r200深度相机运行realsense的获取流的例子,怎么用流转换成bitmap格式图片啊 40C

代码如下图片说明

c++

1个回答

qq_33227993
qq_33227993 这个我之前就搜到过了啊,这是获取图片显示,我贴的代码就可以实现了,我需要保存成bitmap文件啊
接近 2 年之前 回复
Csdn user default icon
上传中...
上传图片
插入图片
抄袭、复制答案,以达到刷声望分或其他目的的行为,在CSDN问答是严格禁止的,一经发现立刻封号。是时候展现真正的技术了!
其他相关推荐
r200深度相机运行realsense的获取流的例子,怎么保存图片啊
代码如图所示![图片说明](https://img-ask.csdn.net/upload/201804/28/1524905845_931604.png)
kinect 标定深度相机时遇到的问题
本人在做相机标定的时候, 相机使用的是kinect 2,用到了它的深度相机,标定深度相机时要用到红外图像,但是在拍照的时候出现出现了这种情况,中间一直有一个黑点有知道的小伙伴可不可以帮忙解决一下 不胜感激 ![图片说明](https://img-ask.csdn.net/upload/201911/22/1574386735_628945.png)
realsense d435i 降帧
我在Ubuntu16上可以正常运行realsense d435i,安装步骤是参考github,现在realsense-viewer(github上下载的)上可正常显示深度图,彩色图和imu,现在我想要435i以8帧的速度采集彩色图,但realsense-viewer上可供选择的帧数为6 15 30。 请问: 1、435i是否支持以8帧的速度采集? 如果支持,在realsense-viewer的源码 中,具体改那一部分程序可以实现。 2、我想同时用多个传感器,但是realsense-viewer上的sync按键不能按,请问同步该怎么操作。
求助,halcon 深度学习目标检测例子中pill_bag.json 文件是如何生成的
1、halcon版本18.11 2、深度学习创建训练集的例子中需要用到pill_bag.json(安装生成) 3、如果我要写一个自己其他类别的json,应该是什么格式呢或者有没有快速工具
vs2017IDE+python+深度学习框架,运行调试时怎么使用GPU加速?
我用vs2017作为IDE,使用python编写深度学习程序,可以运行调试,无论tensorflow还是pytorch安装的都是gpu版本,cuda装了,anaconda也装了,但是程序运行计算时用的cpu,怎么用GPU进行加速?![图片说明](https://img-ask.csdn.net/upload/201904/18/1555582667_247165.png)
如何使用华硕双目相机Xtion PRO LIVE获取深度数据啊!!求大神解答!!
在win7(64)系统下,已经配置好OpenCV3.4和vs2015,最好详细点,谢谢了
Kinect 根据深度图像坐标获取彩色图像像素点
在 Kinect 中虽然可以通过相应的 api 把深度图像坐标转换到彩色图像坐标。但是我现在希望用彩色图像显示出某点与深度图像对应的像素。 如果通过api MapDepthToColorImagePoint,只能得到彩色图像的像素坐标。 假如我现在得到了彩色图像的像素坐标了,那我也没办法直接通过该坐标知道该像素的具体信息(RGB值)吧?因为像素的信息是存放在 frame 结构体中的texture 的 rect 中的,而里面是以一维数组的形式存放像素点的。 也就是说彩色图像的坐标与彩色像素点的存放不存在直接对应关系,还要通过转换才能得到。问题是我应该如何转换? 又比如我现在知道一个彩色图像的像素点坐标是:x = 3,y = 4,那么我怎么知道该像素点的 rgb 信息呢?或者说我怎么知道其对应 rect 中数组的那个索引呢?谢谢!
有大佬会用matlab实现用灰色预测模型(GM)预测流动人口吗?
预测流动人口目前我只想到GM,但是第一次接触没有经验,有没有大佬可以提供一下程序的例子,十分感谢!!!!
目标检测怎么训练,理解了输入是图片对应的label标注了之后是怎么获取标注信息的?
![图片说明](https://upload-images.jianshu.io/upload_images/617746-862d7e24acfd463f.png) 如图标注了是人,train的时候是如何获取这个框是人以及框的大小的信息的呢? train中返回的数据形式 长,宽,x,y,类别的概率 这个是理解的,但是这些信息是怎么从label中得来的?
minst深度学习例程不收敛,成功率始终在十几
minst深度学习程序不收敛 是关于tensorflow的问题。我是tensorflow的初学者。从书上抄了minst的学习程序。但是运行之后,无论学习了多少批次,成功率基本不变。 我做了许多尝试,去掉了正则化,去掉了滑动平均,还是不行。把batch_size改成了2,观察变量运算情况,输入x是正确的,但神经网络的输出y很多情况下在x不一样的情况下y的两个结果是完全一样的。进而softmax的结果也是一样的。百思不得其解,找不到造成这种情况的原因。这里把代码和运行情况都贴出来,请大神帮我找找原因。大过年的,祝大家春节快乐万事如意。 ``` import struct import numpy as np import matplotlib.pyplot as plt from matplotlib.widgets import Slider, Button import tensorflow as tf import time #把MNIST的操作封装在一个类中,以后用起来方便。 class MyMinst(): def decode_idx3_ubyte(self,idx3_ubyte_file): with open(idx3_ubyte_file, 'rb') as f: print('解析文件:', idx3_ubyte_file) fb_data = f.read() offset = 0 fmt_header = '>iiii' # 以大端法读取4个 unsinged int32 magic_number, num_images, num_rows, num_cols = struct.unpack_from(fmt_header, fb_data, offset) print('idex3 魔数:{},图片数:{}'.format(magic_number, num_images)) offset += struct.calcsize(fmt_header) fmt_image = '>' + str(num_rows * num_cols) + 'B' images = np.empty((num_images, num_rows*num_cols)) #做了修改 for i in range(num_images): im = struct.unpack_from(fmt_image, fb_data, offset) images[i] = np.array(im)#这里用一维数组表示图片,np.array(im).reshape((num_rows, num_cols)) offset += struct.calcsize(fmt_image) return images def decode_idx1_ubyte(self,idx1_ubyte_file): with open(idx1_ubyte_file, 'rb') as f: print('解析文件:', idx1_ubyte_file) fb_data = f.read() offset = 0 fmt_header = '>ii' # 以大端法读取两个 unsinged int32 magic_number, label_num = struct.unpack_from(fmt_header, fb_data, offset) print('idex1 魔数:{},标签数:{}'.format(magic_number, label_num)) offset += struct.calcsize(fmt_header) labels = np.empty(shape=[0,10],dtype=float) #神经网络需要把label变成10位float的数组 fmt_label = '>B' # 每次读取一个 byte for i in range(label_num): n=struct.unpack_from(fmt_label, fb_data, offset) labels=np.append(labels,[[0,0,0,0,0,0,0,0,0,0]],axis=0) labels[i][n]=1 offset += struct.calcsize(fmt_label) return labels def __init__(self): #固定的训练文件位置 self.img=self.decode_idx3_ubyte("/home/zhangyl/Downloads/mnist/train-images.idx3-ubyte") self.result=self.decode_idx1_ubyte("/home/zhangyl/Downloads/mnist/train-labels.idx1-ubyte") print(self.result[0]) print(self.result[1000]) print(self.result[25000]) #固定的验证文件位置 self.validate_img=self.decode_idx3_ubyte("/home/zhangyl/Downloads/mnist/t10k-images.idx3-ubyte") self.validate_result=self.decode_idx1_ubyte("/home/zhangyl/Downloads/mnist/t10k-labels.idx1-ubyte") #每一批读训练数据的起始位置 self.train_read_addr=0 #每一批读训练数据的batchsize self.train_batchsize=100 #每一批读验证数据的起始位置 self.validate_read_addr=0 #每一批读验证数据的batchsize self.validate_batchsize=100 #定义用于返回batch数据的变量 self.train_img_batch=self.img self.train_result_batch=self.result self.validate_img_batch=self.validate_img self.validate_result_batch=self.validate_result def get_next_batch_traindata(self): n=len(self.img) #对参数范围适当约束 if self.train_read_addr+self.train_batchsize<=n : self.train_img_batch=self.img[self.train_read_addr:self.train_read_addr+self.train_batchsize] self.train_result_batch=self.result[self.train_read_addr:self.train_read_addr+self.train_batchsize] self.train_read_addr+=self.train_batchsize #改变起始位置 if self.train_read_addr==n : self.train_read_addr=0 else: self.train_img_batch=self.img[self.train_read_addr:n] self.train_img_batch.append(self.img[0:self.train_read_addr+self.train_batchsize-n]) self.train_result_batch=self.result[self.train_read_addr:n] self.train_result_batch.append(self.result[0:self.train_read_addr+self.train_batchsize-n]) self.train_read_addr=self.train_read_addr+self.train_batchsize-n #改变起始位置,这里没考虑batchsize大于n的情形 return self.train_img_batch,self.train_result_batch #测试一下用临时变量返回是否可行 def set_train_read_addr(self,addr): self.train_read_addr=addr def set_train_batchsize(self,batchsize): self.train_batchsize=batchsize if batchsize <1 : self.train_batchsize=1 def set_validate_read_addr(self,addr): self.validate_read_addr=addr def set_validate_batchsize(self,batchsize): self.validate_batchsize=batchsize if batchsize<1 : self.validate_batchsize=1 myminst=MyMinst() #minst类的实例 batch_size=2 #设置每一轮训练的Batch大小 learning_rate=0.8 #初始学习率 learning_rate_decay=0.999 #学习率的衰减 max_steps=300000 #最大训练步数 #定义存储训练轮数的变量,在使用tensorflow训练神经网络时, #一般会将代表训练轮数的变量通过trainable参数设置为不可训练的 training_step = tf.Variable(0,trainable=False) #定义得到隐藏层和输出层的前向传播计算方式,激活函数使用relu() def hidden_layer(input_tensor,weights1,biases1,weights2,biases2,layer_name): layer1=tf.nn.relu(tf.matmul(input_tensor,weights1)+biases1) return tf.matmul(layer1,weights2)+biases2 x=tf.placeholder(tf.float32,[None,784],name="x-input") y_=tf.placeholder(tf.float32,[None,10],name="y-output") #生成隐藏层参数,其中weights包含784*500=39200个参数 weights1=tf.Variable(tf.truncated_normal([784,500],stddev=0.1)) biases1=tf.Variable(tf.constant(0.1,shape=[500])) #生成输出层参数,其中weights2包含500*10=5000个参数 weights2=tf.Variable(tf.truncated_normal([500,10],stddev=0.1)) biases2=tf.Variable(tf.constant(0.1,shape=[10])) #计算经过神经网络前后向传播后得到的y值 y=hidden_layer(x,weights1,biases1,weights2,biases2,'y') #初始化一个滑动平均类,衰减率为0.99 #为了使模型在训练前期可以更新的更快,这里提供了num_updates参数,并设置为当前网络的训练轮数 #averages_class=tf.train.ExponentialMovingAverage(0.99,training_step) #定义一个更新变量滑动平均值的操作需要向滑动平均类的apply()函数提供一个参数列表 #train_variables()函数返回集合图上Graph.TRAINABLE_VARIABLES中的元素。 #这个集合的元素就是所有没有指定trainable_variables=False的参数 #averages_op=averages_class.apply(tf.trainable_variables()) #再次计算经过神经网络前向传播后得到的y值,这里使用了滑动平均,但要牢记滑动平均值只是一个影子变量 #average_y=hidden_layer(x,averages_class.average(weights1), # averages_class.average(biases1), # averages_class.average(weights2), # averages_class.average(biases2), # 'average_y') #softmax,计算交叉熵损失,L2正则,随机梯度优化器,学习率采用指数衰减 #函数原型为sparse_softmax_cross_entropy_with_logits(_sential,labels,logdits,name) #与softmax_cross_entropy_with_logits()函数的计算方式相同,更适用于每个类别相互独立且排斥 #的情况,即每一幅图只能属于一类 #在1.0.0版本的TensorFlow中,这个函数只能通过命名参数的方式来使用,在这里logits参数是神经网 #络不包括softmax层的前向传播结果,lables参数给出了训练数据的正确答案 softmax=tf.nn.softmax(y) cross_entropy=tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y+1e-10,labels=tf.argmax(y_,1)) #argmax()函数原型为argmax(input,axis,name,dimension)用于计算每一个样例的预测答案,其中 # input参数y是一个batch_size*10(batch_size行,10列)的二维数组。每一行表示一个样例前向传 # 播的结果,axis参数“1”表示选取最大值的操作只在第一个维度进行。即只在每一行选取最大值对应的下标 # 于是得到的结果是一个长度为batch_size的一维数组,这个一维数组的值就表示了每一个样例的数字识别 # 结果。 regularizer=tf.contrib.layers.l2_regularizer(0.0001) #计算L2正则化损失函数 regularization=regularizer(weights1)+regularizer(weights2) #计算模型的正则化损失 loss=tf.reduce_mean(cross_entropy)#+regularization #总损失 #用指数衰减法设置学习率,这里staircase参数采用默认的False,即学习率连续衰减 learning_rate=tf.train.exponential_decay(learning_rate,training_step, batch_size,learning_rate_decay) #使用GradientDescentOptimizer优化算法来优化交叉熵损失和正则化损失 train_op=tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=training_step) #在训练这个模型时,每过一遍数据既需要通过反向传播来更新神经网络中的参数,又需要 # 更新每一个参数的滑动平均值。control_dependencies()用于这样的一次性多次操作 #同样的操作也可以使用下面这行代码完成: #train_op=tf.group(train_step,average_op) #with tf.control_dependencies([train_step,averages_op]): # train_op=tf.no_op(name="train") #检查使用了滑动平均模型的神经网络前向传播结果是否正确 #equal()函数原型为equal(x,y,name),用于判断两个张量的每一维是否相等。 #如果相等返回True,否则返回False crorent_predicition=tf.equal(tf.argmax(y,1),tf.argmax(y_,1)) #cast()函数的原型为cast(x,DstT,name),在这里用于将一个布尔型的数据转换为float32类型 #之后对得到的float32型数据求平均值,这个平均值就是模型在这一组数据上的正确率 accuracy=tf.reduce_mean(tf.cast(crorent_predicition,tf.float32)) #创建会话和开始训练过程 with tf.Session() as sess: #在稍早的版本中一般使用initialize_all_variables()函数初始化全部变量 tf.global_variables_initializer().run() #准备验证数据 validate_feed={x:myminst.validate_img,y_:myminst.validate_result} #准备测试数据 test_feed= {x:myminst.img,y_:myminst.result} for i in range(max_steps): if i%1000==0: #计算滑动平均模型在验证数据上的结果 #为了能得到百分数输出,需要将得到的validate_accuracy扩大100倍 validate_accuracy= sess.run(accuracy,feed_dict=validate_feed) print("After %d trainning steps,validation accuracy using average model is %g%%" %(i,validate_accuracy*100)) #产生这一轮使用一个batch的训练数据,并进行训练 #input_data.read_data_sets()函数生成的类提供了train.next_batch()函数 #通过设置函数的batch_size参数就可以从所有的训练数据中读取一个小部分作为一个训练batch myminst.set_train_batchsize(batch_size) xs,ys=myminst.get_next_batch_traindata() var_print=sess.run([x,y,y_,loss,train_op,softmax,cross_entropy,regularization,weights1],feed_dict={x:xs,y_:ys}) print("after ",i," trainning steps:") print("x=",var_print[0][0],var_print[0][1],"y=",var_print[1],"y_=",var_print[2],"loss=",var_print[3], "softmax=",var_print[5],"cross_entropy=",var_print[6],"regularization=",var_print[7],var_print[7]) time.sleep(0.5) #使用测试数据集检验神经网络训练之后的正确率 #为了能得到百分数输出,需要将得到的test_accuracy扩大100倍 test_accuracy=sess.run(accuracy,feed_dict=test_feed) print("After %d training steps,test accuracy using average model is %g%%"%(max_steps,test_accuracy*100)) 下面是运行情况的一部分: x= [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 8. 76. 202. 254. 255. 163. 37. 2. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 13. 182. 253. 253. 253. 253. 253. 253. 23. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 15. 179. 253. 253. 212. 91. 218. 253. 253. 179. 109. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 105. 253. 253. 160. 35. 156. 253. 253. 253. 253. 250. 113. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 19. 212. 253. 253. 88. 121. 253. 233. 128. 91. 245. 253. 248. 114. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 104. 253. 253. 110. 2. 142. 253. 90. 0. 0. 26. 199. 253. 248. 63. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 173. 253. 253. 29. 0. 84. 228. 39. 0. 0. 0. 72. 251. 253. 215. 29. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 36. 253. 253. 203. 13. 0. 0. 0. 0. 0. 0. 0. 0. 82. 253. 253. 170. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 36. 253. 253. 164. 0. 0. 0. 0. 0. 0. 0. 0. 0. 11. 198. 253. 184. 6. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 36. 253. 253. 82. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 138. 253. 253. 35. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 128. 253. 253. 47. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 48. 253. 253. 35. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 154. 253. 253. 47. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 48. 253. 253. 35. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 102. 253. 253. 99. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 48. 253. 253. 35. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 36. 253. 253. 164. 0. 0. 0. 0. 0. 0. 0. 0. 0. 16. 208. 253. 211. 17. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 32. 244. 253. 175. 4. 0. 0. 0. 0. 0. 0. 0. 0. 44. 253. 253. 156. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 171. 253. 253. 29. 0. 0. 0. 0. 0. 0. 0. 30. 217. 253. 188. 19. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 171. 253. 253. 59. 0. 0. 0. 0. 0. 0. 60. 217. 253. 253. 70. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 78. 253. 253. 231. 48. 0. 0. 0. 26. 128. 249. 253. 244. 94. 15. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 8. 151. 253. 253. 234. 101. 121. 219. 229. 253. 253. 201. 80. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 38. 232. 253. 253. 253. 253. 253. 253. 253. 201. 66. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 232. 253. 253. 95. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3. 86. 46. 0. 0. 0. 0. 0. 0. 91. 246. 252. 232. 57. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 103. 252. 187. 13. 0. 0. 0. 0. 22. 219. 252. 252. 175. 0. 0. 0. 0. 0. 0. 0. 0. 0. 10. 0. 0. 0. 0. 8. 181. 252. 246. 30. 0. 0. 0. 0. 65. 252. 237. 197. 64. 0. 0. 0. 0. 0. 0. 0. 0. 0. 87. 0. 0. 0. 13. 172. 252. 252. 104. 0. 0. 0. 0. 5. 184. 252. 67. 103. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 8. 172. 252. 248. 145. 14. 0. 0. 0. 0. 109. 252. 183. 137. 64. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 5. 224. 252. 248. 134. 0. 0. 0. 0. 0. 53. 238. 252. 245. 86. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 12. 174. 252. 223. 88. 0. 0. 0. 0. 0. 0. 209. 252. 252. 179. 9. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 11. 171. 252. 246. 61. 0. 0. 0. 0. 0. 0. 83. 241. 252. 211. 14. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 129. 252. 252. 249. 220. 220. 215. 111. 192. 220. 221. 243. 252. 252. 149. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 144. 253. 253. 253. 253. 253. 253. 253. 253. 253. 255. 253. 226. 153. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 44. 77. 77. 77. 77. 77. 77. 77. 77. 153. 253. 235. 32. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 74. 214. 240. 114. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 24. 221. 243. 57. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 8. 180. 252. 119. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 136. 252. 153. 7. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3. 136. 251. 226. 34. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 123. 252. 246. 39. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 165. 252. 127. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 165. 175. 3. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] y= [[ 0.58273095 0.50121385 -0.74845004 0.35842288 -0.13741069 -0.5839622 0.2642774 0.5101677 -0.29416046 0.5471707 ] [ 0.58273095 0.50121385 -0.74845004 0.35842288 -0.13741069 -0.5839622 0.2642774 0.5101677 -0.29416046 0.5471707 ]] y_= [[1. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 1. 0. 0. 0. 0. 0.]] loss= 2.2801425 softmax= [[0.14659645 0.13512042 0.03872566 0.11714067 0.07134604 0.04564939 0.10661562 0.13633572 0.06099501 0.14147504] [0.14659645 0.13512042 0.03872566 0.11714067 0.07134604 0.04564939 0.10661562 0.13633572 0.06099501 0.14147504]] cross_entropy= [1.9200717 2.6402135] regularization= 50459690000000.0 50459690000000.0 after 45 trainning steps: x= [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 25. 214. 225. 90. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 7. 145. 212. 253. 253. 60. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 106. 253. 253. 246. 188. 23. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 45. 164. 254. 253. 223. 108. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 24. 236. 253. 252. 124. 28. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 100. 217. 253. 218. 116. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 158. 175. 225. 253. 92. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 24. 217. 241. 248. 114. 2. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 21. 201. 253. 253. 114. 3. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 107. 253. 253. 213. 19. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 170. 254. 254. 169. 0. 0. 0. 0. 0. 2. 13. 100. 133. 89. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 18. 210. 253. 253. 100. 0. 0. 0. 19. 76. 116. 253. 253. 253. 176. 4. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 41. 222. 253. 208. 18. 0. 0. 93. 209. 232. 217. 224. 253. 253. 241. 31. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 157. 253. 253. 229. 32. 0. 154. 250. 246. 36. 0. 49. 253. 253. 168. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 128. 253. 253. 253. 195. 125. 247. 166. 69. 0. 0. 37. 236. 253. 168. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 37. 253. 253. 253. 253. 253. 135. 32. 0. 7. 130. 73. 202. 253. 133. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 7. 185. 253. 253. 253. 253. 64. 0. 10. 210. 253. 253. 253. 153. 9. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 66. 253. 253. 253. 253. 238. 218. 221. 253. 253. 235. 156. 37. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 5. 111. 228. 253. 253. 253. 253. 254. 253. 168. 19. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 9. 110. 178. 253. 253. 249. 63. 5. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 121. 121. 240. 253. 218. 121. 121. 44. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 17. 107. 184. 240. 253. 252. 252. 252. 252. 252. 252. 219. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 75. 122. 230. 252. 252. 252. 253. 252. 252. 252. 252. 252. 252. 239. 56. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 77. 129. 213. 244. 252. 252. 252. 252. 252. 253. 252. 252. 209. 252. 252. 252. 225. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 240. 252. 252. 252. 252. 252. 252. 213. 185. 53. 53. 53. 89. 252. 252. 252. 120. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 240. 232. 198. 93. 164. 108. 66. 28. 0. 0. 0. 0. 81. 252. 252. 222. 24. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 76. 50. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 171. 252. 243. 108. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 144. 238. 252. 115. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 7. 70. 241. 248. 133. 28. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 121. 252. 252. 172. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 64. 255. 253. 209. 21. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 13. 246. 253. 207. 21. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 10. 172. 252. 209. 92. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 13. 168. 252. 252. 92. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 43. 208. 252. 241. 53. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 15. 166. 252. 204. 62. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 13. 166. 243. 191. 29. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 10. 168. 231. 177. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 6. 172. 241. 50. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 177. 202. 19. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] y= [[ 0.8592988 0.3954708 -0.77875614 0.26675048 0.19804694 -0.61968666 0.18084174 0.4034736 -0.34189415 0.43645462] [ 0.8592988 0.3954708 -0.77875614 0.26675048 0.19804694 -0.61968666 0.18084174 0.4034736 -0.34189415 0.43645462]] y_= [[0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 1. 0. 0.]] loss= 2.2191708 softmax= [[0.19166051 0.12052987 0.0372507 0.10597225 0.09893605 0.04367344 0.09724841 0.12149832 0.05765821 0.12557226] [0.19166051 0.12052987 0.0372507 0.10597225 0.09893605 0.04367344 0.09724841 0.12149832 0.05765821 0.12557226]] cross_entropy= [2.3304868 2.1078548] regularization= 50459690000000.0 50459690000000.0 after 46 trainning steps: x= [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 196. 99. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 5. 49. 0. 0. 0. 0. 0. 0. 34. 244. 98. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 89. 135. 0. 0. 0. 0. 0. 0. 40. 253. 98. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 171. 150. 0. 0. 0. 0. 0. 0. 40. 253. 98. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 254. 233. 0. 0. 0. 0. 0. 0. 77. 253. 98. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 255. 136. 0. 0. 0. 0. 0. 0. 77. 254. 99. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 254. 135. 0. 0. 0. 0. 0. 0. 123. 253. 98. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 254. 135. 0. 0. 0. 0. 0. 0. 136. 253. 98. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 16. 254. 135. 0. 0. 0. 0. 0. 0. 136. 237. 8. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 98. 254. 135. 0. 0. 38. 99. 98. 98. 219. 155. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 196. 255. 208. 186. 254. 254. 255. 254. 254. 254. 254. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 105. 254. 253. 239. 180. 135. 39. 39. 39. 237. 170. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 137. 92. 24. 0. 0. 0. 0. 0. 234. 155. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 13. 237. 155. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 79. 253. 155. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 31. 242. 155. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 61. 248. 155. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 234. 155. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 234. 155. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 196. 155. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 50. 236. 255. 124. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 53. 231. 253. 253. 107. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 9. 193. 253. 253. 230. 4. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 7. 156. 253. 253. 149. 36. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 24. 253. 253. 190. 8. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3. 175. 253. 253. 72. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 123. 253. 253. 138. 3. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 10. 244. 253. 230. 34. 0. 9. 24. 23. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 181. 253. 249. 123. 0. 69. 195. 253. 249. 146. 15. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 21. 231. 253. 202. 0. 70. 236. 253. 253. 253. 253. 170. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 22. 139. 253. 213. 26. 13. 200. 253. 253. 183. 252. 253. 220. 22. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 72. 253. 253. 129. 0. 86. 253. 253. 129. 4. 105. 253. 253. 70. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 72. 253. 253. 77. 22. 245. 253. 183. 4. 0. 2. 105. 253. 70. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 132. 253. 253. 11. 24. 253. 253. 116. 0. 0. 1. 150. 253. 70. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 189. 253. 241. 10. 24. 253. 253. 59. 0. 0. 82. 253. 212. 30. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 189. 253. 147. 0. 24. 253. 253. 150. 30. 44. 208. 212. 31. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 189. 253. 174. 3. 7. 185. 253. 253. 227. 247. 184. 30. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 150. 253. 253. 145. 95. 234. 253. 253. 253. 126. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 72. 253. 253. 253. 253. 253. 253. 253. 169. 14. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 5. 114. 240. 253. 253. 234. 135. 44. 3. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] y= [[ 0.7093834 0.30119324 -0.80789334 0.1838598 0.12065991 -0.6538477 0.49587095 0.6995347 -0.38699397 0.33823296] [ 0.7093834 0.30119324 -0.80789334 0.1838598 0.12065991 -0.6538477 0.49587095 0.6995347 -0.38699397 0.33823296]] y_= [[0. 0. 0. 0. 1. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.]] loss= 2.2107558 softmax= [[0.16371341 0.10884525 0.03590371 0.09679484 0.09086671 0.04188326 0.1322382 0.16210894 0.05469323 0.11295244] [0.16371341 0.10884525 0.03590371 0.09679484 0.09086671 0.04188326 0.1322382 0.16210894 0.05469323 0.11295244]] cross_entropy= [2.3983614 2.0231504] regularization= 50459690000000.0 50459690000000.0 after 47 trainning steps: x= [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 11. 139. 212. 253. 159. 86. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 34. 89. 203. 253. 252. 252. 252. 252. 74. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 49. 184. 234. 252. 252. 184. 110. 100. 208. 252. 199. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 95. 233. 252. 252. 176. 56. 0. 0. 0. 17. 234. 249. 75. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 220. 253. 178. 54. 4. 0. 0. 0. 0. 43. 240. 243. 50. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 221. 255. 180. 55. 5. 0. 0. 0. 7. 160. 253. 168. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 116. 253. 252. 252. 67. 0. 0. 0. 91. 252. 231. 42. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 32. 190. 252. 252. 185. 38. 0. 119. 234. 252. 54. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 15. 177. 252. 252. 179. 155. 236. 227. 119. 4. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 26. 221. 252. 252. 253. 252. 130. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 32. 229. 253. 255. 144. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 66. 236. 252. 253. 92. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 66. 234. 252. 252. 253. 92. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 19. 236. 252. 252. 252. 253. 92. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 53. 181. 252. 168. 43. 232. 253. 92. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 179. 255. 218. 32. 93. 253. 252. 84. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 81. 244. 239. 33. 0. 114. 252. 209. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 207. 252. 237. 70. 153. 240. 252. 32. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 207. 252. 253. 252. 252. 252. 210. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 61. 242. 253. 252. 168. 96. 12. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 68. 254. 255. 254. 107. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 11. 176. 230. 253. 253. 253. 212. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 28. 197. 253. 253. 253. 253. 253. 229. 107. 14. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 194. 253. 253. 253. 253. 253. 253. 253. 253. 53. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 69. 241. 253. 253. 253. 253. 241. 186. 253. 253. 195. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 10. 161. 253. 253. 253. 246. 40. 57. 231. 253. 253. 195. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 140. 253. 253. 253. 253. 154. 0. 25. 253. 253. 253. 195. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 213. 253. 253. 253. 135. 8. 0. 3. 128. 253. 253. 195. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 77. 238. 253. 253. 253. 7. 0. 0. 0. 116. 253. 253. 195. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 11. 165. 253. 253. 231. 70. 1. 0. 0. 0. 78. 237. 253. 195. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 33. 253. 253. 253. 182. 0. 0. 0. 0. 0. 0. 200. 253. 195. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 98. 253. 253. 253. 24. 0. 0. 0. 0. 0. 0. 42. 253. 195. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 197. 253. 253. 253. 24. 0. 0. 0. 0. 0. 0. 163. 253. 195. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 197. 253. 253. 189. 13. 0. 0. 0. 0. 0. 53. 227. 253. 121. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 197. 253. 253. 114. 0. 0. 0. 0. 0. 21. 227. 253. 231. 27. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 197. 253. 253. 114. 0. 0. 0. 5. 131. 143. 253. 231. 59. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 197. 253. 253. 236. 73. 58. 217. 223. 253. 253. 253. 174. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 197. 253. 253. 253. 253. 253. 253. 253. 253. 253. 253. 48. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 149. 253. 253. 253. 253. 253. 253. 253. 253. 182. 15. 3. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 12. 168. 253. 253. 253. 253. 253. 248. 89. 23. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] y= [[ 0.5813921 0.21609789 -0.8359629 0.10818548 0.44052082 -0.6865921 0.78338754 0.5727978 -0.4297532 0.24992661] [ 0.5813921 0.21609789 -0.8359629 0.10818548 0.44052082 -0.6865921 0.78338754 0.5727978 -0.4297532 0.24992661]] y_= [[0. 0. 0. 0. 0. 0. 0. 0. 1. 0.] [1. 0. 0. 0. 0. 0. 0. 0. 0. 0.]] loss= 2.452383 softmax= [[0.14272858 0.09905256 0.03459087 0.08892009 0.1239742 0.04016358 0.1746773 0.14150718 0.05192496 0.10246069] [0.14272858 0.09905256 0.03459087 0.08892009 0.1239742 0.04016358 0.1746773 0.14150718 0.05192496 0.10246069]] cross_entropy= [2.9579558 1.9468105] regularization= 50459690000000.0 50459690000000.0 已终止 ```
怎么获取kinect深度值
个人使用1.7,目前已得到png格式图片,怎么获得其深度值![图片说明](https://img-ask.csdn.net/upload/201605/15/1463277403_339077.png),求各位大神指点迷津。最好可以给出完整程序
pix2pix运行后各参数的含义及变化
pix2pix的代码中下列参数个代表什么含义,本人小白一个,程序运行出来看不太懂: epoch step image/sec remaining discrim_loss gen_loss_GAN gen_loss_L1 其中discrim_loss与gen_loss_GAN应该如何变化,变化范围大概多少,逐渐增大还是减小,我运行不同的数据集,有的discrim_loss在增大,而有的在减小,gen_loss_L1也存在这样的问题,这是为什么啊,求大神帮帮忙 为什么我生成的损失率曲线图是这样子的![图片说明](https://img-ask.csdn.net/upload/202001/20/1579488564_881713.png)![图片说明](https://img-ask.csdn.net/upload/202001/20/1579488575_81777.png)
如何采用深度学习进行工地安全帽佩戴的行为检测
目前安全帽检测都是分两步进行的,从视频流中提取图片后先采用ssd或者yolo检测出人,然后提取出头部信息,进行一个精确的检测。 请问大神们是如何从人的检测框中确定头部位置的(工地作业时工人并不是一直都是站立的),以及采用何种算法检测头部信息的。由于摄像头较远,有些检测尺度很小,检测头部信息时如何提高准确率呢?由于检测实时性的要求,如何提高检测速度呢?
关于open refine 的运行内存问题
请问本人的电脑运行内存为8g,那么在对openrefine运行内存进行设定时,最大值就是8g吗?
自己写的深度学习框架为什么运行这么慢?
通过matlab写的卷积网络框架,然后复杂的操作比如卷积池化等通过.cu文件写的, 调用GPU加速,外面的层为粗粒度的,运行的速度和TensorFlow差一个数量级,也用到 GPU加速了,怎么会慢这么多,会不会因为由于每一层数据都会在GPU和CPU中搬运导致? 现有的框架是不是每个batch的数据前向反向传播完才会释放一次显存? 求大神指点迷津!
编程实现有向图的深度和广度优先遍历
1. 输入一个有向图的顶点数 n 和边数 e,设图中顶点编号为 1 到 n, 1)依次输入每个边的起点和终点,创建该图的邻接表; 2)边链表中边结点编号按照从小到大的顺序存储。 2. 实现图的深度优先遍历和广度优先遍历,输入顶点序号 v,给出 1 中有向图 自 v 开始的深度优先遍历序列和广度优先遍历序列
在运行tensorflow MNIST 里的例子时报错
/tensorflow-master/tensorflow/examples/tutorials/mnist$ python fully_connected_feed.py /usr/local/lib/python2.7/dist-packages/sklearn/cross_validation.py:44: DeprecationWarning: This module was deprecated in version 0.18 in favor of the model_selection module into which all the refactored classes and functions are moved. Also note that the interface of the new CV iterators are different from that of this module. This module will be removed in 0.20. "This module will be removed in 0.20.", DeprecationWarning) Traceback (most recent call last): File "fully_connected_feed.py", line 277, in <module> tf.app.run(main=main, argv=[sys.argv[0]] + unparsed) TypeError: run() got an unexpected keyword argument 'argv' 我是从GITHUB上下载的包,代码也没改,运行的fully_connceted_feed.py时报错
通过深度优先搜索算法生成有向图的DFS树,是否有可能存在横叉边数目等于Ω(n^2)的情况?
题中n代表树点。我现在能想到的就只有:有向图的最大边数为n(n-1),但我不知道如何证明出Ω(n^2)?还是说这种情况并不可能?谢谢!
深度学习下医学图像配准的应用文献。
有没有哪一位大神有深度学习下医学图像配准的应用文献呢?我找了好久都找不到,可以的话麻烦发一下,qq:2264402593。感谢!!!!!
相见恨晚的超实用网站
相见恨晚的超实用网站 持续更新中。。。
Java学习的正确打开方式
在博主认为,对于入门级学习java的最佳学习方法莫过于视频+博客+书籍+总结,前三者博主将淋漓尽致地挥毫于这篇博客文章中,至于总结在于个人,实际上越到后面你会发现学习的最好方式就是阅读参考官方文档其次就是国内的书籍,博客次之,这又是一个层次了,这里暂时不提后面再谈。博主将为各位入门java保驾护航,各位只管冲鸭!!!上天是公平的,只要不辜负时间,时间自然不会辜负你。 何谓学习?博主所理解的学习,它是一个过程,是一个不断累积、不断沉淀、不断总结、善于传达自己的个人见解以及乐于分享的过程。
程序员必须掌握的核心算法有哪些?
由于我之前一直强调数据结构以及算法学习的重要性,所以就有一些读者经常问我,数据结构与算法应该要学习到哪个程度呢?,说实话,这个问题我不知道要怎么回答你,主要取决于你想学习到哪些程度,不过针对这个问题,我稍微总结一下我学过的算法知识点,以及我觉得值得学习的算法。这些算法与数据结构的学习大多数是零散的,并没有一本把他们全部覆盖的书籍。下面是我觉得值得学习的一些算法以及数据结构,当然,我也会整理一些看过...
大学四年自学走来,这些私藏的实用工具/学习网站我贡献出来了
大学四年,看课本是不可能一直看课本的了,对于学习,特别是自学,善于搜索网上的一些资源来辅助,还是非常有必要的,下面我就把这几年私藏的各种资源,网站贡献出来给你们。主要有:电子书搜索、实用工具、在线视频学习网站、非视频学习网站、软件下载、面试/求职必备网站。 注意:文中提到的所有资源,文末我都给你整理好了,你们只管拿去,如果觉得不错,转发、分享就是最大的支持了。 一、电子书搜索 对于大部分程序员...
linux系列之常用运维命令整理笔录
本博客记录工作中需要的linux运维命令,大学时候开始接触linux,会一些基本操作,可是都没有整理起来,加上是做开发,不做运维,有些命令忘记了,所以现在整理成博客,当然vi,文件操作等就不介绍了,慢慢积累一些其它拓展的命令,博客不定时更新 free -m 其中:m表示兆,也可以用g,注意都要小写 Men:表示物理内存统计 total:表示物理内存总数(total=used+free) use...
比特币原理详解
一、什么是比特币 比特币是一种电子货币,是一种基于密码学的货币,在2008年11月1日由中本聪发表比特币白皮书,文中提出了一种去中心化的电子记账系统,我们平时的电子现金是银行来记账,因为银行的背后是国家信用。去中心化电子记账系统是参与者共同记账。比特币可以防止主权危机、信用风险。其好处不多做赘述,这一层面介绍的文章很多,本文主要从更深层的技术原理角度进行介绍。 二、问题引入 假设现有4个人...
python学习方法总结(内附python全套学习资料)
不要再问我python好不好学了 我之前做过半年少儿编程老师,一个小学四年级的小孩子都能在我的教学下独立完成python游戏,植物大战僵尸简单版,如果要肯花时间,接下来的网络开发也不是问题,人工智能也可以学个调包也没啥问题。。。。。所以python真的是想学就一定能学会的!!!! --------------------华丽的分割线-------------------------------- ...
兼职程序员一般可以从什么平台接私活?
这个问题我进行了系统性的总结,以下将进行言简意赅的说明和渠道提供,希望对各位小猿/小媛们有帮助~ 根据我们的经验,程序员兼职主要分为三种:兼职职位众包、项目整包和自由职业者驻场。 所谓的兼职职位众包,指的是需求方这边有自有工程师配合,只需要某个职位的工程师开发某个模块的项目。比如开发一个 app,后端接口有人开发,但是缺少 iOS 前端开发工程师,那么他们就会发布一个职位招聘前端,来配合公司一...
网页实现一个简单的音乐播放器(大佬别看。(⊙﹏⊙))
今天闲着无事,就想写点东西。然后听了下歌,就打算写个播放器。 于是乎用h5 audio的加上js简单的播放器完工了。 演示地点演示 html代码如下` music 这个年纪 七月的风 音乐 ` 然后就是css`*{ margin: 0; padding: 0; text-decoration: none; list-...
JAVA 基础练习题
第一题 1.查看以下代码,并写出结果 public class Test01 { public static void main(String[] args) { int i1 = 5; boolean result = (i1++ &gt; 5) &amp;&amp; (++i1 &gt; 4); System.out.println(result); Sy...
Python十大装B语法
Python 是一种代表简单思想的语言,其语法相对简单,很容易上手。不过,如果就此小视 Python 语法的精妙和深邃,那就大错特错了。本文精心筛选了最能展现 Python 语法之精妙的十个知识点,并附上详细的实例代码。如能在实战中融会贯通、灵活使用,必将使代码更为精炼、高效,同时也会极大提升代码B格,使之看上去更老练,读起来更优雅。
数据库优化 - SQL优化
以实际SQL入手,带你一步一步走上SQL优化之路!
2019年11月中国大陆编程语言排行榜
2019年11月2日,我统计了某招聘网站,获得有效程序员招聘数据9万条。针对招聘信息,提取编程语言关键字,并统计如下: 编程语言比例 rank pl_ percentage 1 java 33.62% 2 cpp 16.42% 3 c_sharp 12.82% 4 javascript 12.31% 5 python 7.93% 6 go 7.25% 7 p...
通俗易懂地给女朋友讲:线程池的内部原理
餐盘在灯光的照耀下格外晶莹洁白,女朋友拿起红酒杯轻轻地抿了一小口,对我说:“经常听你说线程池,到底线程池到底是个什么原理?”
C++知识点 —— 整合(持续更新中)
本文记录自己在自学C++过程中不同于C的一些知识点,适合于有C语言基础的同学阅读。如果纰漏,欢迎回复指正 目录 第一部分 基础知识 一、HelloWorld与命名空间 二、引用和引用参数 2.1引用的定义 2.2 将引用用作函数参数 2.3 将引用用于类对象 2.4 引用和继承 2.5 何时使用引用参数 2.6 引用和指针的区别 三、内联函数 四、默认参数的...
《奇巧淫技》系列-python!!每天早上八点自动发送天气预报邮件到QQ邮箱
将代码部署服务器,每日早上定时获取到天气数据,并发送到邮箱。 也可以说是一个小型人工智障。 知识可以运用在不同地方,不一定非是天气预报。
经典算法(5)杨辉三角
杨辉三角 是经典算法,这篇博客对它的算法思想进行了讲解,并有完整的代码实现。
Python实例大全(基于Python3.7.4)
博客说明: 这是自己写的有关python语言的一篇综合博客。 只作为知识广度和编程技巧学习,不过于追究学习深度,点到即止、会用即可。 主要是基础语句,如三大控制语句(顺序、分支、循环),随机数的生成,数据类型的区分和使用; 也会涉及常用的算法和数据结构,以及面试题相关经验; 主体部分是针对python的数据挖掘和数据分析,主要先攻爬虫方向:正则表达式匹配,常用数据清洗办法,scrapy及其他爬虫框架,数据存储方式及其实现; 最后还会粗略涉及人工智能领域,玩转大数据与云计算、进行相关的预测和分析。
腾讯算法面试题:64匹马8个跑道需要多少轮才能选出最快的四匹?
昨天,有网友私信我,说去阿里面试,彻底的被打击到了。问了为什么网上大量使用ThreadLocal的源码都会加上private static?他被难住了,因为他从来都没有考虑过这个问题。无独有偶,今天笔者又发现有网友吐槽了一道腾讯的面试题,我们一起来看看。 腾讯算法面试题:64匹马8个跑道需要多少轮才能选出最快的四匹? 在互联网职场论坛,一名程序员发帖求助到。二面腾讯,其中一个算法题:64匹...
面试官:你连RESTful都不知道我怎么敢要你?
干货,2019 RESTful最贱实践
机械转行java自学经历,零基础学java,血泪总结的干货
机械转行java自学经历,零基础学java,血泪总结的干货 据说,再恩爱的夫妻,一生中都有100次想离婚的念头和50次想掐死对方的冲动。 求职路上亦是如此,打开这篇文章,相信你也有转行的想法。和身边的朋友聊过,入职后的他们,或多或少对现在的职位都有些不满,都有过转行的冲动。 可他们只是想,而我真的这样做了。 下面就介绍下我转行的血泪史。 我为什么要转行 高中复读了一年,考了个双非院校的机械。当时...
刷了几千道算法题,这些我私藏的刷题网站都在这里了!
遥想当年,机缘巧合入了 ACM 的坑,周边巨擘林立,从此过上了"天天被虐似死狗"的生活… 然而我是谁,我可是死狗中的战斗鸡,智力不够那刷题来凑,开始了夜以继日哼哧哼哧刷题的日子,从此"读题与提交齐飞, AC 与 WA 一色 ",我惊喜的发现被题虐既刺激又有快感,那一刻我泪流满面。这么好的事儿作为一个正直的人绝不能自己独享,经过激烈的颅内斗争,我决定把我私藏的十几个 T 的,阿不,十几个刷题网...
为啥国人偏爱Mybatis,而老外喜欢Hibernate/JPA呢?
关于SQL和ORM的争论,永远都不会终止,我也一直在思考这个问题。昨天又跟群里的小伙伴进行了一番讨论,感触还是有一些,于是就有了今天这篇文。 声明:本文不会下关于Mybatis和JPA两个持久层框架哪个更好这样的结论。只是摆事实,讲道理,所以,请各位看官勿喷。 一、事件起因 关于Mybatis和JPA孰优孰劣的问题,争论已经很多年了。一直也没有结论,毕竟每个人的喜好和习惯是大不相同的。我也看...
【Linux系统编程】Linux信号列表
00. 目录 文章目录00. 目录01. Linux信号编号02. 信号简介03. 特殊信号04. 附录 01. Linux信号编号 在 Linux 下,每个信号的名字都以字符 SIG 开头,每个信号和一个数字编码相对应,在头文件 signum.h 中,这些信号都被定义为正整数。信号名定义路径:/usr/include/i386-linux-gnu/bits/signum.h 要想查看这些信号和...
JavaScript 为什么能活到现在?
作者 | 司徒正美 责编 |郭芮 出品 | CSDN(ID:CSDNnews) JavaScript能发展到现在的程度已经经历不少的坎坷,早产带来的某些缺陷是永久性的,因此浏览器才有禁用JavaScript的选项。甚至在jQuery时代有人问出这样的问题,jQuery与JavaScript哪个快?在Babel.js出来之前,发明一门全新的语言代码代替JavaScript...
项目中的if else太多了,该怎么重构?
介绍 最近跟着公司的大佬开发了一款IM系统,类似QQ和微信哈,就是聊天软件。我们有一部分业务逻辑是这样的 if (msgType = "文本") { // dosomething } else if(msgType = "图片") { // doshomething } else if(msgType = "视频") { // doshomething } else { // doshom...
致 Python 初学者
欢迎来到“Python进阶”专栏!来到这里的每一位同学,应该大致上学习了很多 Python 的基础知识,正在努力成长的过程中。在此期间,一定遇到了很多的困惑,对未来的学习方向感到迷茫。我非常理解你们所面临的处境。我从2007年开始接触 python 这门编程语言,从2009年开始单一使用 python 应对所有的开发工作,直至今天。回顾自己的学习过程,也曾经遇到过无数的困难,也曾经迷茫过、困惑过。开办这个专栏,正是为了帮助像我当年一样困惑的 Python 初学者走出困境、快速成长。希望我的经验能真正帮到你
Python 编程开发 实用经验和技巧
Python是一门很灵活的语言,也有很多实用的方法,有时候实现一个功能可以用多种方法实现,我这里总结了一些常用的方法和技巧,包括小数保留指定位小数、判断变量的数据类型、类方法@classmethod、制表符中文对齐、遍历字典、datetime.timedelta的使用等,会持续更新......
借助AI力量,谷歌解开生命奥秘?
全文共4484字,预计学习时长8分钟 Paweł Czerwiński发布在 Unsplash上的原图 假如疾病不复存在会发生什么?如果我们能像大自然一样迅速获取能量又会发生什么?要是我们能够在极短时间内循环塑料、废油、或其它的一些物质呢?如果人类能够解开生命的奥秘,那么以上这些想象将在未来成为现实。人工智能企业DeepMind的数据科学分析师日前在此领域有了重大发现。以下为具体内容:...
吐血推荐珍藏的Visual Studio Code插件
作为一名Java工程师,由于工作需要,最近一个月一直在写NodeJS,这种经历可以说是一部辛酸史了。好在有神器Visual Studio Code陪伴,让我的这段经历没有更加困难。眼看这段经历要告一段落了,今天就来给大家分享一下我常用的一些VSC的插件。 VSC的插件安装方法很简单,只需要点击左侧最下方的插件栏选项,然后就可以搜索你想要的插件了。 下面我们进入正题 Material Theme ...
相关热词 c#委托 逆变与协变 c#新建一个项目 c#获取dll文件路径 c#子窗体调用主窗体事件 c# 拷贝目录 c# 调用cef 网页填表c#源代码 c#部署端口监听项目、 c#接口中的属性使用方法 c# 昨天
立即提问