/test.myCollection" --packages org.mongodb.spark:mongo-spark-connector_2.10:1.1.0 报错:'D:\SparkNew\spark\bin\pyspark2.cmd" --conf "spark.mongodb.input.uri' 不是内部或外部命令, 也不是可运行的程序或批处理文件。 不太明白我用的pyspark,怎么报错是pyspark2.cmd 那怎么才能跟mongodb连接呢,就是找不到DefaultSource.DefaultSource的事啊

win10下运行hadoop程序报错

在win10的eclipse上运行一段代码需要用到hadoop。一开始报错:Could not locate executable null\bin\winutils.exe in the Hadoop binaries 按照指导下载了winutils.exe 并且配置了环境变量。再运行程序又报错: Exception in thread "main" java.lang.RuntimeException: java.lang.RuntimeException: The root scratch dir: /tmp/hive on HDFS should be writable. Current permissions are: --------- at org.apache.hadoop.hive.ql.session.SessionState.start(SessionState.java:522) at org.apache.spark.sql.hive.client.ClientWrapper.<init>(ClientWrapper.scala:171) at org.apache.spark.sql.hive.HiveContext.executionHive$lzycompute(HiveContext.scala:162) at org.apache.spark.sql.hive.HiveContext.executionHive(HiveContext.scala:160) at org.apache.spark.sql.hive.HiveContext.<init>(HiveContext.scala:167) at org.apache.spark.sql.CarbonContext.<init>(CarbonContext.scala:34) at org.carbondata.examples.util.InitForExamples$.createCarbonContext(InitForExamples.scala:42) at org.carbondata.examples.CarbonExample$.main(CarbonExample.scala:26) at org.carbondata.examples.CarbonExample.main(CarbonExample.scala) Caused by: java.lang.RuntimeException: The root scratch dir: /tmp/hive on HDFS should be writable. Current permissions are: --------- at org.apache.hadoop.hive.ql.session.SessionState.createRootHDFSDir(SessionState.java:612) at org.apache.hadoop.hive.ql.session.SessionState.createSessionDirs(SessionState.java:554) at org.apache.hadoop.hive.ql.session.SessionState.start(SessionState.java:508) ... 8 more ``` 按照指导在win10 cmd窗口后运行 winutils.exe chmod 777 /tmp/hive 报如下错误: ChangeFileModeByMask error (3): ??????????? 哪位大神现身救助

spark2.0开发问题,用java程序编写

private static void testSparkToHive() { System.setProperty("HADOOP_USER_NAME", "mr"); SparkSession session = SparkClient.connHive(SparkConnUtil.loadProperties("/spark.properties")); System.out.println(session.toString()); session.sql("select te1 from default.lp_data_000b limit 1 ").show(); session.stop(); } public SparkSession connHive(Properties properties) { SparkConf conf = new SparkConf(); Enumeration<Object> en = properties.keys(); while (en.hasMoreElements()) { String name = en.nextElement().toString(); String value = properties.getProperty(name); if (!"".equals(value)) { conf.set(name, value); } } sc = SparkSession .builder() .config(conf) .enableHiveSupport()//Enables Hive support .getOrCreate(); return sc; } 报错如下: 17/06/20 13:51:21 INFO DataNucleus.Datastore: The class "org.apache.hadoop.hive.metastore.model.MResourceUri" is tagged as "embedded-only" so does not have its own datastore table. Exception in thread "main" java.lang.reflect.InvocationTargetException at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:57) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45) at java.lang.reflect.Constructor.newInstance(Constructor.java:525) at org.apache.spark.sql.hive.client.IsolatedClientLoader.createClient(IsolatedClientLoader.scala:258) at org.apache.spark.sql.hive.HiveUtils$.newClientForMetadata(HiveUtils.scala:359) at org.apache.spark.sql.hive.HiveUtils$.newClientForMetadata(HiveUtils.scala:263) at org.apache.spark.sql.hive.HiveSharedState.metadataHive$lzycompute(HiveSharedState.scala:39) at org.apache.spark.sql.hive.HiveSharedState.metadataHive(HiveSharedState.scala:38) at org.apache.spark.sql.hive.HiveSharedState.externalCatalog$lzycompute(HiveSharedState.scala:46) at org.apache.spark.sql.hive.HiveSharedState.externalCatalog(HiveSharedState.scala:45) at org.apache.spark.sql.hive.HiveSessionState.catalog$lzycompute(HiveSessionState.scala:50) at org.apache.spark.sql.hive.HiveSessionState.catalog(HiveSessionState.scala:48) at org.apache.spark.sql.hive.HiveSessionState$$anon$1.<init>(HiveSessionState.scala:63) at org.apache.spark.sql.hive.HiveSessionState.analyzer$lzycompute(HiveSessionState.scala:63) at org.apache.spark.sql.hive.HiveSessionState.analyzer(HiveSessionState.scala:62) at org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:49) at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:64) at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:582) at com.demo.Test.testSparkToHive(Test.java:34) at com.demo.Test.main(Test.java:21) Caused by: java.lang.RuntimeException: java.lang.NullPointerException at org.apache.hadoop.hive.ql.session.SessionState.start(SessionState.java:522) at org.apache.spark.sql.hive.client.HiveClientImpl.<init>(HiveClientImpl.scala:171) ... 21 more Caused by: java.lang.NullPointerException at java.lang.ProcessBuilder.start(ProcessBuilder.java:1010) at org.apache.hadoop.util.Shell.runCommand(Shell.java:505) at org.apache.hadoop.util.Shell.run(Shell.java:478) at org.apache.hadoop.util.Shell$ShellCommandExecutor.execute(Shell.java:738) at org.apache.hadoop.util.Shell.execCommand(Shell.java:831) at org.apache.hadoop.util.Shell.execCommand(Shell.java:814) at org.apache.hadoop.fs.FileUtil.execCommand(FileUtil.java:1100) at org.apache.hadoop.fs.RawLocalFileSystem$DeprecatedRawLocalFileStatus.loadPermissionInfo(RawLocalFileSystem.java:638) at org.apache.hadoop.fs.RawLocalFileSystem$DeprecatedRawLocalFileStatus.getPermission(RawLocalFileSystem.java:613) at org.apache.hadoop.hive.ql.session.SessionState.createRootHDFSDir(SessionState.java:599) at org.apache.hadoop.hive.ql.session.SessionState.createSessionDirs(SessionState.java:554) at org.apache.hadoop.hive.ql.session.SessionState.start(SessionState.java:508) ... 22 more 什么原因,求知道。

spark.SparkContext Error initializingSparkContext.

17/09/22 11:07:06 ERROR inject.Errors: The following errors and warnings have been detected with resource and/or provider classes: SEVERE: Missing dependency for field: javax.ws.rs.core.UriInfo com.alibaba.fastjson.support.jaxrs.FastJsonProvider.uriInfo 17/09/22 11:07:06 INFO service.AbstractService: Service org.apache.hadoop.yarn.client.api.impl.TimelineClientImpl failed in state INITED; cause: com.sun.jersey.spi.inject.Errors$ErrorMessagesException com.sun.jersey.spi.inject.Errors$ErrorMessagesException at com.sun.jersey.spi.inject.Errors.processErrorMessages(Errors.java:170) at com.sun.jersey.spi.inject.Errors.postProcess(Errors.java:136) at com.sun.jersey.spi.inject.Errors.processWithErrors(Errors.java:199) at com.sun.jersey.api.client.Client.<init>(Client.java:187) at com.sun.jersey.api.client.Client.<init>(Client.java:170) at org.apache.hadoop.yarn.client.api.impl.TimelineClientImpl.serviceInit(TimelineClientImpl.java:268) at org.apache.hadoop.service.AbstractService.init(AbstractService.java:163) at org.apache.hadoop.yarn.client.api.impl.YarnClientImpl.serviceInit(YarnClientImpl.java:164) at org.apache.hadoop.service.AbstractService.init(AbstractService.java:163) at org.apache.spark.deploy.yarn.Client.submitApplication(Client.scala:125) at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:57) at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:144) at org.apache.spark.SparkContext.<init>(SparkContext.scala:530) at com.lotuseed.loadfile_HdfsToHbase.GetAppName$.sparkOperation(GetAppName.scala:18) at com.lotuseed.loadfile_HdfsToHbase.GetAppName$.main(GetAppName.scala:68) at com.lotuseed.loadfile_HdfsToHbase.GetAppName.main(GetAppName.scala) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:497) at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:731) at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:181) at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:206) at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:121) at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala) 17/09/22 11:07:06 INFO service.AbstractService: Service org.apache.hadoop.yarn.client.api.impl.YarnClientImpl failed in state INITED; cause: com.sun.jersey.spi.inject.Errors$ErrorMessagesException 这种错误是什么原因引起的!怎么解决,使用的spark版本为1.6.1 求大神!

spark jdbc连接impala报错Method not supported

各位好 我的spark是2.1.0,用的hive-jdbc 2.1.0,现在写入impala的时候报以下错: java.sql.SQLException: Method not supported at org.apache.hive.jdbc.HivePreparedStatement.addBatch(HivePreparedStatement.java:75) at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$.savePartition(JdbcUtils.scala:589) at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$$anonfun$saveTable$1.apply(JdbcUtils.scala:670) at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$$anonfun$saveTable$1.apply(JdbcUtils.scala:670) at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1$$anonfun$apply$29.apply(RDD.scala:925) at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1$$anonfun$apply$29.apply(RDD.scala:925) at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1944) at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1944) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87) at org.apache.spark.scheduler.Task.run(Task.scala:99) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:322) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.Thread.run(Thread.java:745) Driver stacktrace: at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1435) at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1423) at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1422) at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48) at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1422) at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802) at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802) at scala.Option.foreach(Option.scala:257) at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:802) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1650) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1605) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1594) at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48) at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:628) at org.apache.spark.SparkContext.runJob(SparkContext.scala:1918) at org.apache.spark.SparkContext.runJob(SparkContext.scala:1931) at org.apache.spark.SparkContext.runJob(SparkContext.scala:1944) at org.apache.spark.SparkContext.runJob(SparkContext.scala:1958) at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1.apply(RDD.scala:925) at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1.apply(RDD.scala:923) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112) at org.apache.spark.rdd.RDD.withScope(RDD.scala:362) at org.apache.spark.rdd.RDD.foreachPartition(RDD.scala:923) at org.apache.spark.sql.Dataset$$anonfun$foreachPartition$1.apply$mcV$sp(Dataset.scala:2305) at org.apache.spark.sql.Dataset$$anonfun$foreachPartition$1.apply(Dataset.scala:2305) at org.apache.spark.sql.Dataset$$anonfun$foreachPartition$1.apply(Dataset.scala:2305) at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:57) at org.apache.spark.sql.Dataset.withNewExecutionId(Dataset.scala:2765) at org.apache.spark.sql.Dataset.foreachPartition(Dataset.scala:2304) at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$.saveTable(JdbcUtils.scala:670) at org.apache.spark.sql.execution.datasources.jdbc.JdbcRelationProvider.createRelation(JdbcRelationProvider.scala:77) at org.apache.spark.sql.execution.datasources.DataSource.write(DataSource.scala:518) at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:215) at org.apache.spark.sql.DataFrameWriter.jdbc(DataFrameWriter.scala:446) at com.aoyou.data.CustomerVisitProduct$.saveToHive(CustomerVisitProduct.scala:281) at com.aoyou.data.CustomerVisitProduct$.main(CustomerVisitProduct.scala:221) at com.aoyou.data.CustomerVisitProduct.main(CustomerVisitProduct.scala) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:497) at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:738) at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:187) at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:212) at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:126) at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala) Caused by: java.sql.SQLException: Method not supported at org.apache.hive.jdbc.HivePreparedStatement.addBatch(HivePreparedStatement.java:75) at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$.savePartition(JdbcUtils.scala:589) at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$$anonfun$saveTable$1.apply(JdbcUtils.scala:670) at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$$anonfun$saveTable$1.apply(JdbcUtils.scala:670) at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1$$anonfun$apply$29.apply(RDD.scala:925) at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1$$anonfun$apply$29.apply(RDD.scala:925) at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1944) at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1944) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87) at org.apache.spark.scheduler.Task.run(Task.scala:99) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:322) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.Thread.run(Thread.java:745) 以下是代码实现 val sparkConf = new SparkConf().setAppName("save").set("spark.sql.crossJoin.enabled", "true"); val sparkSession = SparkSession .builder() .enableHiveSupport() .getOrCreate(); val dataframe = sparkSession.createDataFrame(rddSchema, new Row().getClass()) val property = new Properties(); property.put("user", "xxxxx") property.put("password", "xxxxx") dataframe.write.mode(SaveMode.Append).option("driver", "org.apache.hive.jdbc.HiveDriver").jdbc("jdbc:hive2://xxxx:21050/rawdata;auth=noSasl", "tablename", property) 请问这是怎么回事啊?感觉是驱动版本问题

在kerberos环境下使用spark2访问hive报错

2019-05-13 21:27:07,394 [main] WARN org.apache.hadoop.hive.metastore.MetaStoreDirectSql - Self-test query [select "DB_ID" from "DBS"] failed; direct SQL is disabled javax.jdo.JDODataStoreException: Error executing SQL query "select "DB_ID" from "DBS"". at org.datanucleus.api.jdo.NucleusJDOHelper.getJDOExceptionForNucleusException(NucleusJDOHelper.java:543) at org.datanucleus.api.jdo.JDOQuery.executeInternal(JDOQuery.java:388) at org.datanucleus.api.jdo.JDOQuery.execute(JDOQuery.java:213) at org.apache.hadoop.hive.metastore.MetaStoreDirectSql.runTestQuery(MetaStoreDirectSql.java:243) at org.apache.hadoop.hive.metastore.MetaStoreDirectSql.<init>(MetaStoreDirectSql.java:146) at org.apache.hadoop.hive.metastore.ObjectStore.initializeHelper(ObjectStore.java:406) at org.apache.hadoop.hive.metastore.ObjectStore.initialize(ObjectStore.java:338) at org.apache.hadoop.hive.metastore.ObjectStore.setConf(ObjectStore.java:299) at org.apache.hadoop.util.ReflectionUtils.setConf(ReflectionUtils.java:77) at org.apache.hadoop.util.ReflectionUtils.newInstance(ReflectionUtils.java:137) at org.apache.hadoop.hive.metastore.RawStoreProxy.<init>(RawStoreProxy.java:58) at org.apache.hadoop.hive.metastore.RawStoreProxy.getProxy(RawStoreProxy.java:67) at org.apache.hadoop.hive.metastore.HiveMetaStore$HMSHandler.newRawStoreForConf(HiveMetaStore.java:612) at org.apache.hadoop.hive.metastore.HiveMetaStore$HMSHandler.getMSForConf(HiveMetaStore.java:578) at org.apache.hadoop.hive.metastore.HiveMetaStore$HMSHandler.getMS(HiveMetaStore.java:572) at org.apache.hadoop.hive.metastore.HiveMetaStore$HMSHandler.createDefaultDB(HiveMetaStore.java:639) at org.apache.hadoop.hive.metastore.HiveMetaStore$HMSHandler.init(HiveMetaStore.java:416) at org.apache.hadoop.hive.metastore.RetryingHMSHandler.<init>(RetryingHMSHandler.java:78) at org.apache.hadoop.hive.metastore.RetryingHMSHandler.getProxy(RetryingHMSHandler.java:84) at org.apache.hadoop.hive.metastore.HiveMetaStore.newRetryingHMSHandler(HiveMetaStore.java:6869) at org.apache.hadoop.hive.metastore.HiveMetaStoreClient.<init>(HiveMetaStoreClient.java:248) at org.apache.hadoop.hive.ql.metadata.SessionHiveMetaStoreClient.<init>(SessionHiveMetaStoreClient.java:70) at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45) at java.lang.reflect.Constructor.newInstance(Constructor.java:423) at org.apache.hadoop.hive.metastore.MetaStoreUtils.newInstance(MetaStoreUtils.java:1700) at org.apache.hadoop.hive.metastore.RetryingMetaStoreClient.<init>(RetryingMetaStoreClient.java:80) at org.apache.hadoop.hive.metastore.RetryingMetaStoreClient.getProxy(RetryingMetaStoreClient.java:130) at org.apache.hadoop.hive.metastore.RetryingMetaStoreClient.getProxy(RetryingMetaStoreClient.java:101) at org.apache.hadoop.hive.ql.metadata.Hive.createMetaStoreClient(Hive.java:3581) at org.apache.hadoop.hive.ql.metadata.Hive.getMSC(Hive.java:3633) at org.apache.hadoop.hive.ql.metadata.Hive.getMSC(Hive.java:3613) at org.apache.hadoop.hive.ql.metadata.Hive.getAllFunctions(Hive.java:3867) at org.apache.hadoop.hive.ql.metadata.Hive.reloadFunctions(Hive.java:247) at org.apache.hadoop.hive.ql.metadata.Hive.registerAllFunctionsOnce(Hive.java:230) at org.apache.hadoop.hive.ql.metadata.Hive.<init>(Hive.java:387) at org.apache.hadoop.hive.ql.metadata.Hive.create(Hive.java:331) at org.apache.hadoop.hive.ql.metadata.Hive.getInternal(Hive.java:311) at org.apache.hadoop.hive.ql.metadata.Hive.get(Hive.java:287) at org.apache.hadoop.hive.ql.session.SessionState.setAuthorizerV2Config(SessionState.java:895) at org.apache.hadoop.hive.ql.session.SessionState.setupAuth(SessionState.java:859) at org.apache.hadoop.hive.ql.session.SessionState.getAuthenticator(SessionState.java:1521) at org.apache.spark.sql.hive.client.HiveClientImpl.<init>(HiveClientImpl.scala:204) at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45) at java.lang.reflect.Constructor.newInstance(Constructor.java:423) at org.apache.spark.sql.hive.client.IsolatedClientLoader.createClient(IsolatedClientLoader.scala:268) at org.apache.spark.sql.hive.HiveUtils$.newClientForMetadata(HiveUtils.scala:360) at org.apache.spark.sql.hive.HiveUtils$.newClientForMetadata(HiveUtils.scala:264) at org.apache.spark.sql.hive.HiveExternalCatalog.client$lzycompute(HiveExternalCatalog.scala:68) at org.apache.spark.sql.hive.HiveExternalCatalog.client(HiveExternalCatalog.scala:67) at org.apache.spark.sql.hive.HiveExternalCatalog$$anonfun$databaseExists$1.apply$mcZ$sp(HiveExternalCatalog.scala:197) at org.apache.spark.sql.hive.HiveExternalCatalog$$anonfun$databaseExists$1.apply(HiveExternalCatalog.scala:197) at org.apache.spark.sql.hive.HiveExternalCatalog$$anonfun$databaseExists$1.apply(HiveExternalCatalog.scala:197) at org.apache.spark.sql.hive.HiveExternalCatalog.withClient(HiveExternalCatalog.scala:99) at org.apache.spark.sql.hive.HiveExternalCatalog.databaseExists(HiveExternalCatalog.scala:196) at org.apache.spark.sql.internal.SharedState.externalCatalog$lzycompute(SharedState.scala:106) at org.apache.spark.sql.internal.SharedState.externalCatalog(SharedState.scala:94) at org.apache.spark.sql.hive.HiveSessionStateBuilder.externalCatalog(HiveSessionStateBuilder.scala:39) at org.apache.spark.sql.hive.HiveSessionStateBuilder.catalog$lzycompute(HiveSessionStateBuilder.scala:54) at org.apache.spark.sql.hive.HiveSessionStateBuilder.catalog(HiveSessionStateBuilder.scala:52) at org.apache.spark.sql.hive.HiveSessionStateBuilder.catalog(HiveSessionStateBuilder.scala:35) at org.apache.spark.sql.internal.BaseSessionStateBuilder.build(BaseSessionStateBuilder.scala:290) at org.apache.spark.sql.SparkSession$.org$apache$spark$sql$SparkSession$$instantiateSessionState(SparkSession.scala:1059) at org.apache.spark.sql.SparkSession$$anonfun$sessionState$2.apply(SparkSession.scala:137) at org.apache.spark.sql.SparkSession$$anonfun$sessionState$2.apply(SparkSession.scala:136) at scala.Option.getOrElse(Option.scala:121) at org.apache.spark.sql.SparkSession.sessionState$lzycompute(SparkSession.scala:136) at org.apache.spark.sql.SparkSession.sessionState(SparkSession.scala:133) at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:632) at com.bigdata_example.oozie.SparkDemo.main(SparkDemo.java:23) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:775) at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:180) at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:205) at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:119) at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala) at org.apache.oozie.action.hadoop.SparkMain.runSpark(SparkMain.java:181) at org.apache.oozie.action.hadoop.SparkMain.run(SparkMain.java:93) at org.apache.oozie.action.hadoop.LauncherMain.run(LauncherMain.java:101) at org.apache.oozie.action.hadoop.SparkMain.main(SparkMain.java:60) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at org.apache.oozie.action.hadoop.LauncherAM.runActionMain(LauncherAM.java:410) at org.apache.oozie.action.hadoop.LauncherAM.access$300(LauncherAM.java:55) at org.apache.oozie.action.hadoop.LauncherAM$2.run(LauncherAM.java:223) at java.security.AccessController.doPrivileged(Native Method) at javax.security.auth.Subject.doAs(Subject.java:422) at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1726) at org.apache.oozie.action.hadoop.LauncherAM.run(LauncherAM.java:217) at org.apache.oozie.action.hadoop.LauncherAM$1.run(LauncherAM.java:153) at java.security.AccessController.doPrivileged(Native Method) at javax.security.auth.Subject.doAs(Subject.java:422) at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1726) at org.apache.oozie.action.hadoop.LauncherAM.main(LauncherAM.java:141) NestedThrowablesStackTrace: java.sql.SQLSyntaxErrorException: Table/View 'DBS' does not exist. at org.apache.derby.impl.jdbc.SQLExceptionFactory.getSQLException(Unknown Source) at org.apache.derby.impl.jdbc.Util.generateCsSQLException(Unknown Source) at org.apache.derby.impl.jdbc.TransactionResourceImpl.wrapInSQLException(Unknown Source) at org.apache.derby.impl.jdbc.TransactionResourceImpl.handleException(Unknown Source) at org.apache.derby.impl.jdbc.EmbedConnection.handleException(Unknown Source) at org.apache.derby.impl.jdbc.ConnectionChild.handleException(Unknown Source) at org.apache.derby.impl.jdbc.EmbedPreparedStatement.<init>(Unknown Source) at org.apache.derby.impl.jdbc.EmbedPreparedStatement42.<init>(Unknown Source) at org.apache.derby.jdbc.Driver42.newEmbedPreparedStatement(Unknown Source) at org.apache.derby.impl.jdbc.EmbedConnection.prepareStatement(Unknown Source) at org.apache.derby.impl.jdbc.EmbedConnection.prepareStatement(Unknown Source) at com.jolbox.bonecp.ConnectionHandle.prepareStatement(ConnectionHandle.java:1193) at org.datanucleus.store.rdbms.SQLController.getStatementForQuery(SQLController.java:345) at org.datanucleus.store.rdbms.query.RDBMSQueryUtils.getPreparedStatementForQuery(RDBMSQueryUtils.java:211) at org.datanucleus.store.rdbms.query.SQLQuery.performExecute(SQLQuery.java:633) at org.datanucleus.store.query.Query.executeQuery(Query.java:1844) at org.datanucleus.store.rdbms.query.SQLQuery.executeWithArray(SQLQuery.java:807) at org.datanucleus.store.query.Query.execute(Query.java:1715) at org.datanucleus.api.jdo.JDOQuery.executeInternal(JDOQuery.java:371) at org.datanucleus.api.jdo.JDOQuery.execute(JDOQuery.java:213) at org.apache.hadoop.hive.metastore.MetaStoreDirectSql.runTestQuery(MetaStoreDirectSql.java:243) at org.apache.hadoop.hive.metastore.MetaStoreDirectSql.<init>(MetaStoreDirectSql.java:146) at org.apache.hadoop.hive.metastore.ObjectStore.initializeHelper(ObjectStore.java:406) at org.apache.hadoop.hive.metastore.ObjectStore.initialize(ObjectStore.java:338) at org.apache.hadoop.hive.metastore.ObjectStore.setConf(ObjectStore.java:299) at org.apache.hadoop.util.ReflectionUtils.setConf(ReflectionUtils.java:77) at org.apache.hadoop.util.ReflectionUtils.newInstance(ReflectionUtils.java:137) at org.apache.hadoop.hive.metastore.RawStoreProxy.<init>(RawStoreProxy.java:58) at org.apache.hadoop.hive.metastore.RawStoreProxy.getProxy(RawStoreProxy.java:67) at org.apache.hadoop.hive.metastore.HiveMetaStore$HMSHandler.newRawStoreForConf(HiveMetaStore.java:612) at org.apache.hadoop.hive.metastore.HiveMetaStore$HMSHandler.getMSForConf(HiveMetaStore.java:578) at org.apache.hadoop.hive.metastore.HiveMetaStore$HMSHandler.getMS(HiveMetaStore.java:572) at org.apache.hadoop.hive.metastore.HiveMetaStore$HMSHandler.createDefaultDB(HiveMetaStore.java:639) at org.apache.hadoop.hive.metastore.HiveMetaStore$HMSHandler.init(HiveMetaStore.java:416) at org.apache.hadoop.hive.metastore.RetryingHMSHandler.<init>(RetryingHMSHandler.java:78) at org.apache.hadoop.hive.metastore.RetryingHMSHandler.getProxy(RetryingHMSHandler.java:84) at org.apache.hadoop.hive.metastore.HiveMetaStore.newRetryingHMSHandler(HiveMetaStore.java:6869) at org.apache.hadoop.hive.metastore.HiveMetaStoreClient.<init>(HiveMetaStoreClient.java:248) at org.apache.hadoop.hive.ql.metadata.SessionHiveMetaStoreClient.<init>(SessionHiveMetaStoreClient.java:70) at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45) at java.lang.reflect.Constructor.newInstance(Constructor.java:423) at org.apache.hadoop.hive.metastore.MetaStoreUtils.newInstance(MetaStoreUtils.java:1700) at org.apache.hadoop.hive.metastore.RetryingMetaStoreClient.<init>(RetryingMetaStoreClient.java:80) at org.apache.hadoop.hive.metastore.RetryingMetaStoreClient.getProxy(RetryingMetaStoreClient.java:130) at org.apache.hadoop.hive.metastore.RetryingMetaStoreClient.getProxy(RetryingMetaStoreClient.java:101) at org.apache.hadoop.hive.ql.metadata.Hive.createMetaStoreClient(Hive.java:3581) at org.apache.hadoop.hive.ql.metadata.Hive.getMSC(Hive.java:3633) at org.apache.hadoop.hive.ql.metadata.Hive.getMSC(Hive.java:3613) at org.apache.hadoop.hive.ql.metadata.Hive.getAllFunctions(Hive.java:3867) at org.apache.hadoop.hive.ql.metadata.Hive.reloadFunctions(Hive.java:247) at org.apache.hadoop.hive.ql.metadata.Hive.registerAllFunctionsOnce(Hive.java:230) at org.apache.hadoop.hive.ql.metadata.Hive.<init>(Hive.java:387) at org.apache.hadoop.hive.ql.metadata.Hive.create(Hive.java:331) at org.apache.hadoop.hive.ql.metadata.Hive.getInternal(Hive.java:311) at org.apache.hadoop.hive.ql.metadata.Hive.get(Hive.java:287) at org.apache.hadoop.hive.ql.session.SessionState.setAuthorizerV2Config(SessionState.java:895) at org.apache.hadoop.hive.ql.session.SessionState.setupAuth(SessionState.java:859) at org.apache.hadoop.hive.ql.session.SessionState.getAuthenticator(SessionState.java:1521) at org.apache.spark.sql.hive.client.HiveClientImpl.<init>(HiveClientImpl.scala:204) at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45) at java.lang.reflect.Constructor.newInstance(Constructor.java:423) at org.apache.spark.sql.hive.client.IsolatedClientLoader.createClient(IsolatedClientLoader.scala:268) at org.apache.spark.sql.hive.HiveUtils$.newClientForMetadata(HiveUtils.scala:360) at org.apache.spark.sql.hive.HiveUtils$.newClientForMetadata(HiveUtils.scala:264) at org.apache.spark.sql.hive.HiveExternalCatalog.client$lzycompute(HiveExternalCatalog.scala:68) at org.apache.spark.sql.hive.HiveExternalCatalog.client(HiveExternalCatalog.scala:67) at org.apache.spark.sql.hive.HiveExternalCatalog$$anonfun$databaseExists$1.apply$mcZ$sp(HiveExternalCatalog.scala:197) at org.apache.spark.sql.hive.HiveExternalCatalog$$anonfun$databaseExists$1.apply(HiveExternalCatalog.scala:197) at org.apache.spark.sql.hive.HiveExternalCatalog$$anonfun$databaseExists$1.apply(HiveExternalCatalog.scala:197) at org.apache.spark.sql.hive.HiveExternalCatalog.withClient(HiveExternalCatalog.scala:99) at org.apache.spark.sql.hive.HiveExternalCatalog.databaseExists(HiveExternalCatalog.scala:196) at org.apache.spark.sql.internal.SharedState.externalCatalog$lzycompute(SharedState.scala:106) at org.apache.spark.sql.internal.SharedState.externalCatalog(SharedState.scala:94) at org.apache.spark.sql.hive.HiveSessionStateBuilder.externalCatalog(HiveSessionStateBuilder.scala:39) at org.apache.spark.sql.hive.HiveSessionStateBuilder.catalog$lzycompute(HiveSessionStateBuilder.scala:54) at org.apache.spark.sql.hive.HiveSessionStateBuilder.catalog(HiveSessionStateBuilder.scala:52) at org.apache.spark.sql.hive.HiveSessionStateBuilder.catalog(HiveSessionStateBuilder.scala:35) at org.apache.spark.sql.internal.BaseSessionStateBuilder.build(BaseSessionStateBuilder.scala:290) at org.apache.spark.sql.SparkSession$.org$apache$spark$sql$SparkSession$$instantiateSessionState(SparkSession.scala:1059) at org.apache.spark.sql.SparkSession$$anonfun$sessionState$2.apply(SparkSession.scala:137) at org.apache.spark.sql.SparkSession$$anonfun$sessionState$2.apply(SparkSession.scala:136) at scala.Option.getOrElse(Option.scala:121) at org.apache.spark.sql.SparkSession.sessionState$lzycompute(SparkSession.scala:136) at org.apache.spark.sql.SparkSession.sessionState(SparkSession.scala:133) at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:632) at com.bigdata_example.oozie.SparkDemo.main(SparkDemo.java:23) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:775) at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:180) at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:205) at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:119) at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala) at org.apache.oozie.action.hadoop.SparkMain.runSpark(SparkMain.java:181) at org.apache.oozie.action.hadoop.SparkMain.run(SparkMain.java:93) at org.apache.oozie.action.hadoop.LauncherMain.run(LauncherMain.java:101) at org.apache.oozie.action.hadoop.SparkMain.main(SparkMain.java:60) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at org.apache.oozie.action.hadoop.LauncherAM.runActionMain(LauncherAM.java:410) at org.apache.oozie.action.hadoop.LauncherAM.access$300(LauncherAM.java:55) at org.apache.oozie.action.hadoop.LauncherAM$2.run(LauncherAM.java:223) at java.security.AccessController.doPrivileged(Native Method) at javax.security.auth.Subject.doAs(Subject.java:422) at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1726) at org.apache.oozie.action.hadoop.LauncherAM.run(LauncherAM.java:217) at org.apache.oozie.action.hadoop.LauncherAM$1.run(LauncherAM.java:153) at java.security.AccessController.doPrivileged(Native Method) at javax.security.auth.Subject.doAs(Subject.java:422) at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1726) at org.apache.oozie.action.hadoop.LauncherAM.main(LauncherAM.java:141) Caused by: ERROR 42X05: Table/View 'DBS' does not exist. at org.apache.derby.iapi.error.StandardException.newException(Unknown Source) at org.apache.derby.iapi.error.StandardException.newException(Unknown Source) at org.apache.derby.impl.sql.compile.FromBaseTable.bindTableDescriptor(Unknown Source) at org.apache.derby.impl.sql.compile.FromBaseTable.bindNonVTITables(Unknown Source) at org.apache.derby.impl.sql.compile.FromList.bindTables(Unknown Source) at org.apache.derby.impl.sql.compile.SelectNode.bindNonVTITables(Unknown Source) at org.apache.derby.impl.sql.compile.DMLStatementNode.bindTables(Unknown Source) at org.apache.derby.impl.sql.compile.DMLStatementNode.bind(Unknown Source) at org.apache.derby.impl.sql.compile.CursorNode.bindStatement(Unknown Source) at org.apache.derby.impl.sql.GenericStatement.prepMinion(Unknown Source) at org.apache.derby.impl.sql.GenericStatement.prepare(Unknown Source) at org.apache.derby.impl.sql.conn.GenericLanguageConnectionContext.prepareInternalStatement(Unknown Source) ... 113 more 没加kerberos认证,然后报找不到库,我猜是权限不够,然后加了kerberos,又报java.lang.reflect.InvocationTargetException和Caused by:java.lang.NullPointerException

hadoop集群下 spark 启动报错

``` Setting default log level to "WARN". To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel). 17/09/29 09:24:37 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable java.lang.IllegalArgumentException: Error while instantiating 'org.apache.spark.sql.hive.HiveSessionStateBuilder': at org.apache.spark.sql.SparkSession$.org$apache$spark$sql$SparkSession$$instantiateSessionState(SparkSession.scala:1053) at org.apache.spark.sql.SparkSession$$anonfun$sessionState$2.apply(SparkSession.scala:130) at org.apache.spark.sql.SparkSession$$anonfun$sessionState$2.apply(SparkSession.scala:130) at scala.Option.getOrElse(Option.scala:121) at org.apache.spark.sql.SparkSession.sessionState$lzycompute(SparkSession.scala:129) at org.apache.spark.sql.SparkSession.sessionState(SparkSession.scala:126) at org.apache.spark.sql.SparkSession$Builder$$anonfun$getOrCreate$5.apply(SparkSession.scala:938) at org.apache.spark.sql.SparkSession$Builder$$anonfun$getOrCreate$5.apply(SparkSession.scala:938) at scala.collection.mutable.HashMap$$anonfun$foreach$1.apply(HashMap.scala:99) at scala.collection.mutable.HashMap$$anonfun$foreach$1.apply(HashMap.scala:99) at scala.collection.mutable.HashTable$class.foreachEntry(HashTable.scala:230) at scala.collection.mutable.HashMap.foreachEntry(HashMap.scala:40) at scala.collection.mutable.HashMap.foreach(HashMap.scala:99) at org.apache.spark.sql.SparkSession$Builder.getOrCreate(SparkSession.scala:938) at org.apache.spark.repl.Main$.createSparkSession(Main.scala:97) ... 47 elided Caused by: org.apache.spark.sql.AnalysisException: java.lang.RuntimeException: org.apache.hadoop.fs.ParentNotDirectoryException: /tmp (is not a directory) at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.checkIsDirectory(FSPermissionChecker.java:530) at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.checkSimpleTraverse(FSPermissionChecker.java:522) at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.checkTraverse(FSPermissionChecker.java:497) at org.apache.hadoop.hdfs.server.namenode.FSDirectory.checkTraverse(FSDirectory.java:1603) at org.apache.hadoop.hdfs.server.namenode.FSDirectory.checkTraverse(FSDirectory.java:1621) at org.apache.hadoop.hdfs.server.namenode.FSDirectory.resolvePath(FSDirectory.java:542) at org.apache.hadoop.hdfs.server.namenode.FSDirMkdirOp.mkdirs(FSDirMkdirOp.java:51) at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.mkdirs(FSNamesystem.java:2970) at org.apache.hadoop.hdfs.server.namenode.NameNodeRpcServer.mkdirs(NameNodeRpcServer.java:1078) at org.apache.hadoop.hdfs.protocolPB.ClientNamenodeProtocolServerSideTranslatorPB.mkdirs(ClientNamenodeProtocolServerSideTranslatorPB.java:637) at org.apache.hadoop.hdfs.protocol.proto.ClientNamenodeProtocolProtos$ClientNamenodeProtocol$2.callBlockingMethod(ClientNamenodeProtocolProtos.java) at org.apache.hadoop.ipc.ProtobufRpcEngine$Server$ProtoBufRpcInvoker.call(ProtobufRpcEngine.java:447) at org.apache.hadoop.ipc.RPC$Server.call(RPC.java:989) at org.apache.hadoop.ipc.Server$RpcCall.run(Server.java:845) at org.apache.hadoop.ipc.Server$RpcCall.run(Server.java:788) at java.security.AccessController.doPrivileged(Native Method) at javax.security.auth.Subject.doAs(Subject.java:422) at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1807) at org.apache.hadoop.ipc.Server$Handler.run(Server.java:2455) ; at org.apache.spark.sql.hive.HiveExternalCatalog.withClient(HiveExternalCatalog.scala:106) at org.apache.spark.sql.hive.HiveExternalCatalog.databaseExists(HiveExternalCatalog.scala:193) at org.apache.spark.sql.internal.SharedState.externalCatalog$lzycompute(SharedState.scala:105) at org.apache.spark.sql.internal.SharedState.externalCatalog(SharedState.scala:93) at org.apache.spark.sql.hive.HiveSessionStateBuilder.externalCatalog(HiveSessionStateBuilder.scala:39) at org.apache.spark.sql.hive.HiveSessionStateBuilder.catalog$lzycompute(HiveSessionStateBuilder.scala:54) at org.apache.spark.sql.hive.HiveSessionStateBuilder.catalog(HiveSessionStateBuilder.scala:52) at org.apache.spark.sql.hive.HiveSessionStateBuilder.catalog(HiveSessionStateBuilder.scala:35) at org.apache.spark.sql.internal.BaseSessionStateBuilder.build(BaseSessionStateBuilder.scala:289) at org.apache.spark.sql.SparkSession$.org$apache$spark$sql$SparkSession$$instantiateSessionState(SparkSession.scala:1050) ... 61 more Caused by: java.lang.RuntimeException: org.apache.hadoop.fs.ParentNotDirectoryException: /tmp (is not a directory) at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.checkIsDirectory(FSPermissionChecker.java:530) at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.checkSimpleTraverse(FSPermissionChecker.java:522) at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.checkTraverse(FSPermissionChecker.java:497) at org.apache.hadoop.hdfs.server.namenode.FSDirectory.checkTraverse(FSDirectory.java:1603) at org.apache.hadoop.hdfs.server.namenode.FSDirectory.checkTraverse(FSDirectory.java:1621) at org.apache.hadoop.hdfs.server.namenode.FSDirectory.resolvePath(FSDirectory.java:542) at org.apache.hadoop.hdfs.server.namenode.FSDirMkdirOp.mkdirs(FSDirMkdirOp.java:51) at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.mkdirs(FSNamesystem.java:2970) at org.apache.hadoop.hdfs.server.namenode.NameNodeRpcServer.mkdirs(NameNodeRpcServer.java:1078) at org.apache.hadoop.hdfs.protocolPB.ClientNamenodeProtocolServerSideTranslatorPB.mkdirs(ClientNamenodeProtocolServerSideTranslatorPB.java:637) at org.apache.hadoop.hdfs.protocol.proto.ClientNamenodeProtocolProtos$ClientNamenodeProtocol$2.callBlockingMethod(ClientNamenodeProtocolProtos.java) at org.apache.hadoop.ipc.ProtobufRpcEngine$Server$ProtoBufRpcInvoker.call(ProtobufRpcEngine.java:447) at org.apache.hadoop.ipc.RPC$Server.call(RPC.java:989) at org.apache.hadoop.ipc.Server$RpcCall.run(Server.java:845) at org.apache.hadoop.ipc.Server$RpcCall.run(Server.java:788) at java.security.AccessController.doPrivileged(Native Method) at javax.security.auth.Subject.doAs(Subject.java:422) at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1807) at org.apache.hadoop.ipc.Server$Handler.run(Server.java:2455) at org.apache.hadoop.hive.ql.session.SessionState.start(SessionState.java:522) at org.apache.spark.sql.hive.client.HiveClientImpl.<init>(HiveClientImpl.scala:191) at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45) at java.lang.reflect.Constructor.newInstance(Constructor.java:423) at org.apache.spark.sql.hive.client.IsolatedClientLoader.createClient(IsolatedClientLoader.scala:264) at org.apache.spark.sql.hive.HiveUtils$.newClientForMetadata(HiveUtils.scala:362) at org.apache.spark.sql.hive.HiveUtils$.newClientForMetadata(HiveUtils.scala:266) at org.apache.spark.sql.hive.HiveExternalCatalog.client$lzycompute(HiveExternalCatalog.scala:66) at org.apache.spark.sql.hive.HiveExternalCatalog.client(HiveExternalCatalog.scala:65) at org.apache.spark.sql.hive.HiveExternalCatalog$$anonfun$databaseExists$1.apply$mcZ$sp(HiveExternalCatalog.scala:194) at org.apache.spark.sql.hive.HiveExternalCatalog$$anonfun$databaseExists$1.apply(HiveExternalCatalog.scala:194) at org.apache.spark.sql.hive.HiveExternalCatalog$$anonfun$databaseExists$1.apply(HiveExternalCatalog.scala:194) at org.apache.spark.sql.hive.HiveExternalCatalog.withClient(HiveExternalCatalog.scala:97) ... 70 more Caused by: org.apache.hadoop.fs.ParentNotDirectoryException: /tmp (is not a directory) at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.checkIsDirectory(FSPermissionChecker.java:530) at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.checkSimpleTraverse(FSPermissionChecker.java:522) at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.checkTraverse(FSPermissionChecker.java:497) at org.apache.hadoop.hdfs.server.namenode.FSDirectory.checkTraverse(FSDirectory.java:1603) at org.apache.hadoop.hdfs.server.namenode.FSDirectory.checkTraverse(FSDirectory.java:1621) at org.apache.hadoop.hdfs.server.namenode.FSDirectory.resolvePath(FSDirectory.java:542) at org.apache.hadoop.hdfs.server.namenode.FSDirMkdirOp.mkdirs(FSDirMkdirOp.java:51) at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.mkdirs(FSNamesystem.java:2970) at org.apache.hadoop.hdfs.server.namenode.NameNodeRpcServer.mkdirs(NameNodeRpcServer.java:1078) at org.apache.hadoop.hdfs.protocolPB.ClientNamenodeProtocolServerSideTranslatorPB.mkdirs(ClientNamenodeProtocolServerSideTranslatorPB.java:637) at org.apache.hadoop.hdfs.protocol.proto.ClientNamenodeProtocolProtos$ClientNamenodeProtocol$2.callBlockingMethod(ClientNamenodeProtocolProtos.java) at org.apache.hadoop.ipc.ProtobufRpcEngine$Server$ProtoBufRpcInvoker.call(ProtobufRpcEngine.java:447) at org.apache.hadoop.ipc.RPC$Server.call(RPC.java:989) at org.apache.hadoop.ipc.Server$RpcCall.run(Server.java:845) at org.apache.hadoop.ipc.Server$RpcCall.run(Server.java:788) at java.security.AccessController.doPrivileged(Native Method) at javax.security.auth.Subject.doAs(Subject.java:422) at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1807) at org.apache.hadoop.ipc.Server$Handler.run(Server.java:2455) at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45) at java.lang.reflect.Constructor.newInstance(Constructor.java:423) at org.apache.hadoop.ipc.RemoteException.instantiateException(RemoteException.java:106) at org.apache.hadoop.ipc.RemoteException.unwrapRemoteException(RemoteException.java:73) at org.apache.hadoop.hdfs.DFSClient.primitiveMkdir(DFSClient.java:3002) at org.apache.hadoop.hdfs.DFSClient.mkdirs(DFSClient.java:2970) at org.apache.hadoop.hdfs.DistributedFileSystem$21.doCall(DistributedFileSystem.java:1047) at org.apache.hadoop.hdfs.DistributedFileSystem$21.doCall(DistributedFileSystem.java:1043) at org.apache.hadoop.fs.FileSystemLinkResolver.resolve(FileSystemLinkResolver.java:81) at org.apache.hadoop.hdfs.DistributedFileSystem.mkdirsInternal(DistributedFileSystem.java:1061) at org.apache.hadoop.hdfs.DistributedFileSystem.mkdirs(DistributedFileSystem.java:1036) at org.apache.hadoop.hive.ql.exec.Utilities.createDirsWithPermission(Utilities.java:3679) at org.apache.hadoop.hive.ql.session.SessionState.createRootHDFSDir(SessionState.java:597) at org.apache.hadoop.hive.ql.session.SessionState.createSessionDirs(SessionState.java:554) at org.apache.hadoop.hive.ql.session.SessionState.start(SessionState.java:508) ... 84 more Caused by: org.apache.hadoop.ipc.RemoteException: /tmp (is not a directory) at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.checkIsDirectory(FSPermissionChecker.java:530) at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.checkSimpleTraverse(FSPermissionChecker.java:522) at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.checkTraverse(FSPermissionChecker.java:497) at org.apache.hadoop.hdfs.server.namenode.FSDirectory.checkTraverse(FSDirectory.java:1603) at org.apache.hadoop.hdfs.server.namenode.FSDirectory.checkTraverse(FSDirectory.java:1621) at org.apache.hadoop.hdfs.server.namenode.FSDirectory.resolvePath(FSDirectory.java:542) at org.apache.hadoop.hdfs.server.namenode.FSDirMkdirOp.mkdirs(FSDirMkdirOp.java:51) at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.mkdirs(FSNamesystem.java:2970) at org.apache.hadoop.hdfs.server.namenode.NameNodeRpcServer.mkdirs(NameNodeRpcServer.java:1078) at org.apache.hadoop.hdfs.protocolPB.ClientNamenodeProtocolServerSideTranslatorPB.mkdirs(ClientNamenodeProtocolServerSideTranslatorPB.java:637) at org.apache.hadoop.hdfs.protocol.proto.ClientNamenodeProtocolProtos$ClientNamenodeProtocol$2.callBlockingMethod(ClientNamenodeProtocolProtos.java) at org.apache.hadoop.ipc.ProtobufRpcEngine$Server$ProtoBufRpcInvoker.call(ProtobufRpcEngine.java:447) at org.apache.hadoop.ipc.RPC$Server.call(RPC.java:989) at org.apache.hadoop.ipc.Server$RpcCall.run(Server.java:845) at org.apache.hadoop.ipc.Server$RpcCall.run(Server.java:788) at java.security.AccessController.doPrivileged(Native Method) at javax.security.auth.Subject.doAs(Subject.java:422) at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1807) at org.apache.hadoop.ipc.Server$Handler.run(Server.java:2455) at org.apache.hadoop.ipc.Client.call(Client.java:1475) at org.apache.hadoop.ipc.Client.call(Client.java:1412) at org.apache.hadoop.ipc.ProtobufRpcEngine$Invoker.invoke(ProtobufRpcEngine.java:229) at com.sun.proxy.$Proxy22.mkdirs(Unknown Source) at org.apache.hadoop.hdfs.protocolPB.ClientNamenodeProtocolTranslatorPB.mkdirs(ClientNamenodeProtocolTranslatorPB.java:558) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at org.apache.hadoop.io.retry.RetryInvocationHandler.invokeMethod(RetryInvocationHandler.java:191) at org.apache.hadoop.io.retry.RetryInvocationHandler.invoke(RetryInvocationHandler.java:102) at com.sun.proxy.$Proxy23.mkdirs(Unknown Source) at org.apache.hadoop.hdfs.DFSClient.primitiveMkdir(DFSClient.java:3000) ... 94 more <console>:14: error: not found: value spark import spark.implicits._ ^ <console>:14: error: not found: value spark import spark.sql ^ Welcome to ____ __ / __/__ ___ _____/ /__ _\ \/ _ \/ _ `/ __/ '_/ /___/ .__/\_,_/_/ /_/\_\ version 2.2.0 /_/ Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_144) Type in expressions to have them evaluated. Type :help for more information. scala> ```

使用spark的standalone模式调整心跳时间时出现Error(Invalid argument to --conf: spark.worker.timeout)?

使用spark集群运行程序时报错日志显示: ERROR TaskSchedulerImpl:70 - Lost executor 1 on : Executor heartbeat timed out after 381181 ms 所以使用spark submit更改心跳时间 [hadoop@Master spark2.4.0]$ bin/spark-submit --master spark://master:7077 --conf spark.worker.timeout 10000000 --py-files id.py id.py --name id 但是显示没有指令,请问该怎么做? Error: Invalid argument to --conf: spark.worker.timeout

spark执行时候报错,求大神指教

在执行spark的exsample里sparkpi的时候报错了 ----------------------------------------------------- 17/11/08 17:13:14 WARN AppClient$ClientEndpoint: Failed to connect to master namenode:7077 java.lang.RuntimeException: java.io.InvalidClassException: org.apache.spark.rpc.RpcEndpointRef; local class incompatible: stream classdesc serialVersionUID = 18257903091306170, local class serialVersionUID = 5017373498943810947 at java.io.ObjectStreamClass.initNonProxy(ObjectStreamClass.java:621) at java.io.ObjectInputStream.readNonProxyDesc(ObjectInputStream.java:1623) at java.io.ObjectInputStream.readClassDesc(ObjectInputStream.java:1518) at java.io.ObjectInputStream.readNonProxyDesc(ObjectInputStream.java:1623) at java.io.ObjectInputStream.readClassDesc(ObjectInputStream.java:1518) at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1774) at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1351) at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:1993) at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1918) at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1801) at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1351) at java.io.ObjectInputStream.readObject(ObjectInputStream.java:371) at org.apache.spark.serializer.JavaDeserializationStream.readObject(JavaSerializer.scala:76) at org.apache.spark.serializer.JavaSerializerInstance.deserialize(JavaSerializer.scala:109) at org.apache.spark.rpc.netty.NettyRpcEnv$$anonfun$deserialize$1$$anonfun$apply$1.apply(NettyRpcEnv.scala:261) at scala.util.DynamicVariable.withValue(DynamicVariable.scala:57) at org.apache.spark.rpc.netty.NettyRpcEnv.deserialize(NettyRpcEnv.scala:313) at org.apache.spark.rpc.netty.NettyRpcEnv$$anonfun$deserialize$1.apply(NettyRpcEnv.scala:260) at scala.util.DynamicVariable.withValue(DynamicVariable.scala:57) at org.apache.spark.rpc.netty.NettyRpcEnv.deserialize(NettyRpcEnv.scala:259) at org.apache.spark.rpc.netty.NettyRpcHandler.internalReceive(NettyRpcEnv.scala:590) at org.apache.spark.rpc.netty.NettyRpcHandler.receive(NettyRpcEnv.scala:572) at org.apache.spark.network.server.TransportRequestHandler.processRpcRequest(TransportRequestHandler.java:154) at org.apache.spark.network.server.TransportRequestHandler.handle(TransportRequestHandler.java:102) at org.apache.spark.network.server.TransportChannelHandler.channelRead0(TransportChannelHandler.java:104) at org.apache.spark.network.server.TransportChannelHandler.channelRead0(TransportChannelHandler.java:51) at io.netty.channel.SimpleChannelInboundHandler.channelRead(SimpleChannelInboundHandler.java:105) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:308) at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:294) at io.netty.handler.timeout.IdleStateHandler.channelRead(IdleStateHandler.java:266) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:308) at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:294) at io.netty.handler.codec.MessageToMessageDecoder.channelRead(MessageToMessageDecoder.java:103) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:308) at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:294) at org.apache.spark.network.util.TransportFrameDecoder.channelRead(TransportFrameDecoder.java:86) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:308) at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:294) at io.netty.channel.DefaultChannelPipeline.fireChannelRead(DefaultChannelPipeline.java:846) at io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:131) at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:511) at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:468) at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:382) at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:354) at io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:111) at java.lang.Thread.run(Thread.java:745) at org.apache.spark.network.client.TransportResponseHandler.handle(TransportResponseHandler.java:186) at org.apache.spark.network.server.TransportChannelHandler.channelRead0(TransportChannelHandler.java:106) at org.apache.spark.network.server.TransportChannelHandler.channelRead0(TransportChannelHandler.java:51) at io.netty.channel.SimpleChannelInboundHandler.channelRead(SimpleChannelInboundHandler.java:105) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:308) at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:294) at io.netty.handler.timeout.IdleStateHandler.channelRead(IdleStateHandler.java:266) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:308) at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:294) at io.netty.handler.codec.MessageToMessageDecoder.channelRead(MessageToMessageDecoder.java:103) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:308) at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:294) at org.apache.spark.network.util.TransportFrameDecoder.channelRead(TransportFrameDecoder.java:86) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:308) at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:294) at io.netty.channel.DefaultChannelPipeline.fireChannelRead(DefaultChannelPipeline.java:846) at io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:131) at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:511) at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:468) at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:382) at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:354) at io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:111) at java.lang.Thread.run(Thread.java:745)

spark--java.lang.ArrayIndexOutOfBoundsException: 10582

源文件: ``` package com.wy.movie; import java.util.ArrayList; import java.util.List; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.mllib.classification.NaiveBayes; import org.apache.spark.mllib.classification.NaiveBayesModel; import org.apache.spark.mllib.linalg.Vector; import org.apache.spark.mllib.linalg.Vectors; import org.apache.spark.mllib.regression.LabeledPoint; import org.junit.Test; public class BayesTest1 { @Test public void TestA(){ /** * 本地模式,*表示启用多个线程并行计算 */ SparkConf conf = new SparkConf().setAppName("NaiveBayesTest").setMaster("local[*]"); JavaSparkContext sc = new JavaSparkContext(conf); /** * MLlib的本地向量主要分为两种,DenseVector和SparseVector * 前者是用来保存稠密向量,后者是用来保存稀疏向量 */ /** * 短发(1) 长发(2) 运动鞋(3) 高跟鞋(4) 喉结(5) 皮肤白(6) */ /** * 两种方式分别创建向量 == 其实创建稀疏向量的方式有两种,本文只讲一种 * (1.0, 0.0, 1.0, 0.0, 1.0, 0.0) * (1.0, 1.0, 1.0, 1.0, 0.0, 1.0) */ //稠密向量 == 连续的 Vector vMale = Vectors.dense(1,0,1,0,1,0); //稀疏向量 == 间隔的、指定的,未指定位置的向量值默认 = 0.0 int len = 6; int[] index = new int[]{0,1,2,3,5}; double[] values = new double[]{1,1,1,1,1}; //索引0、1、2、3、5位置上的向量值=1,索引4没给出,默认0 Vector vFemale = Vectors.sparse(len, index, values); //System.err.println("vFemale == "+vFemale); /** * labeled point 是一个局部向量,要么是密集型的要么是稀疏型的 * 用一个label/response进行关联 * 在MLlib里,labeled points 被用来监督学习算法 * 我们使用一个double数来存储一个label,因此我们能够使用labeled points进行回归和分类 * 在二进制分类里,一个label可以是 0(负数)或者 1(正数) * 在多级分类中,labels可以是class的索引,从0开始:0,1,2,...... */ //训练集生成 ,规定数据结构为LabeledPoint == 构建方式:稠密向量模式 ,1.0:类别编号 == 男性 LabeledPoint train_one = new LabeledPoint(1.0,vMale); //(1.0, 0.0, 1.0, 0.0, 1.0, 0.0) //训练集生成 ,规定数据结构为LabeledPoint == 构建方式:稀疏向量模式 ,2.0:类别编号 == 女性 LabeledPoint train_two = new LabeledPoint(2.0,vFemale); //(1.0, 1.0, 1.0, 1.0, 0.0, 1.0) //我们也可以给同一个类别增加多个训练集 LabeledPoint train_three = new LabeledPoint(2.0,Vectors.dense(0,1,1,1,0,1)); //List存放训练集【三个训练样本数据】 List<LabeledPoint> trains = new ArrayList<>(); trains.add(train_one); trains.add(train_two); trains.add(train_three); /** * SPARK的核心是RDD(弹性分布式数据集) * Spark是Scala写的,JavaRDD就是Spark为Java写的一套API * JavaSparkContext sc = new JavaSparkContext(sparkConf); //对应JavaRDD * SparkContext sc = new SparkContext(sparkConf) ; //对应RDD * 数据类型为LabeledPoint */ JavaRDD<LabeledPoint> trainingRDD = sc.parallelize(trains); /** * 利用Spark进行数据分析时,数据一般要转化为RDD * JavaRDD转Spark的RDD */ NaiveBayesModel nb_model = NaiveBayes.train(trainingRDD.rdd()); //测试集生成 == 以下的向量表示,这个人具有特征:短发(1),运动鞋(3) double [] dTest = {0,0,0,0,1,0}; Vector vTest = Vectors.dense(dTest);//测试对象为单个vector,或者是RDD化后的vector //朴素贝叶斯用法 int modelIndex =(int) nb_model.predict(vTest); System.out.println("标签分类编号:"+modelIndex);// 分类结果 == 返回分类的标签值 /** * 计算测试目标向量与训练样本数据集里面对应的各个分类标签匹配的概率结果 */ System.out.println(nb_model.predictProbabilities(vTest)); if(modelIndex == 1){ System.out.println("答案:贝叶斯分类器推断这个人的性别是男性"); }else if(modelIndex == 2){ System.out.println("答案:贝叶斯分类器推断这个人的性别是女性"); } //最后不要忘了释放资源 sc.close(); } } ``` 报错如下: ``` java.lang.ArrayIndexOutOfBoundsException: 10582 at com.thoughtworks.paranamer.BytecodeReadingParanamer$ClassReader.accept(BytecodeReadingParanamer.java:563) at com.thoughtworks.paranamer.BytecodeReadingParanamer$ClassReader.access$200(BytecodeReadingParanamer.java:338) at com.thoughtworks.paranamer.BytecodeReadingParanamer.lookupParameterNames(BytecodeReadingParanamer.java:103) at com.thoughtworks.paranamer.CachingParanamer.lookupParameterNames(CachingParanamer.java:90) at com.fasterxml.jackson.module.scala.introspect.BeanIntrospector$.getCtorParams(BeanIntrospector.scala:44) at com.fasterxml.jackson.module.scala.introspect.BeanIntrospector$.$anonfun$apply$1(BeanIntrospector.scala:58) at com.fasterxml.jackson.module.scala.introspect.BeanIntrospector$.$anonfun$apply$1$adapted(BeanIntrospector.scala:58) at scala.collection.TraversableLike.$anonfun$flatMap$1(TraversableLike.scala:240) at scala.collection.Iterator.foreach(Iterator.scala:937) at scala.collection.Iterator.foreach$(Iterator.scala:937) at scala.collection.AbstractIterator.foreach(Iterator.scala:1425) at scala.collection.IterableLike.foreach(IterableLike.scala:70) at scala.collection.IterableLike.foreach$(IterableLike.scala:69) at scala.collection.AbstractIterable.foreach(Iterable.scala:54) at scala.collection.TraversableLike.flatMap(TraversableLike.scala:240) at scala.collection.TraversableLike.flatMap$(TraversableLike.scala:237) at scala.collection.AbstractTraversable.flatMap(Traversable.scala:104) at com.fasterxml.jackson.module.scala.introspect.BeanIntrospector$.findConstructorParam$1(BeanIntrospector.scala:58) at com.fasterxml.jackson.module.scala.introspect.BeanIntrospector$.$anonfun$apply$19(BeanIntrospector.scala:176) at scala.collection.TraversableLike.$anonfun$map$1(TraversableLike.scala:233) at scala.collection.IndexedSeqOptimized.foreach(IndexedSeqOptimized.scala:32) at scala.collection.IndexedSeqOptimized.foreach$(IndexedSeqOptimized.scala:29) at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:194) at scala.collection.TraversableLike.map(TraversableLike.scala:233) at scala.collection.TraversableLike.map$(TraversableLike.scala:226) at scala.collection.mutable.ArrayOps$ofRef.map(ArrayOps.scala:194) at com.fasterxml.jackson.module.scala.introspect.BeanIntrospector$.$anonfun$apply$14(BeanIntrospector.scala:170) at com.fasterxml.jackson.module.scala.introspect.BeanIntrospector$.$anonfun$apply$14$adapted(BeanIntrospector.scala:169) at scala.collection.TraversableLike.$anonfun$flatMap$1(TraversableLike.scala:240) at scala.collection.immutable.List.foreach(List.scala:388) at scala.collection.TraversableLike.flatMap(TraversableLike.scala:240) at scala.collection.TraversableLike.flatMap$(TraversableLike.scala:237) at scala.collection.immutable.List.flatMap(List.scala:351) at com.fasterxml.jackson.module.scala.introspect.BeanIntrospector$.apply(BeanIntrospector.scala:169) at com.fasterxml.jackson.module.scala.introspect.ScalaAnnotationIntrospector$._descriptorFor(ScalaAnnotationIntrospectorModule.scala:21) at com.fasterxml.jackson.module.scala.introspect.ScalaAnnotationIntrospector$.fieldName(ScalaAnnotationIntrospectorModule.scala:29) at com.fasterxml.jackson.module.scala.introspect.ScalaAnnotationIntrospector$.findImplicitPropertyName(ScalaAnnotationIntrospectorModule.scala:77) at com.fasterxml.jackson.databind.introspect.AnnotationIntrospectorPair.findImplicitPropertyName(AnnotationIntrospectorPair.java:490) at com.fasterxml.jackson.databind.introspect.POJOPropertiesCollector._addFields(POJOPropertiesCollector.java:380) at com.fasterxml.jackson.databind.introspect.POJOPropertiesCollector.collectAll(POJOPropertiesCollector.java:308) at com.fasterxml.jackson.databind.introspect.POJOPropertiesCollector.getJsonValueAccessor(POJOPropertiesCollector.java:196) at com.fasterxml.jackson.databind.introspect.BasicBeanDescription.findJsonValueAccessor(BasicBeanDescription.java:251) at com.fasterxml.jackson.databind.ser.BasicSerializerFactory.findSerializerByAnnotations(BasicSerializerFactory.java:346) at com.fasterxml.jackson.databind.ser.BeanSerializerFactory._createSerializer2(BeanSerializerFactory.java:216) at com.fasterxml.jackson.databind.ser.BeanSerializerFactory.createSerializer(BeanSerializerFactory.java:165) at com.fasterxml.jackson.databind.SerializerProvider._createUntypedSerializer(SerializerProvider.java:1388) at com.fasterxml.jackson.databind.SerializerProvider._createAndCacheUntypedSerializer(SerializerProvider.java:1336) at com.fasterxml.jackson.databind.SerializerProvider.findValueSerializer(SerializerProvider.java:510) at com.fasterxml.jackson.databind.SerializerProvider.findTypedValueSerializer(SerializerProvider.java:713) at com.fasterxml.jackson.databind.ser.DefaultSerializerProvider.serializeValue(DefaultSerializerProvider.java:308) at com.fasterxml.jackson.databind.ObjectMapper._configAndWriteValue(ObjectMapper.java:3905) at com.fasterxml.jackson.databind.ObjectMapper.writeValueAsString(ObjectMapper.java:3219) at org.apache.spark.rdd.RDDOperationScope.toJson(RDDOperationScope.scala:52) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:145) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112) at org.apache.spark.SparkContext.withScope(SparkContext.scala:699) at org.apache.spark.SparkContext.parallelize(SparkContext.scala:716) at org.apache.spark.api.java.JavaSparkContext.parallelize(JavaSparkContext.scala:134) at org.apache.spark.api.java.JavaSparkContext.parallelize(JavaSparkContext.scala:146) at com.wy.movie.BayesTest1.TestA(BayesTest1.java:83) ``` ``` 补充一个pom.xml ``` <?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>com.wy</groupId> <artifactId>movie</artifactId> <version>0.0.1-SNAPSHOT</version> <packaging>jar</packaging> <name>movie</name> <description>Demo project for Spring Boot</description> <parent> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-parent</artifactId> <version>2.1.0.RELEASE</version> <relativePath/> <!-- lookup parent from repository --> </parent> <properties> <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding> <project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding> <java.version>1.8</java.version> </properties> <dependencies> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-web</artifactId> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-test</artifactId> <scope>test</scope> </dependency> <!-- JUnit单元测试 --> <dependency> <groupId>junit</groupId> <artifactId>junit</artifactId> </dependency> <!-- HanLP汉语言处理包 --> <dependency> <groupId>com.hankcs</groupId> <artifactId>hanlp</artifactId> <version>portable-1.7.0</version> </dependency> <!-- https://mvnrepository.com/artifact/org.apache.spark/spark-core --> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-core_2.12</artifactId> <version>2.4.0</version> </dependency> <!-- https://mvnrepository.com/artifact/org.apache.spark/spark-mllib --> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-mllib_2.12</artifactId> <version>2.4.0</version> <scope>runtime</scope> </dependency> <!-- https://mvnrepository.com/artifact/org.codehaus.janino/janino --> <dependency> <groupId>org.codehaus.janino</groupId> <artifactId>janino</artifactId> <version>3.0.10</version> </dependency> </dependencies> <build> <plugins> <plugin> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-maven-plugin</artifactId> </plugin> </plugins> </build> </project> ``` 就是执行到JavaRDD<LabeledPoint> trainingRDD = sc.parallelize(trains); 这句时出的错,请各位大佬帮忙看看 应该是个小问题 因为我没学过spark和scala什么的 所有很懵逼 先谢谢大家了!

map算子里面使用sparkContext 报 java.io.NotSerializableException: org.apache.spark.SparkContext错?

val receiverStream: ReceiverInputDStream[ String ] = RabbitMQUtils.createStream[ String ](ssc, params) receiverStream.print() receiverStream.map(value => { //@transient val sc = spark.sparkContext val jsonS = JSON.parseFull(value) val mapjson: Map[ String, String ] = regJson(jsonS) val alarmContent = mapjson.get("alarmContent").toString.replace("Some(", "").replace(")", "") val alarmEventId = mapjson.get("alarmEventId").toString.replace("Some(", "").replace(")", "") val alarmLevel = mapjson.get("alarmLevel").toString.replace("Some(", "").replace(")", "") val alarmType = mapjson.get("alarmType").toString.replace("Some(", "").replace(")", "") val buildingId = mapjson.get("buildingId").toString.replace("Some(", "").replace(")", "") val chargesCode = mapjson.get("chargesCode").toString.replace("Some(", "").replace(")", "") val createDate = mapjson.get("createDate").toString.replace("Some(", "").replace(")", "").toDouble val delFlag = mapjson.get("delFlag").toString.replace("Some(", "").replace(")", "") val deviceId = mapjson.get("deviceId").toString.replace("Some(", "").replace(")", "") val happenTime = mapjson.get("happenTime").toString.replace("Some(", "").replace(")", "").toDouble val isNewRecord = mapjson.get("isNewRecord").toString.replace("Some(", "").replace(")", "").toBoolean val page = mapjson.get("page").toString.replace("Some(", "").replace(")", "") val producerCode = mapjson.get("producerCode").toString.replace("Some(", "").replace(")", "") val sqlMap = mapjson.get("sqlMap").toString.replace("Some(", "").replace(")", "") println(alarmEventId) val strings: Apple = Apple(alarmContent, alarmEventId, alarmLevel, alarmType, buildingId, chargesCode, createDate, delFlag, deviceId, happenTime, isNewRecord, page, producerCode, sqlMap) val apples: Seq[ Apple ] = Seq(strings) //println("走到这里了!") println("logs:" + apples) // val appRdd: RDD[ Apple ] = sc.makeRDD(apples) /* value1.foreachPartition(iter =>{ import spark.implicits._ val frameDF: DataFrame = value1.toDF() frameDF.createTempView("t_1") frameDF.show() })*/ val value1: RDD[ Apple ] = sc.parallelize(apples) import spark.implicits._ val frameDF: DataFrame = value1.toDF() frameDF.createTempView("t_1") frameDF.show() }).print()

java 实现 sparksql 时,mysql数据库查询结果只有表头没有数据

这两天尝试用java实现sparksql连接mysql数据库,经过调试可以成功连接到数据库,但奇怪的是只能够查询出表头和表结构却看不到表里面数据 代码如下 import java.util.Hashtable; import java.util.Properties; import javax.swing.JFrame; import org.apache.avro.hadoop.io.AvroKeyValue.Iterator; import org.apache.hadoop.hdfs.protocolPB.DatanodeProtocolServerSideTranslatorPB; import org.apache.hadoop.hive.ql.exec.vector.expressions.IsNull; import org.apache.log4j.Logger; import org.apache.spark.SparkConf; import org.apache.spark.SparkContext; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.rdd.RDD; import org.apache.spark.sql.DataFrameReader; import org.apache.spark.sql.DataFrameWriter; import org.apache.spark.sql.Dataset; import org.apache.spark.sql.Row; import org.apache.spark.sql.SQLContext; import org.apache.spark.sql.SaveMode; import org.apache.spark.sql.SparkSession; import org.apache.spark.sql.SparkSession.Builder; import org.apache.spark.sql.jdbc.JdbcDialect; import org.datanucleus.store.rdbms.identifier.IdentifierFactory; import antlr.collections.List; import scala.Enumeration.Val; public class Demo_Mysql3 { private static Logger logger = Logger.getLogger(Demo_Mysql3.class); public static void main(String[] args) { SparkConf sparkConf = new SparkConf(); sparkConf.setAppName("Demo_Mysql3"); sparkConf.setMaster("local[5]"); sparkConf.setSparkHome("F:\\DownLoad\\spark\\spark-2.0.0-bin-hadoop2.7"); sparkConf.set("spark.sql.warehouse.dir","F:\\DownLoad\\spark\\spark-2.0.0-bin-hadoop2.7"); SparkContext sc0=null; try { sc0=new SparkContext(sparkConf); SparkSession sparkSession=new SparkSession(sc0); SQLContext sqlContext = new SQLContext(sparkSession); // 一个条件表示一个分区 String[] predicates = new String[] { "1=1 order by id limit 400000,50000", "1=1 order by id limit 450000,50000", "1=1 order by id limit 500000,50000", "1=1 order by id limit 550000,50000", "1=1 order by id limit 600000,50000" }; String url = "jdbc:mysql://localhost:3306/clone"; String table = "image"; Properties connectionProperties = new Properties(); connectionProperties.setProperty("dbtable", table);// 设置表 connectionProperties.setProperty("user", "root");// 设置用户名 connectionProperties.setProperty("password", "root");// 设置密码 // 读取数据 DataFrameReader jread = sqlContext.read(); //Dataset<Row> jdbcDs=jread.jdbc(url, table, predicates, connectionProperties); sqlContext.read().jdbc(url, table, predicates, connectionProperties).select("*").show(); } catch (Exception e) { logger.error("|main|exception error", e); } finally { if (sc0 != null) { sc0.stop(); } } } } 控制台输出如下: ![图片说明](https://img-ask.csdn.net/upload/201707/22/1500708689_839040.png)

Python数据挖掘简易入门

&nbsp; &nbsp; &nbsp; &nbsp; 本课程为Python数据挖掘方向的入门课程,课程主要以真实数据为基础,详细介绍数据挖掘入门的流程和使用Python实现pandas与numpy在数据挖掘方向的运用,并深入学习如何运用scikit-learn调用常用的数据挖掘算法解决数据挖掘问题,为进一步深入学习数据挖掘打下扎实的基础。

HoloLens2开发入门教程

本课程为HoloLens2开发入门教程,讲解部署开发环境,安装VS2019,Unity版本,Windows SDK,创建Unity项目,讲解如何使用MRTK,编辑器模拟手势交互,打包VS工程并编译部署应用到HoloLens上等。

2019 Python开发者日-培训

本次活动将秉承“只讲技术,拒绝空谈”的理念,邀请十余位身处一线的Python技术专家,重点围绕Web开发、自动化运维、数据分析、人工智能等技术模块,分享真实生产环境中使用Python应对IT挑战的真知灼见。此外,针对不同层次的开发者,大会还安排了深度培训实操环节,为开发者们带来更多深度实战的机会。

Only老K说-爬取妹子图片(简单入门)

安装第三方请求库 requests 被网站禁止了访问 原因是我们是Python过来的 重新给一段 可能还是存在用不了,使用网页的 编写代码 上面注意看匹配内容 User-Agent:请求对象 AppleWebKit:请求内核 Chrome浏览器 //请求网页 import requests import re //正则表达式 就是去不规则的网页里面提取有规律的信息 headers = { 'User-Agent':'存放浏览器里面的' } response = requests.get

2020_五一数学建模_C题_整理后的数据.zip

该数据是我的程序读取的数据,仅供参考,问题的解决方案:https://blog.csdn.net/qq_41228463/article/details/105993051

R语言入门基础

本课程旨在帮助学习者快速入门R语言: 课程系统详细地介绍了使用R语言进行数据处理的基本思路和方法。 课程能够帮助初学者快速入门数据处理。 课程通过大量的案例详细地介绍了如何使用R语言进行数据分析和处理 课程操作实际案例教学,通过编写代码演示R语言的基本使用方法和技巧

人才招聘系统PHP+MySQL源码

PHP 5.0及以上 + MySQL 5.0及以上 开发的人才招聘系统完全可运行源码,按照操作说明简单配置即可运行。学习PHPWEB应用的完整系统程序源码。

Java基础知识面试题(2020最新版)

文章目录Java概述何为编程什么是Javajdk1.5之后的三大版本JVM、JRE和JDK的关系什么是跨平台性?原理是什么Java语言有哪些特点什么是字节码?采用字节码的最大好处是什么什么是Java程序的主类?应用程序和小程序的主类有何不同?Java应用程序与小程序之间有那些差别?Java和C++的区别Oracle JDK 和 OpenJDK 的对比基础语法数据类型Java有哪些数据类型switc...

python可视化分析(matplotlib、seaborn、ggplot2)

python可视化分析总结(matplotlib、seaborn、ggplot)一、matplotlib库1、基本绘图命令3、图形参数设置4、特殊统计图的绘制4.1 数学函数图4.2 气泡图4.1 三维曲面图二、seaborn库1、常用统计图1.1 箱线图1.2 小提琴图1.3 点图1.4 条图与计数图1.5 分组图1.6 概率分布图2、联合图3、配对图三、ggplot库1、图层画法+常用图形2、快速绘图 一、matplotlib库 1、基本绘图命令 import matplotlib.pyplot as

Vue.js 2.0之全家桶系列视频课程

基于新的Vue.js 2.3版本, 目前新全的Vue.js教学视频,让你少走弯路,直达技术前沿! 1. 包含Vue.js全家桶(vue.js、vue-router、axios、vuex、vue-cli、webpack、ElementUI等) 2. 采用笔记+代码案例的形式讲解,通俗易懂

初级玩转Linux+Ubuntu(嵌入式开发基础课程)

课程主要面向嵌入式Linux初学者、工程师、学生 主要从一下几方面进行讲解: 1.linux学习路线、基本命令、高级命令 2.shell、vi及vim入门讲解 3.软件安装下载、NFS、Samba、FTP等服务器配置及使用

人工智能-计算机视觉实战之路(必备算法+深度学习+项目实战)

系列课程主要分为3大阶段:(1)首先掌握计算机视觉必备算法原理,结合Opencv进行学习与练手,通过实际视项目进行案例应用展示。(2)进军当下最火的深度学习进行视觉任务实战,掌握深度学习中必备算法原理与网络模型架构。(3)结合经典深度学习框架与实战项目进行实战,基于真实数据集展开业务分析与建模实战。整体风格通俗易懂,项目驱动学习与就业面试。 建议同学们按照下列顺序来进行学习:1.Python入门视频课程 2.Opencv计算机视觉实战(Python版) 3.深度学习框架-PyTorch实战/人工智能框架实战精讲:Keras项目 4.Python-深度学习-物体检测实战 5.后续实战课程按照自己喜好选择就可以

【大总结2】大学两年,写了这篇几十万字的干货总结

本文十天后设置为粉丝可见,喜欢的提前关注 不要白嫖请点赞 不要白嫖请点赞 不要白嫖请点赞 文中提到的书我都有电子版,可以评论邮箱发给你。 文中提到的书我都有电子版,可以评论邮箱发给你。 文中提到的书我都有电子版,可以评论邮箱发给你。 本篇文章应该算是Java后端开发技术栈的,但是大部分是基础知识,所以我觉得对任何方向都是有用的。 1、数据结构 数据结构是计算机存储、...

lena全身原图(非256*256版本,而是全身原图)

lena全身原图(非256*256版本,而是全身原图) lena原图很有意思,我们通常所用的256*256图片是在lena原图上截取了头部部分的256*256正方形得到的. 原图是花花公子杂志上的一个

【项目实战】 图书信息管理系统(Maven,mybatis)(第一个自己独立完成的项目)

《程序设计综合训练实践报告》 此项目为图书信息管理系统,是一个采用了mysql+mybatis框架+java编写的maven项目

图书管理系统(Java + Mysql)我的第一个完全自己做的实训项目

图书管理系统 Java + MySQL 完整实训代码,MVC三层架构组织,包含所有用到的图片资源以及数据库文件,大三上学期实训,注释很详细,按照阿里巴巴Java编程规范编写

Python入门视频精讲

Python入门视频培训课程以通俗易懂的方式讲解Python核心技术,Python基础,Python入门。适合初学者的教程,让你少走弯路! 课程内容包括:1.Python简介和安装 、2.第一个Python程序、PyCharm的使用 、3.Python基础、4.函数、5.高级特性、6.面向对象、7.模块、8.异常处理和IO操作、9.访问数据库MySQL。教学全程采用笔记+代码案例的形式讲解,通俗易懂!!!

20行代码教你用python给证件照换底色

20行代码教你用python给证件照换底色

2018年全国大学生计算机技能应用大赛决赛 大题

2018年全国大学生计算机技能应用大赛决赛大题,程序填空和程序设计(侵删)

MySQL数据库从入门到实战应用

限时福利1:购课进答疑群专享柳峰(刘运强)老师答疑服务 限时福利2:购课后添加学习助手(微信号:csdn590),按消息提示即可领取编程大礼包! 为什么说每一个程序员都应该学习MySQL? 根据《2019-2020年中国开发者调查报告》显示,超83%的开发者都在使用MySQL数据库。 使用量大同时,掌握MySQL早已是运维、DBA的必备技能,甚至部分IT开发岗位也要求对数据库使用和原理有深入的了解和掌握。 学习编程,你可能会犹豫选择 C++ 还是 Java;入门数据科学,你可能会纠结于选择 Python 还是 R;但无论如何, MySQL 都是 IT 从业人员不可或缺的技能! 【课程设计】 在本课程中,刘运强老师会结合自己十多年来对MySQL的心得体会,通过课程给你分享一条高效的MySQL入门捷径,让学员少走弯路,彻底搞懂MySQL。 本课程包含3大模块:&nbsp; 一、基础篇: 主要以最新的MySQL8.0安装为例帮助学员解决安装与配置MySQL的问题,并对MySQL8.0的新特性做一定介绍,为后续的课程展开做好环境部署。 二、SQL语言篇: 本篇主要讲解SQL语言的四大部分数据查询语言DQL,数据操纵语言DML,数据定义语言DDL,数据控制语言DCL,学会熟练对库表进行增删改查等必备技能。 三、MySQL进阶篇: 本篇可以帮助学员更加高效的管理线上的MySQL数据库;具备MySQL的日常运维能力,语句调优、备份恢复等思路。 &nbsp;

C/C++学习指南全套教程

C/C++学习的全套教程,从基本语法,基本原理,到界面开发、网络开发、Linux开发、安全算法,应用尽用。由毕业于清华大学的业内人士执课,为C/C++编程爱好者的教程。

C/C++跨平台研发从基础到高阶实战系列套餐

一 专题从基础的C语言核心到c++ 和stl完成基础强化; 二 再到数据结构,设计模式完成专业计算机技能强化; 三 通过跨平台网络编程,linux编程,qt界面编程,mfc编程,windows编程,c++与lua联合编程来完成应用强化 四 最后通过基于ffmpeg的音视频播放器,直播推流,屏幕录像,

我以为我对Mysql事务很熟,直到我遇到了阿里面试官

太惨了,面试又被吊打

专为程序员设计的数学课

<p> 限时福利限时福利,<span>15000+程序员的选择!</span> </p> <p> 购课后添加学习助手(微信号:csdn590),按提示消息领取编程大礼包!并获取讲师答疑服务! </p> <p> <br> </p> <p> 套餐中一共包含5门程序员必学的数学课程(共47讲) </p> <p> 课程1:《零基础入门微积分》 </p> <p> 课程2:《数理统计与概率论》 </p> <p> 课程3:《代码学习线性代数》 </p> <p> 课程4:《数据处理的最优化》 </p> <p> 课程5:《马尔可夫随机过程》 </p> <p> <br> </p> <p> 哪些人适合学习这门课程? </p> <p> 1)大学生,平时只学习了数学理论,并未接触如何应用数学解决编程问题; </p> <p> 2)对算法、数据结构掌握程度薄弱的人,数学可以让你更好的理解算法、数据结构原理及应用; </p> <p> 3)看不懂大牛代码设计思想的人,因为所有的程序设计底层逻辑都是数学; </p> <p> 4)想学习新技术,如:人工智能、机器学习、深度学习等,这门课程是你的必修课程; </p> <p> 5)想修炼更好的编程内功,在遇到问题时可以灵活的应用数学思维解决问题。 </p> <p> <br> </p> <p> 在这门「专为程序员设计的数学课」系列课中,我们保证你能收获到这些:<br> <br> <span> </span> </p> <p class="ql-long-24357476"> <span class="ql-author-24357476">①价值300元编程课程大礼包</span> </p> <p class="ql-long-24357476"> <span class="ql-author-24357476">②应用数学优化代码的实操方法</span> </p> <p class="ql-long-24357476"> <span class="ql-author-24357476">③数学理论在编程实战中的应用</span> </p> <p class="ql-long-24357476"> <span class="ql-author-24357476">④程序员必学的5大数学知识</span> </p> <p class="ql-long-24357476"> <span class="ql-author-24357476">⑤人工智能领域必修数学课</span> </p> <p> <br> 备注:此课程只讲程序员所需要的数学,即使你数学基础薄弱,也能听懂,只需要初中的数学知识就足矣。<br> <br> 如何听课? </p> <p> 1、登录CSDN学院 APP 在我的课程中进行学习; </p> <p> 2、登录CSDN学院官网。 </p> <p> <br> </p> <p> 购课后如何领取免费赠送的编程大礼包和加入答疑群? </p> <p> 购课后,添加助教微信:<span> csdn590</span>,按提示领取编程大礼包,或观看付费视频的第一节内容扫码进群答疑交流! </p> <p> <img src="https://img-bss.csdn.net/201912251155398753.jpg" alt=""> </p>

Eclipse archetype-catalog.xml

Eclipse Maven 创建Web 项目报错 Could not resolve archetype org.apache.maven.archetypes:maven-archetype-web

使用TensorFlow+keras快速构建图像分类模型

课程分为两条主线: 1&nbsp;从Tensorflow的基础知识开始,全面介绍Tensorflow和Keras相关内容。通过大量实战,掌握Tensorflow和Keras经常用到的各种建模方式,参数优化方法,自定义参数和模型的手段,以及对训练结果评估与分析的技巧。 2&nbsp;从机器学习基础算法开始,然后进入到图像分类领域,使用MNIST手写数据集和CIFAR10图像数据集,从简单神经网络到深度神经网络,再到卷积神经网络,最终完成复杂模型:残差网络的搭建。完成这条主线,学员将可以自如地使用机器学习的手段来达到图像分类的目的。

Python代码实现飞机大战

文章目录经典飞机大战一.游戏设定二.我方飞机三.敌方飞机四.发射子弹五.发放补给包六.主模块 经典飞机大战 源代码以及素材资料(图片,音频)可从下面的github中下载: 飞机大战源代码以及素材资料github项目地址链接 ————————————————————————————————————————————————————————— 不知道大家有没有打过飞机,喜不喜欢打飞机。当我第一次接触这个东西的时候,我的内心是被震撼到的。第一次接触打飞机的时候作者本人是身心愉悦的,因为周边的朋友都在打飞机, 每

最近面试Java后端开发的感受:如果就以平时项目经验来面试,通过估计很难,不信你来看看

在上周,我密集面试了若干位Java后端的候选人,工作经验在3到5年间。我的标准其实不复杂:第一能干活,第二Java基础要好,第三最好熟悉些分布式框架,我相信其它公司招初级开发时,应该也照着这个标准来面的。 我也知道,不少候选人能力其实不差,但面试时没准备或不会说,这样的人可能在进团队干活后确实能达到期望,但可能就无法通过面试,但面试官总是只根据面试情况来判断。 但现实情况是,大多数人可能面试前没准备,或准备方法不得当。要知道,我们平时干活更偏重于业务,不可能大量接触到算法,数据结构,底层代码这类面试必问

三个项目玩转深度学习(附1G源码)

从事大数据与人工智能开发与实践约十年,钱老师亲自见证了大数据行业的发展与人工智能的从冷到热。事实证明,计算机技术的发展,算力突破,海量数据,机器人技术等,开启了第四次工业革命的序章。深度学习图像分类一直是人工智能的经典任务,是智慧零售、安防、无人驾驶等机器视觉应用领域的核心技术之一,掌握图像分类技术是机器视觉学习的重中之重。针对现有线上学习的特点与实际需求,我们开发了人工智能案例实战系列课程。打造:以项目案例实践为驱动的课程学习方式,覆盖了智能零售,智慧交通等常见领域,通过基础学习、项目案例实践、社群答疑,三维立体的方式,打造最好的学习效果。

微信小程序开发实战之番茄时钟开发

微信小程序番茄时钟视频教程,本课程将带着各位学员开发一个小程序初级实战类项目,针对只看过官方文档而又无从下手的开发者来说,可以作为一个较好的练手项目,对于有小程序开发经验的开发者而言,可以更好加深对小程序各类组件和API 的理解,为更深层次高难度的项目做铺垫。

相关热词 aero c# c#压缩图片 c# udp服务器 100线程 c# c# fidller请求 c# 参数 调用exe c# 打字母小游戏 c#显示未能加载文件 c# 右击菜单加快捷键 c#将重复的数据保留一条
立即提问