如何在keras+tensorflow中对4通道图像如何输入并分类呢?

ImageDataGenerator默认的flow_from_directory函数中有个color_mode设置,我看文献中只支持‘gray'和'rgb',但我现在要处理的图像是RGBD的4通道图像,如何设置呢?求大师指点。
我尝试着将color_mode设置为'rgb',但是在第一层卷积层的输入数据类型,设置的是(width,height,4)的四通道格式,运行的时候出错了,提示如果我的color_mode设置成了‘rgb',那么自动生成batch的时候,依旧是会变为3通道格式。具体如下:

在flow_from_directory中的color为‘rgb'

 train_generator = train_datagen.flow_from_directory(
        directory= train_dir,  # this is the target directory
        target_size=(200, 200),  # all images will be resized to 200x200
        classes= potato_class,
        batch_size=60,
        color_mode= 'rgb',
        class_mode='sparse')

在卷基层的输入input_shape中设置为4通道

 model = Sequential()  # CNN构建
model.add(Convolution2D(
    input_shape=(200, 200, 4),
    # input_shape=(1, Width, Height),
    filters=16,
    kernel_size=3,
    strides=1,
    padding='same',
    data_format='channels_last',
    name='CONV_1'
))

运行后的错误提示如下:
ValueError: Error when checking input: expected CONV_1_input to have shape (None, 200, 200, 4) but got array with shape (60, 200, 200, 3)

怎样才能让keras接受4通道图像呢?我在stackOverflow中看到有人留言说4通道是支持的,但是我没有找到代码。

2个回答

我也在做RGB-D图片训练,并且已经成功了。你应该是配置文件没找对。1、因为是四通道嘛,config中要将MEAN_PIXEL改为 MEAN_PIXEL= np.array([123.7, 116.8, 103.9, 0])。2、如果有预训练模型,请把conv1之前的包括conv1的数据给去掉,具体名称你可以打印输出一下自己预训练集合中层的名称
3、Keras在将图片导入时,类似为keras.layers.Input(shape=config.IMAGE_SHAPE.tolist(), name="input_image"),
你看一下你config中IMAGE_SHAPE最后一维度有没有改成4
就这些,希望对你有用。

weixin_44288379
航 回复: 训练集和测试集用的是RGBD的图像
大约一年之前 回复
weixin_44288379
航 你好,请问我没改修改这个MEAN_PIXEL= np.array([123.7, 116.8, 103.9]),为什么也可以训练,训练的是tensorflow框架的pspnet网络,但是最后评估出来的MIoU值很低,是什么原因呢?
大约一年之前 回复
dtt0822
Lᵒᵛᵉᵧₒᵤ 我想问一下,(32,32,512)是几通道的呢?我在训练卫星图像,在换数据集的时候出现了通道不匹配的情况
大约一年之前 回复

这篇简书有解决方法https://www.jianshu.com/p/e9d2cfe90e5d

Csdn user default icon
上传中...
上传图片
插入图片
抄袭、复制答案,以达到刷声望分或其他目的的行为,在CSDN问答是严格禁止的,一经发现立刻封号。是时候展现真正的技术了!
其他相关推荐
如何在keras+tensorflow中对4通道图像如何输入并分类呢?

ImageDataGenerator默认的flow_from_directory函数中有个color_mode设置,我看文献中只支持‘gray'和'rgb',但我现在要处理的图像是RGBD的4通道图像,如何设置呢?求大师指点。 我尝试着将color_mode设置为'rgb',但是在第一层卷积层的输入数据类型,设置的是(width,height,4)的四通道格式,运行的时候出错了,提示如果我的color_mode设置成了‘rgb',那么自动生成batch的时候,依旧是会变为3通道格式。具体如下: 在flow_from_directory中的color为‘rgb' ``` train_generator = train_datagen.flow_from_directory( directory= train_dir, # this is the target directory target_size=(200, 200), # all images will be resized to 200x200 classes= potato_class, batch_size=60, color_mode= 'rgb', class_mode='sparse') ``` 在卷基层的输入input_shape中设置为4通道 ``` model = Sequential() # CNN构建 model.add(Convolution2D( input_shape=(200, 200, 4), # input_shape=(1, Width, Height), filters=16, kernel_size=3, strides=1, padding='same', data_format='channels_last', name='CONV_1' )) ``` 运行后的错误提示如下: ValueError: Error when checking input: expected CONV_1_input to have shape (None, 200, 200, 4) but got array with shape (60, 200, 200, 3) 怎样才能让keras接受4通道图像呢?我在stackOverflow中看到有人留言说4通道是支持的,但是我没有找到代码。

TensorFlow的Keras如何使用Dataset作为数据输入?

当我把dataset作为输入数据是总会报出如下错误,尽管我已经在数据解析那里reshape了图片大小为(512,512,1),请问该如何修改? ``` ValueError: Error when checking input: expected conv2d_input to have 4 dimensions, but got array with shape (None, 1) ``` **图片大小定义** ``` import tensorflow as tf from tensorflow import keras IMG_HEIGHT = 512 IMG_WIDTH = 512 IMG_CHANNELS = 1 IMG_PIXELS = IMG_CHANNELS * IMG_HEIGHT * IMG_WIDTH ``` **解析函数** ``` def parser(record): features = tf.parse_single_example(record, features={ 'image_raw': tf.FixedLenFeature([], tf.string), 'label': tf.FixedLenFeature([23], tf.int64) }) image = tf.decode_raw(features['image_raw'], tf.uint8) label = tf.cast(features['label'], tf.int32) image.set_shape([IMG_PIXELS]) image = tf.reshape(image, [IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS]) image = tf.cast(image, tf.float32) return image, label ``` **模型构建** ``` dataset = tf.data.TFRecordDataset([TFRECORD_PATH]) dataset.map(parser) dataset = dataset.repeat(10*10).batch(10) model = keras.Sequential([ keras.layers.Conv2D(filters=32, kernel_size=(5, 5), padding='same', activation='relu', input_shape=(512, 512, 1)), keras.layers.MaxPool2D(pool_size=(2, 2)), keras.layers.Dropout(0.25), keras.layers.Conv2D(filters=64, kernel_size=(3, 3), padding='same', activation='relu'), keras.layers.MaxPool2D(pool_size=(2, 2)), keras.layers.Dropout(0.25), keras.layers.Flatten(), keras.layers.Dense(128, activation='relu'), keras.layers.Dropout(0.25), keras.layers.Dense(23, activation='softmax') ]) model.compile(optimizer=keras.optimizers.Adam(), loss=keras.losses.sparse_categorical_crossentropy, metrics=[tf.keras.metrics.categorical_accuracy]) model.fit(dataset.make_one_shot_iterator(), epochs=10, steps_per_epoch=10) ```

Tensorflow代码转到Keras

我现在有Tensortflow的代码和结构图如下,这是AC-GAN中生成器的部分,我用原生tf是可以跑通的,但当我想转到Keras中实现却很头疼。 ``` def batch_norm(inputs, is_training=is_training, decay=0.9): return tf.contrib.layers.batch_norm(inputs, is_training=is_training, decay=decay) # 构建残差块 def g_block(inputs): h0 = tf.nn.relu(batch_norm(conv2d(inputs, 3, 64, 1, use_bias=False))) h0 = batch_norm(conv2d(h0, 3, 64, 1, use_bias=False)) h0 = tf.add(h0, inputs) return h0 # 生成器 # batch_size = 32 # z : shape(32, 128) # label : shape(32, 34) def generator(z, label): with tf.variable_scope('generator', reuse=None): d = 16 z = tf.concat([z, label], axis=1) h0 = tf.layers.dense(z, units=d * d * 64) h0 = tf.reshape(h0, shape=[-1, d, d, 64]) h0 = tf.nn.relu(batch_norm(h0)) shortcut = h0 for i in range(16): h0 = g_block(h0) h0 = tf.nn.relu(batch_norm(h0)) h0 = tf.add(h0, shortcut) for i in range(3): h0 = conv2d(h0, 3, 256, 1, use_bias=False) h0 = tf.depth_to_space(h0, 2) h0 = tf.nn.relu(batch_norm(h0)) h0 = tf.layers.conv2d(h0, kernel_size=9, filters=3, strides=1, padding='same', activation=tf.nn.tanh, name='g', use_bias=True) return h0 ``` ![生成器结构图](https://img-ask.csdn.net/upload/201910/29/1572278934_997142.png) 在Keras中都是先构建Model,在Model中不断的加层 但上面的代码却是中间包含着新旧数据的计算,比如 ``` .... shortcut = h0 .... h0 = tf.add(h0, shortcut) ``` 难不成我还要构建另外一个model作为中间输出吗? 大佬们帮帮忙解释下,或者能不能给出翻译到Keras中应该怎么写

使用Keras找不到tensorflow

程序代码 #-*- coding: utf-8 -*- #使用神经网络算法预测销量高低 import pandas as pd #参数初始化 inputfile = 'D:/python/chapter5/demo/data/sales_data.xls' data = pd.read_excel(inputfile, index_col = u'序号') #导入数据 #数据是类别标签,要将它转换为数据 #用1来表示“好”、“是”、“高”这三个属性,用0来表示“坏”、“否”、“低” data[data == u'好'] = 1 data[data == u'是'] = 1 data[data == u'高'] = 1 data[data != 1] = 0 x = data.iloc[:,:3].as_matrix().astype(int) y = data.iloc[:,3].as_matrix().astype(int) from keras.models import Sequential from keras.layers.core import Dense, Activation model = Sequential() #建立模型 model.add(Dense(input_dim = 3, output_dim = 10)) model.add(Activation('relu')) #用relu函数作为激活函数,能够大幅提供准确度 model.add(Dense(input_dim = 10, output_dim = 1)) model.add(Activation('sigmoid')) #由于是0-1输出,用sigmoid函数作为激活函数 model.compile(loss = 'binary_crossentropy', optimizer = 'adam', class_mode = 'binary') #编译模型。由于我们做的是二元分类,所以我们指定损失函数为binary_crossentropy,以及模式为binary #另外常见的损失函数还有mean_squared_error、categorical_crossentropy等,请阅读帮助文件。 #求解方法我们指定用adam,还有sgd、rmsprop等可选 model.fit(x, y, nb_epoch = 1000, batch_size = 10) #训练模型,学习一千次 yp = model.predict_classes(x).reshape(len(y)) #分类预测 from cm_plot import * #导入自行编写的混淆矩阵可视化函数 cm_plot(y,yp).show() #显示混淆矩阵可视化结果 错误提示 Using TensorFlow backend. Traceback (most recent call last): File "D:\python\chapter5\demo\code\5-3_neural_network.py", line 19, in <module> from keras.models import Sequential File "C:\Python27\lib\site-packages\keras\__init__.py", line 3, in <module> from . import utils File "C:\Python27\lib\site-packages\keras\utils\__init__.py", line 6, in <module> from . import conv_utils File "C:\Python27\lib\site-packages\keras\utils\conv_utils.py", line 3, in <module> from .. import backend as K File "C:\Python27\lib\site-packages\keras\backend\__init__.py", line 83, in <module> from .tensorflow_backend import * File "C:\Python27\lib\site-packages\keras\backend\tensorflow_backend.py", line 1, in <module> import tensorflow as tf ImportError: No module named tensorflow

keras下用RNN中的lstm来进行图片分类,输入维数的错误

1.如题,我是在keras下用lstm来对本地文件夹中六类垃圾进行图片分类 这是我的部分代码: (我本地的图片是512 ✖384的,进行resize为200✖160了) ``` nb_lstm_outputs = 128 #神经元个数 nb_time_steps = 200 #时间序列长度 nb_input_vector = 160 #输入序列 # 读取数据和标签 print("------开始读取数据------") data = [] labels = [] # 拿到图像数据路径,方便后续读取 imagePaths = sorted(list(utils_paths.list_images('./dataset-resized'))) random.seed(42) random.shuffle(imagePaths) # 遍历读取数据 for imagePath in imagePaths: # 读取图像数据 image = cv2.imread(imagePath) image = cv2.resize(image, (160,200)) data.append(image) # 读取标签 label = imagePath.split(os.path.sep)[-2] labels.append(label) # 对图像数据做scale操作 data=np.array(data, dtype="float") / 255.0 labels = np.array(labels) # 数据集切分 (trainX, testX, trainY, testY) = train_test_split(data,labels, test_size=0.25, random_state=42) # 转换标签为one-hot encoding格式 lb = LabelBinarizer() trainY = lb.fit_transform(trainY) testY = lb.transform(testY) # 设置初始化超参数 EPOCHS = 5 BS = 71 ``` 以上就是我的数据预处理操作 下面是我构建的模型: ``` model = Sequential() model.add(LSTM(units=nb_lstm_outputs, return_sequences=True, input_shape=(nb_time_steps, nb_input_vector))) # returns a sequence of vectors of dimension 30 model.add(LSTM(units=nb_lstm_outputs, return_sequences=True)) # returns a sequence of vectors of dimension 30 model.add(LSTM(units=nb_lstm_outputs)) # return a single vector of dimension 30 model.add(Dense(1, activation='softmax')) model.add(Dense(6, activation='softmax')) adam=Adam(lr=1e-4) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(trainX, trainY, epochs = EPOCHS, batch_size = BS, verbose = 1, validation_data = (testX,testY)) ``` 后续就是优化和生成loss等的代码了。 然而运行时遇到了以下维度错误: ![图片说明](https://img-ask.csdn.net/upload/202004/26/1587884348_141131.png) 然后我我试着修改不同的尺寸,发现都有上述错误,感觉应该是维度错误,但是不太明白1895是怎么来的? 2.遇到上述维度问题后,不太清楚怎么解决,于是我将代码中读取图片cv2.imread,将图像进行了灰度化: ``` image = cv2.imread(imagePath,CV2.IMREAD_GRAYSCALE) ``` 调整后,代码可以运行,然而并未按照预先设定的Batchsize进行训练,而是直接以划分的整体比例进行训练,想请问下这是怎么回事?已经输入BS到batch_size的参数了 ![图片说明](https://img-ask.csdn.net/upload/202004/26/1587884791_796238.png) 所以想请问各位大神,怎么解决维度问题,还有就是为什么后面BS传进去不管用啊,有没有清楚怎么一回事的啊? 谢谢各位大神了!!是个小白QAQ谢谢!

pytorch lstmcell方法转化成keras或者tensorflow

pytorch self.att_lstm = nn.LSTMCell(1536, 512) self.lang_lstm = nn.LSTMCell(1024, 512) 请问上面的如何转成同等的keras或者tensorflow

为什么同样的问题用Tensorflow和keras实现结果不一样?

**cifar-10分类问题,同样的模型结构以及损失函数还有学习率参数等超参数,分别用TensorFlow和keras实现。 20个epochs后在测试集上进行预测,准确率总是差好几个百分点,不知道问题出在哪里?代码如下: 这个是TF的代码:** import tensorflow as tf import numpy as np import pickle as pk tf.reset_default_graph() batch_size = 64 test_size = 10000 img_size = 32 num_classes = 10 training_epochs = 10 test_size=200 ############################################################################### def unpickle(filename): '''解压数据''' with open(filename, 'rb') as f: d = pk.load(f, encoding='latin1') return d def onehot(labels): '''one-hot 编码''' n_sample = len(labels) n_class = max(labels) + 1 onehot_labels = np.zeros((n_sample, n_class)) onehot_labels[np.arange(n_sample), labels] = 1 return onehot_labels # 训练数据集 data1 = unpickle('data_batch_1') data2 = unpickle('data_batch_2') data3 = unpickle('data_batch_3') data4 = unpickle('data_batch_4') data5 = unpickle('data_batch_5') X_train = np.concatenate((data1['data'], data2['data'], data3['data'], data4['data'], data5['data']), axis=0)/255.0 y_train = np.concatenate((data1['labels'], data2['labels'], data3['labels'], data4['labels'], data5['labels']), axis=0) y_train = onehot(y_train) # 测试数据集 test = unpickle('test_batch') X_test = test['data']/255.0 y_test = onehot(test['labels']) del test,data1,data2,data3,data4,data5 ############################################################################### w = tf.Variable(tf.random_normal([5, 5, 3, 32], stddev=0.01)) w_c= tf.Variable(tf.random_normal([32* 16* 16, 512], stddev=0.1)) w_o =tf.Variable(tf.random_normal([512, num_classes], stddev=0.1)) def init_bias(shape): return tf.Variable(tf.constant(0.0, shape=shape)) b=init_bias([32]) b_c=init_bias([512]) b_o=init_bias([10]) def model(X, w, w_c,w_o, p_keep_conv, p_keep_hidden,b,b_c,b_o): conv1 = tf.nn.conv2d(X, w,strides=[1, 1, 1, 1],padding='SAME')#32x32x32 conv1=tf.nn.bias_add(conv1,b) conv1 = tf.nn.relu(conv1) conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1],padding='SAME')#16x16x32 conv1 = tf.nn.dropout(conv1, p_keep_conv) FC_layer = tf.reshape(conv1, [-1, 32 * 16 * 16]) out_layer=tf.matmul(FC_layer, w_c)+b_c out_layer=tf.nn.relu(out_layer) out_layer = tf.nn.dropout(out_layer, p_keep_hidden) result = tf.matmul(out_layer, w_o)+b_o return result trX, trY, teX, teY = X_train,y_train,X_test,y_test trX = trX.reshape(-1, img_size, img_size, 3) teX = teX.reshape(-1, img_size, img_size, 3) X = tf.placeholder("float", [None, img_size, img_size, 3]) Y = tf.placeholder("float", [None, num_classes]) p_keep_conv = tf.placeholder("float") p_keep_hidden = tf.placeholder("float") py_x = model(X, w, w_c,w_o, p_keep_conv, p_keep_hidden,b,b_c,b_o) Y_ = tf.nn.softmax_cross_entropy_with_logits_v2(logits=py_x, labels=Y) cost = tf.reduce_mean(Y_) optimizer = tf.train.RMSPropOptimizer(0.001, 0.9).minimize(cost) predict_op = tf.argmax(py_x, 1) with tf.Session() as sess: tf.global_variables_initializer().run() for i in range(training_epochs): training_batch = zip(range(0, len(trX),batch_size),range(batch_size, len(trX)+1,batch_size)) perm=np.arange(len(trX)) np.random.shuffle(perm) trX=trX[perm] trY=trY[perm] for start, end in training_batch: sess.run(optimizer, feed_dict={X: trX[start:end],Y: trY[start:end],p_keep_conv:0.75,p_keep_hidden: 0.5}) test_batch = zip(range(0, len(teX),test_size),range(test_size, len(teX)+1,test_size)) accuracyResult=0 for start, end in test_batch: accuracyResult=accuracyResult+sum(np.argmax(teY[start:end], axis=1) ==sess.run(predict_op, feed_dict={X: teX[start:end],Y: teY[start:end],p_keep_conv: 1,p_keep_hidden: 1})) print(i, accuracyResult/10000) **这个是keras代码:** from keras import initializers from keras.datasets import cifar10 from keras.utils import np_utils from keras.models import Sequential from keras.layers.core import Dense, Dropout, Activation, Flatten from keras.layers.convolutional import Conv2D, MaxPooling2D from keras.optimizers import SGD, Adam, RMSprop #import matplotlib.pyplot as plt # CIFAR_10 is a set of 60K images 32x32 pixels on 3 channels IMG_CHANNELS = 3 IMG_ROWS = 32 IMG_COLS = 32 #constant BATCH_SIZE = 64 NB_EPOCH = 10 NB_CLASSES = 10 VERBOSE = 1 VALIDATION_SPLIT = 0 OPTIM = RMSprop() #load dataset (X_train, y_train), (X_test, y_test) = cifar10.load_data() #print('X_train shape:', X_train.shape) #print(X_train.shape[0], 'train samples') #print(X_test.shape[0], 'test samples') # convert to categorical Y_train = np_utils.to_categorical(y_train, NB_CLASSES) Y_test = np_utils.to_categorical(y_test, NB_CLASSES) # float and normalization X_train = X_train.astype('float32') X_test = X_test.astype('float32') X_train /= 255 X_test /= 255 # network model = Sequential() model.add(Conv2D(32, (3, 3), padding='same',input_shape=(IMG_ROWS, IMG_COLS, IMG_CHANNELS),kernel_initializer=initializers.random_normal(stddev=0.01),bias_initializer=initializers.Zeros())) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) #0<参数<1才会有用 model.add(Flatten()) model.add(Dense(512,kernel_initializer=initializers.random_normal(stddev=0.1),bias_initializer=initializers.Zeros())) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(NB_CLASSES,kernel_initializer=initializers.random_normal(stddev=0.1),bias_initializer=initializers.Zeros())) model.add(Activation('softmax')) model.summary() # train model.compile(loss='categorical_crossentropy', optimizer=OPTIM,metrics=['accuracy']) model.fit(X_train, Y_train, batch_size=BATCH_SIZE,epochs=NB_EPOCH, validation_split=VALIDATION_SPLIT,verbose=VERBOSE) score = model.evaluate(X_test, Y_test,batch_size=200, verbose=VERBOSE) print("Test score:", score[0]) print('Test accuracy:', score[1])

pytorch adaptive_avg_pool2d方法转化成keras或者tensorflow

pytorch adaptive_avg_pool2d(x,[14,14]) 请问如何将上述方法转成同等的keras或者tensorflow

tensorflow环境下只要import keras 就会出现python已停止运行?

python小白在写代码的时候发现只要import keras就会出现python停止运行的情况,目前tensorflow版本1.2.1,keras版本2.1.1,防火墙关了也还是这样,具体代码和问题信息如下,请大神赐教。 ``` # -*- coding: utf-8 -*- import numpy as np from scipy.io import loadmat, savemat from keras.utils import np_utils 问题事件名称: BEX64 应用程序名: pythonw.exe 应用程序版本: 3.6.2150.1013 应用程序时间戳: 5970e8ca 故障模块名称: StackHash_1dc2 故障模块版本: 0.0.0.0 故障模块时间戳: 00000000 异常偏移: 0000000000000000 异常代码: c0000005 异常数据: 0000000000000008 OS 版本: 6.1.7601.2.1.0.256.1 区域设置 ID: 2052 其他信息 1: 1dc2 其他信息 2: 1dc22fb1de37d348f27e54dbb5278e7d 其他信息 3: eae3 其他信息 4: eae36a4b5ffb27c9d33117f4125a75c2 ```

请问tensorflow或者keras中想在神经网络同一层不同节点中设置不同激活函数该怎么实现?

tensorflow和keras一设置激活函数好像就是会默认设置一整层所有节点都会是同一个激活函数,请问要如何实现同一层不同节点有不同激活函数?

python3.7中的tensorflow2.0模块没有的问题。

小白刚做手写字识别,遇到tensorflow导入模块的一些问题,模块ModuleNotFoundError: No module named 'tensorflow.examples.tutorials'不会解决。 import keras # 导入Keras import numpy as np from keras.datasets import mnist # 从keras中导入mnist数据集 from keras.models import Sequential # 导入序贯模型 from keras.layers import Dense # 导入全连接层 from keras.optimizers import SGD # 导入优化函数 from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("MNIST_data", one_hot = True) ![图片说明](https://img-ask.csdn.net/upload/201911/17/1573957701_315782.png) 在网上找了好久,也不怎么懂,能告诉我详实点的解决办法。

Keras, Tensorflow, ValueError

把csdn上一个颜值打分程序放到jupyter notebook上跑,程序如下: ``` from keras.applications import ResNet50 from keras import optimizers from keras.layers import Dense, Dropout from keras.callbacks import EarlyStopping, ReduceLROnPlateau, ModelCheckpoint from keras.backend.tensorflow_backend import set_session os.environ['CUDA_VISIBLE_DEVICES'] = '1' config = tf.ConfigProto() config.gpu_options.allow_growth = True set_session(tf.Session(config=config)) batch_size = 32 target_size = (224, 224) resnet = ResNet50(include_top=False, pooling='avg') resnet.trainable = False # keras.backend.clear_session() # tf.reset_default_graph() model = Sequential() model.add(resnet) model.add(Dropout(0.5)) model.add(Dense(1, activation='sigmoid')) print(model.summary()) model.compile(optimizer=optimizers.SGD(lr=0.001), loss='mse') callbacks = [EarlyStopping(monitor='val_loss', patience=5, verbose=1, min_delta=1e-4), ReduceLROnPlateau(monitor='val_loss', patience=3, factor=0.1, epsilon=1e-4), ModelCheckpoint(monitor='val_loss', filepath='weights/resnet50_weights.hdf5', save_best_only=True, save_weights_only=True)] train_file_list, test_file_list = read_data_list() train_steps_per_epoch = math.ceil(len(train_file_list) / batch_size) test_steps_per_epoch = math.ceil(len(test_file_list) / batch_size) train_data = DataGenerator(train_file_list, target_size,batch_size) test_data = DataGenerator(test_file_list, target_size, batch_size) model.fit_generator(train_data, steps_per_epoch=train_steps_per_epoch, epochs=30, verbose=1, callbacks=callbacks, validation_data=test_data, validation_steps=test_steps_per_epoch, use_multiprocessing=True) ``` 结果引发如下错误: ValueError Traceback (most recent call last) <ipython-input-34-ae0a8870fdc1> in <module>() 20 # tf.reset_default_graph() 21 model = Sequential() ---> 22 model.add(resnet) 23 model.add(Dropout(0.5)) 24 model.add(Dense(1, activation='sigmoid')) ...Ignoring many tracing lines... ValueError: Variable bn_conv1/moving_mean/biased already exists, disallowed. Did you mean to set reuse=True in VarScope? Originally defined at: File "xxxx\anaconda3\lib\site-packages\tensorflow\python\framework\ops.py", line 1269, in __init__ self._traceback = _extract_stack() File "xxxx\anaconda3\lib\site-packages\tensorflow\python\framework\ops.py", line 2506, in create_op original_op=self._default_original_op, op_def=op_def) File "xxxx\anaconda3\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 767, in apply_op op_def=op_def) 我按照网上说法在model语句前加了tf.reset_default_graph() ,结果又产生新的error: ValueError: Tensor("conv1_1/kernel:0", shape=(7, 7, 3, 64), dtype=float32_ref) must be from the same graph as Tensor("resnet50/conv1_pad/Pad:0", shape=(?, ?, ?, 3), dtype=float32). 又按照网上说法加了keras.backend.clear_session(),总共加的两句前前后后在很多地方放了测试,结果都会有新的问题: ValueError: Tensor("conv1/kernel:0", shape=(7, 7, 3, 64), dtype=float32_ref) must be from the same graph as Tensor("resnet50/conv1_pad/Pad:0", shape=(?, ?, ?, 3), dtype=float32). 请教大牛究竟该如何彻底解决问题。

keras中使用预训练的VGG19网络能否处理单通道的灰度图?

在SRGAN当中,如果要对单通道的灰度图进行训练可以将输入层的尺寸改为(: ,: ,1),但是此时网络中使用的VGG19的 输入仍然为RGB三通道的图像,因此会报错。 VGG网络能否用于SRGAN对灰度图像的训练中?如果可以因当如何修改? 使用VGG19的代码如下: ``` def build_vgg(self): ``` vgg=VGG19(weights='imagenet') vgg.outputs = [vgg.layers[9].output] img = Input(shape=self.hr_shape) img_features = vgg(img) return Model(img, img_features)

tensorflow中相同函数问题

在tensorflow示例程序中看到这样一个代码 >>import tensorflow as tf >>from tensorflow.python.framework import ops >>ops.reset\_default_graph() 不知道这个函数是否和下面一个函数一样 >>tf.reset\_default_graph() 如果不一样,两个有什么不同?用哪一个更好? 如果这两个函数都是相同的,他们是重新写了一遍?还是都用tensorflow中同一个函数?

Keras 图片要如何输入?

用Keras做CNN,请问图片要怎么输入进去。有没有mnist.load_data()的源码

用keras做图像2分类,结果总是所有test样本归为其中一类?

用keras做图像2分类,label非平衡,约1:10,代码如下: data = np.load('D:/a.npz') image_data, label_data= data['image'], data['label'] 由于数据不平衡,用分层K折拆分为3组, train_x=image_data[train] test_x=image_data[test] train_y=label_data[train] test_y=label_data[test] train_x = np.array(train_x) test_x = np.array(test_x) train_x = train_x.reshape(train_x.shape[0],1,28,28) test_x = test_x.reshape(test_x.shape[0],1,28,28) train_x = train_x.astype('float32') test_x = test_x.astype('float32') train_x /=255 test_x /=255 train_y = np.array(train_y) test_y = np.array(test_y) 然后用keras的序贯模型 model.compile(optimizer='rmsprop',loss="binary_crossentropy",metrics=['acc']) model.fit(train_x, train_y,batch_size=128, class_weight = 'auto', epochs=10,verbose=1,validation_data=(test_x, test_y)) from sklearn.metrics import confusion_matrix y_pred_model = model.predict_proba(test_x) C=confusion_matrix(test_y,y_pred_model) print(C) 结果总是所有test样本归为一类, 推测可能是不平衡,模型认为最优化就是将所有样本都认作为较大类,但是将2分类label改为1:1后,结果仍然是所有test都归为一类: [[22 0] [21 0]] 请教这是啥原因?代码错在哪?

关于Tensorflow的DNN分类器

用Tensorflow写了一个简易的DNN网络(输入,一个隐层,输出),用作分类,数据集选用的是UCI 的iris数据集 激活函数使用softmax loss函数使用对数似然 以便最后的结果是一个概率解,选概率最大的分类的结果 目前的问题是预测结果出现问题,用测试数据测试显示结果如下 ![图片说明](https://img-ask.csdn.net/upload/201811/27/1543322274_512329.png) 刚刚入门...希望大家指点一下,谢谢辣! ``` #coding:utf-8 import matplotlib.pyplot as plt import tensorflow as tf import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.decomposition import PCA from sklearn import preprocessing from sklearn.model_selection import cross_val_score BATCH_SIZE = 30 iris = pd.read_csv('F:\dataset\iris\dataset.data', sep=',', header=None) ''' # 查看导入的数据 print("Dataset Lenght:: ", len(iris)) print("Dataset Shape:: ", iris.shape) print("Dataset:: ") print(iris.head(150)) ''' #将每条数据划分为样本值和标签值 X = iris.values[:, 0:4] Y = iris.values[:, 4] # 整理一下标签数据 # Iris-setosa ---> 0 # Iris-versicolor ---> 1 # Iris-virginica ---> 2 for i in range(len(Y)): if Y[i] == 'Iris-setosa': Y[i] = 0 elif Y[i] == 'Iris-versicolor': Y[i] = 1 elif Y[i] == 'Iris-virginica': Y[i] = 2 # 划分训练集与测试集 X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.3, random_state=10) #对数据集X与Y进行shape整理,让第一个参数为-1表示整理X成n行2列,整理Y成n行1列 X_train = np.vstack(X_train).reshape(-1, 4) Y_train = np.vstack(Y_train).reshape(-1, 1) X_test = np.vstack(X_test).reshape(-1, 4) Y_test = np.vstack(Y_test).reshape(-1, 1) ''' print(X_train) print(Y_train) print(X_test) print(Y_test) ''' #定义神经网络的输入,参数和输出,定义前向传播过程 def get_weight(shape): w = tf.Variable(tf.random_normal(shape), dtype=tf.float32) return w def get_bias(shape): b = tf.Variable(tf.constant(0.01, shape=shape)) return b x = tf.placeholder(tf.float32, shape=(None, 4)) yi = tf.placeholder(tf.float32, shape=(None, 1)) def BP_Model(): w1 = get_weight([4, 10]) # 第一个隐藏层,10个神经元,4个输入 b1 = get_bias([10]) y1 = tf.nn.softmax(tf.matmul(x, w1) + b1) # 注意维度 w2 = get_weight([10, 3]) # 输出层,3个神经元,10个输入 b2 = get_bias([3]) y = tf.nn.softmax(tf.matmul(y1, w2) + b2) return y def train(): # 生成计算图 y = BP_Model() # 定义损失函数 ce = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.arg_max(yi, 1)) loss_cem = tf.reduce_mean(ce) # 定义反向传播方法,正则化 train_step = tf.train.AdamOptimizer(0.001).minimize(loss_cem) # 定义保存器 saver = tf.train.Saver(tf.global_variables()) #生成会话 with tf.Session() as sess: init_op = tf.global_variables_initializer() sess.run(init_op) Steps = 5000 for i in range(Steps): start = (i * BATCH_SIZE) % 300 end = start + BATCH_SIZE reslut = sess.run(train_step, feed_dict={x: X_train[start:end], yi: Y_train[start:end]}) if i % 100 == 0: loss_val = sess.run(loss_cem, feed_dict={x: X_train, yi: Y_train}) print("step: ", i, "loss: ", loss_val) print("保存模型: ", saver.save(sess, './model_iris/bp_model.model')) tf.summary.FileWriter("logs/", sess.graph) #train() def prediction(): # 生成计算图 y = BP_Model() # 定义损失函数 ce = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.arg_max(yi, 1)) loss_cem = tf.reduce_mean(ce) # 定义保存器 saver = tf.train.Saver(tf.global_variables()) with tf.Session() as sess: saver.restore(sess, './model_iris/bp_model.model') result = sess.run(y, feed_dict={x: X_test}) loss_val = sess.run(loss_cem, feed_dict={x: X_test, yi: Y_test}) print("result :", result) print("loss :", loss_val) result_set = sess.run(tf.argmax(result, axis=1)) print("predict result: ", result_set) print("real result: ", Y_test.reshape(1, -1)) #prediction() ```

spyder import TensorFlow 或者 keras时不报错,程序终止。

spyder import TensorFlow 或者 keras时不报错,程序终止。 后面所有结果都没有出来,求助!!如何解决!!!

如何运行Tensorflow聚类算法模型

<div class="post-text" itemprop="text"> <p>I need to run k-means algorithm from Tensorflow in Go, i.e. cluster a graph intro subgraphs according to nodes similarity matrix.</p> <p>I came across <a href="https://www.tonytruong.net/running-a-keras-tensorflow-model-in-golang/" rel="nofollow noreferrer">this article</a> which shows an example on how to run a Keras trained model in Go. In this example the algo is of a supervised learning type. However in clustering algos, as I understand, there will be no model to save and export it to Go implementation.</p> <p>The reason I am interested in Tensorflow, is because I think its code is optimized and will run much faster than <a href="https://github.com/mpraski/clusters" rel="nofollow noreferrer">k-mean implementation</a> in Go, even with the scenario I described above.</p> <p>I need an opinion of whether:</p> <ol> <li>It is indeed impossible to use a Tensorflow k-mean algorithm in Go, and it is much better just to use k-means implemented in Go for this case.</li> <li>It is possible to do this, and some sort of example or ideas on how to do this are very much appreciated.</li> </ol> </div>

在Go中加载Tensorflow模型时无法预测

<div class="post-text" itemprop="text"> <p>I've loaded a Tensorflow model in Go and cannot get predictions - it keeps complaining about shape mismatch - a simple 2d array. Would appreciate an idea here, thank you so much in advance.</p> <pre><code>Error running the session with input, err: You must feed a value for placeholder tensor 'theoutput_target' with dtype float [[Node: theoutput_target = Placeholder[_output_shapes=[[?,?]], dtype=DT_FLOAT, shape=[], _device="/job:localhost/replica:0/task:0/cpu:0"]()]] </code></pre> <p>Input tensor being sent is a [][]float32{ {1.0}, }</p> <pre><code>a := [][]float32{ {1.0}, } tensor, terr := tf.NewTensor(a) if terr != nil { fmt.Printf("Error creating input tensor: %s ", terr.Error()) return } result, runErr := model.Session.Run( map[tf.Output]*tf.Tensor{ model.Graph.Operation("theinput").Output(0): tensor, }, []tf.Output{ model.Graph.Operation("theoutput_target").Output(0), }, nil, ) </code></pre> <p>and the model is generated via Keras and exported to TF using SavedModelBuilder after:</p> <pre><code>layer_name_input = "theinput" layer_name_output = "theoutput" def get_encoder(): model = Sequential() model.add(Dense(5, input_dim=1)) model.add(Activation("relu")) model.add(Dense(5, input_dim=1)) return model inputs = Input(shape=(1, ), name=layer_name_input) encoder = get_encoder() model = encoder(inputs) model = Activation("relu")(model) objective = Dense(1, name=layer_name_output)(model) model = Model(inputs=[inputs], outputs=objective) model.compile(loss='mean_squared_error', optimizer='sgd') </code></pre> <p>EDIT - fixed, it was a problem with exporting from Keras to TF (layer names). Pasting the export here, hopefully helpful for someone else:</p> <pre><code>def export_to_tf(keras_model_path, export_path, export_version, is_functional=False): sess = tf.Session() K.set_session(sess) K.set_learning_phase(0) export_path = os.path.join(export_path, str(export_version)) model = load_model(keras_model_path) config = model.get_config() weights = model.get_weights() if is_functional == True: model = Model.from_config(config) else: model = Sequential.from_config(config) model.set_weights(weights) with K.get_session() as sess: inputs = [ (model_input.name.split(":")[0], model_input) for model_input in model.inputs] outputs = [ (model_output.name.split(":")[0], model_output) for model_output in model.outputs] signature = predict_signature_def(inputs=dict(inputs), outputs=dict(outputs)) input_descriptor = [ { 'name': item[0], 'shape': item[1].shape.as_list() } for item in inputs] output_descriptor = [ { 'name': item[0], 'shape': item[1].shape.as_list() } for item in outputs] builder = saved_model_builder.SavedModelBuilder(export_path) builder.add_meta_graph_and_variables( sess=sess, tags=[tag_constants.SERVING], signature_def_map={signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: signature}) builder.save() descriptor = dict() descriptor["inputs"] = input_descriptor descriptor["outputs"] = output_descriptor pprint.pprint(descriptor) </code></pre> </div>

定量遥感中文版 梁顺林著 范闻捷译

这是梁顺林的定量遥感的中文版,由范闻捷等翻译的,是电子版PDF,解决了大家看英文费时费事的问题,希望大家下载看看,一定会有帮助的

Java 最常见的 200+ 面试题:面试必备

这份面试清单是从我 2015 年做了 TeamLeader 之后开始收集的,一方面是给公司招聘用,另一方面是想用它来挖掘在 Java 技术栈中,还有那些知识点是我不知道的,我想找到这些技术盲点,然后修复它,以此来提高自己的技术水平。虽然我是从 2009 年就开始参加编程工作了,但我依旧觉得自己现在要学的东西很多,并且学习这些知识,让我很有成就感和满足感,那所以何乐而不为呢? 说回面试的事,这份面试...

机器学习初学者必会的案例精讲

通过六个实际的编码项目,带领同学入门人工智能。这些项目涉及机器学习(回归,分类,聚类),深度学习(神经网络),底层数学算法,Weka数据挖掘,利用Git开源项目实战等。

远程工具,免费

远程工具,免费

java jdk 8 帮助文档 中文 文档 chm 谷歌翻译

JDK1.8 API 中文谷歌翻译版 java帮助文档 JDK API java 帮助文档 谷歌翻译 JDK1.8 API 中文 谷歌翻译版 java帮助文档 Java最新帮助文档 本帮助文档是使用谷

csma/ca和csma/cd的matlab仿真源代码带有详细的注释

csma/ca和csma/cd的matlab仿真源代码带有详细的注释,载波侦听,随意设置节点数,带有炫酷的图形展示效果。

Java基础知识面试题(2020最新版)

文章目录Java概述何为编程什么是Javajdk1.5之后的三大版本JVM、JRE和JDK的关系什么是跨平台性?原理是什么Java语言有哪些特点什么是字节码?采用字节码的最大好处是什么什么是Java程序的主类?应用程序和小程序的主类有何不同?Java应用程序与小程序之间有那些差别?Java和C++的区别Oracle JDK 和 OpenJDK 的对比基础语法数据类型Java有哪些数据类型switc...

软件测试入门、SQL、性能测试、测试管理工具

软件测试2小时入门,让您快速了解软件测试基本知识,有系统的了解; SQL一小时,让您快速理解和掌握SQL基本语法 jmeter性能测试 ,让您快速了解主流来源性能测试工具jmeter 测试管理工具-禅道,让您快速学会禅道的使用,学会测试项目、用例、缺陷的管理、

pokemmo的资源

pokemmo必须的4个rom 分别为绿宝石 火红 心金 黑白 还有汉化补丁 资源不错哦 记得下载

三个项目玩转深度学习(附1G源码)

从事大数据与人工智能开发与实践约十年,钱老师亲自见证了大数据行业的发展与人工智能的从冷到热。事实证明,计算机技术的发展,算力突破,海量数据,机器人技术等,开启了第四次工业革命的序章。深度学习图像分类一直是人工智能的经典任务,是智慧零售、安防、无人驾驶等机器视觉应用领域的核心技术之一,掌握图像分类技术是机器视觉学习的重中之重。针对现有线上学习的特点与实际需求,我们开发了人工智能案例实战系列课程。打造:以项目案例实践为驱动的课程学习方式,覆盖了智能零售,智慧交通等常见领域,通过基础学习、项目案例实践、社群答疑,三维立体的方式,打造最好的学习效果。

无线通信中的智能天线:IS-95和第3代CDMA应用_.pdf

无线通信中的智能天线:IS-95和第3代CDMA应用_.pdf

设计模式(JAVA语言实现)--20种设计模式附带源码

课程亮点: 课程培训详细的笔记以及实例代码,让学员开始掌握设计模式知识点 课程内容: 工厂模式、桥接模式、组合模式、装饰器模式、外观模式、享元模式、原型模型、代理模式、单例模式、适配器模式 策略模式、模板方法模式、观察者模式、迭代器模式、责任链模式、命令模式、备忘录模式、状态模式、访问者模式 课程特色: 笔记设计模式,用笔记串连所有知识点,让学员从一点一滴积累,学习过程无压力 笔记标题采用关键字标识法,帮助学员更加容易记住知识点 笔记以超链接形式让知识点关联起来,形式知识体系 采用先概念后实例再应用方式,知识点深入浅出 提供授课内容笔记作为课后复习以及工作备查工具 部分图表(电脑PC端查看):

Java8零基础入门视频教程

这门课程基于主流的java8平台,由浅入深的详细讲解了java SE的开发技术,可以使java方向的入门学员,快速扎实的掌握java开发技术!

玩转Linux:常用命令实例指南

人工智能、物联网、大数据时代,Linux正有着一统天下的趋势,几乎每个程序员岗位,都要求掌握Linux。本课程零基础也能轻松入门。 本课程以简洁易懂的语言手把手教你系统掌握日常所需的Linux知识,每个知识点都会配合案例实战让你融汇贯通。课程通俗易懂,简洁流畅,适合0基础以及对Linux掌握不熟练的人学习; 【限时福利】 1)购课后按提示添加小助手,进答疑群,还可获得价值300元的编程大礼包! 2)本月购买此套餐加入老师答疑交流群,可参加老师的免费分享活动,学习最新技术项目经验。 --------------------------------------------------------------- 29元=掌握Linux必修知识+社群答疑+讲师社群分享会+700元编程礼包。 &nbsp;

极简JAVA学习营第四期(报名以后加助教微信:eduxy-1)

想学好JAVA必须要报两万的培训班吗? Java大神勿入 如果你: 零基础想学JAVA却不知道从何入手 看了一堆书和视频却还是连JAVA的环境都搭建不起来 囊中羞涩面对两万起的JAVA培训班不忍直视 在职没有每天大块的时间专门学习JAVA 那么恭喜你找到组织了,在这里有: 1. 一群志同道合立志学好JAVA的同学一起学习讨论JAVA 2. 灵活机动的学习时间完成特定学习任务+每日编程实战练习 3. 热心助人的助教和讲师及时帮你解决问题,不按时完成作业小心助教老师的家访哦 上一张图看看前辈的感悟: &nbsp; &nbsp; 大家一定迫不及待想知道什么是极简JAVA学习营了吧,下面就来给大家说道说道: 什么是极简JAVA学习营? 1. 针对Java小白或者初级Java学习者; 2. 利用9天时间,每天1个小时时间; 3.通过 每日作业 / 组队PK / 助教答疑 / 实战编程 / 项目答辩 / 社群讨论 / 趣味知识抢答等方式让学员爱上学习编程 , 最终实现能独立开发一个基于控制台的‘库存管理系统’ 的学习模式 极简JAVA学习营是怎么学习的? &nbsp; 如何报名? 只要购买了极简JAVA一:JAVA入门就算报名成功! &nbsp;本期为第四期极简JAVA学习营,我们来看看往期学员的学习状态: 作业看这里~ &nbsp; 助教的作业报告是不是很专业 不交作业打屁屁 助教答疑是不是很用心 &nbsp; 有奖抢答大家玩的很嗨啊 &nbsp; &nbsp; 项目答辩终于开始啦 &nbsp; 优秀者的获奖感言 &nbsp; 这是答辩项目的效果 &nbsp; &nbsp; 这么细致的服务,这么好的氛围,这样的学习效果,需要多少钱呢? 不要1999,不要199,不要99,只要9.9 是的你没听错,只要9.9以上所有就都属于你了 如果你: 1、&nbsp;想学JAVA没有基础 2、&nbsp;想学JAVA没有整块的时间 3、&nbsp;想学JAVA没有足够的预算 还等什么?赶紧报名吧,抓紧抢位,本期只招300人,错过只有等时间待定的下一期了 &nbsp; 报名请加小助手微信:eduxy-1 &nbsp; &nbsp;

Python数据清洗实战入门

本次课程主要以真实的电商数据为基础,通过Python详细的介绍了数据分析中的数据清洗阶段各种技巧和方法。

董付国老师Python全栈学习优惠套餐

购买套餐的朋友可以关注微信公众号“Python小屋”,上传付款截图,然后领取董老师任意图书1本。

linux下利用/proc进行进程树的打印

在linux下利用c语言实现的进程树的打印,主要通过/proc下的目录中的进程文件,获取status中的进程信息内容,然后利用递归实现进程树的打印

MySQL数据库面试题(2020最新版)

文章目录数据库基础知识为什么要使用数据库什么是SQL?什么是MySQL?数据库三大范式是什么mysql有关权限的表都有哪几个MySQL的binlog有有几种录入格式?分别有什么区别?数据类型mysql有哪些数据类型引擎MySQL存储引擎MyISAM与InnoDB区别MyISAM索引与InnoDB索引的区别?InnoDB引擎的4大特性存储引擎选择索引什么是索引?索引有哪些优缺点?索引使用场景(重点)...

HoloLens2开发入门教程

本课程为HoloLens2开发入门教程,讲解部署开发环境,安装VS2019,Unity版本,Windows SDK,创建Unity项目,讲解如何使用MRTK,编辑器模拟手势交互,打包VS工程并编译部署应用到HoloLens上等。

150讲轻松搞定Python网络爬虫

【为什么学爬虫?】 &nbsp; &nbsp; &nbsp; &nbsp;1、爬虫入手容易,但是深入较难,如何写出高效率的爬虫,如何写出灵活性高可扩展的爬虫都是一项技术活。另外在爬虫过程中,经常容易遇到被反爬虫,比如字体反爬、IP识别、验证码等,如何层层攻克难点拿到想要的数据,这门课程,你都能学到! &nbsp; &nbsp; &nbsp; &nbsp;2、如果是作为一个其他行业的开发者,比如app开发,web开发,学习爬虫能让你加强对技术的认知,能够开发出更加安全的软件和网站 【课程设计】 一个完整的爬虫程序,无论大小,总体来说可以分成三个步骤,分别是: 网络请求:模拟浏览器的行为从网上抓取数据。 数据解析:将请求下来的数据进行过滤,提取我们想要的数据。 数据存储:将提取到的数据存储到硬盘或者内存中。比如用mysql数据库或者redis等。 那么本课程也是按照这几个步骤循序渐进的进行讲解,带领学生完整的掌握每个步骤的技术。另外,因为爬虫的多样性,在爬取的过程中可能会发生被反爬、效率低下等。因此我们又增加了两个章节用来提高爬虫程序的灵活性,分别是: 爬虫进阶:包括IP代理,多线程爬虫,图形验证码识别、JS加密解密、动态网页爬虫、字体反爬识别等。 Scrapy和分布式爬虫:Scrapy框架、Scrapy-redis组件、分布式爬虫等。 通过爬虫进阶的知识点我们能应付大量的反爬网站,而Scrapy框架作为一个专业的爬虫框架,使用他可以快速提高我们编写爬虫程序的效率和速度。另外如果一台机器不能满足你的需求,我们可以用分布式爬虫让多台机器帮助你快速爬取数据。 &nbsp; 从基础爬虫到商业化应用爬虫,本套课程满足您的所有需求! 【课程服务】 专属付费社群+每周三讨论会+1v1答疑

MySQL 8.0.19安装教程(windows 64位)

话不多说直接开干 目录 1-先去官网下载点击的MySQL的下载​ 2-配置初始化的my.ini文件的文件 3-初始化MySQL 4-安装MySQL服务 + 启动MySQL 服务 5-连接MySQL + 修改密码 先去官网下载点击的MySQL的下载 下载完成后解压 解压完是这个样子 配置初始化的my.ini文件的文件 ...

Python数据挖掘简易入门

&nbsp; &nbsp; &nbsp; &nbsp; 本课程为Python数据挖掘方向的入门课程,课程主要以真实数据为基础,详细介绍数据挖掘入门的流程和使用Python实现pandas与numpy在数据挖掘方向的运用,并深入学习如何运用scikit-learn调用常用的数据挖掘算法解决数据挖掘问题,为进一步深入学习数据挖掘打下扎实的基础。

深度学习原理+项目实战+算法详解+主流框架(套餐)

深度学习系列课程从深度学习基础知识点开始讲解一步步进入神经网络的世界再到卷积和递归神经网络,详解各大经典网络架构。实战部分选择当下最火爆深度学习框架PyTorch与Tensorflow/Keras,全程实战演示框架核心使用与建模方法。项目实战部分选择计算机视觉与自然语言处理领域经典项目,从零开始详解算法原理,debug模式逐行代码解读。适合准备就业和转行的同学们加入学习! 建议按照下列课程顺序来进行学习 (1)掌握深度学习必备经典网络架构 (2)深度框架实战方法 (3)计算机视觉与自然语言处理项目实战。(按照课程排列顺序即可)

网络工程师小白入门--【思科CCNA、华为HCNA等网络工程师认证】

本课程适合CCNA或HCNA网络小白同志,高手请绕道,可以直接学习进价课程。通过本预科课程的学习,为学习网络工程师、思科CCNA、华为HCNA这些认证打下坚实的基础! 重要!思科认证2020年2月24日起,已启用新版认证和考试,包括题库都会更新,由于疫情原因,请关注官网和本地考点信息。题库网络上很容易下载到。

Ubuntu18.04安装教程

Ubuntu18.04.1安装一、准备工作1.下载Ubuntu18.04.1 LTS2.制作U盘启动盘3.准备 Ubuntu18.04.1 的硬盘空间二、安装Ubuntu18.04.1三、安装后的一些工作1.安装输入法2.更换软件源四、双系统如何卸载Ubuntu18.04.1新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列...

sql语句 异常 Err] 1064 - You have an error in your SQL syntax; check the manual that corresponds to your

在我们开发的工程中,有时候会报 [Err] 1064 - You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near ------ 这种异常 不用多想,肯定是我们的sql语句出现问题,下面...

西南交通大学新秀杯数学建模试题

题目比较难,如果符合大家的口味欢迎大家下载哈,提高你的思维想象能力

Windows版YOLOv4目标检测实战:训练自己的数据集

课程演示环境:Windows10; cuda 10.2; cudnn7.6.5; Python3.7; VisualStudio2019; OpenCV3.4 需要学习ubuntu系统上YOLOv4的同学请前往:《YOLOv4目标检测实战:训练自己的数据集》 课程链接:https://edu.csdn.net/course/detail/28745 YOLOv4来了!速度和精度双提升! 与 YOLOv3 相比,新版本的 AP (精度)和 FPS (每秒帧率)分别提高了 10% 和 12%。 YOLO系列是基于深度学习的端到端实时目标检测方法。本课程将手把手地教大家使用labelImg标注和使用YOLOv4训练自己的数据集。课程实战分为两个项目:单目标检测(足球目标检测)和多目标检测(足球和梅西同时检测)。 本课程的YOLOv4使用AlexyAB/darknet,在Windows系统上做项目演示。包括:安装软件环境、安装YOLOv4、标注自己的数据集、整理自己的数据集、修改配置文件、训练自己的数据集、测试训练出的网络模型、性能统计(mAP计算)和先验框聚类分析。还将介绍改善YOLOv4目标检测性能的技巧。 除本课程《Windows版YOLOv4目标检测实战:训练自己的数据集》外,本人将推出有关YOLOv4目标检测的系列课程。请持续关注该系列的其它视频课程,包括: 《Windows版YOLOv4目标检测实战:人脸口罩佩戴检测》 《Windows版YOLOv4目标检测实战:中国交通标志识别》 《Windows版YOLOv4目标检测:原理与源码解析》

Spring Boot -01- 快速入门篇(图文教程)

Spring Boot -01- 快速入门篇 今天开始不断整理 Spring Boot 2.0 版本学习笔记,大家可以在博客看到我的笔记,然后大家想看视频课程也可以到【慕课网】手机 app,去找【Spring Boot 2.0 深度实践】的课程,令人开心的是,课程完全免费! 什么是 Spring Boot? Spring Boot 是由 Pivotal 团队提供的全新框架。Spring Boot...

相关热词 c#中如何设置提交按钮 c#帮助怎么用 c# 读取合并单元格的值 c#带阻程序 c# 替换span内容 c# rpc c#控制台点阵字输出 c#do while循环 c#调用dll多线程 c#找出两个集合不同的
立即提问