在学习人脸识别运用keras的过程中出现了问题 20C

本人在尝试学习"http://www.cnblogs.com/neo-T/p/6477378.html"
此博客提供的人脸识别代码
遇到了以下问题,不知该怎么解决

 WARNING:tensorflow:Variable *= will be deprecated. Use variable.assign_mul if you want assignment to the variable value or 'x = x * y' if you want a new python Tensor object.
Epoch 1/10
Traceback (most recent call last):
  File "E:/python/python3.64/python代码练习/人脸识别/face_train_use_keras.py", line 189, in <module>
    model.train(dataset)
  File "E:/python/python3.64/python代码练习/人脸识别/face_train_use_keras.py", line 179, in train
    validation_data=(dataset.valid_images, dataset.valid_labels))
  File "E:\python\anaconda\anaconda\lib\site-packages\keras\legacy\interfaces.py", line 91, in wrapper
    return func(*args, **kwargs)
  File "E:\python\anaconda\anaconda\lib\site-packages\keras\models.py", line 1315, in fit_generator
    initial_epoch=initial_epoch)
  File "E:\python\anaconda\anaconda\lib\site-packages\keras\legacy\interfaces.py", line 91, in wrapper
    return func(*args, **kwargs)
  File "E:\python\anaconda\anaconda\lib\site-packages\keras\engine\training.py", line 2268, in fit_generator
    callbacks.on_epoch_end(epoch, epoch_logs)
  File "E:\python\anaconda\anaconda\lib\site-packages\keras\callbacks.py", line 77, in on_epoch_end
    callback.on_epoch_end(epoch, logs)
  File "E:\python\anaconda\anaconda\lib\site-packages\keras\callbacks.py", line 339, in on_epoch_end
    self.progbar.update(self.seen, self.log_values)
AttributeError: 'ProgbarLogger' object has no attribute 'log_values'

我清楚ProgbarLogger内没有log_values的属性的意思,但是因为刚开始接触,不知道应怎样改动

3个回答

去搜索一下错误吧,可以找到类似的错误。比如:
https://github.com/keras-team/keras/issues/3657

qq_28139435
Winter-DataMining 回复qq_36386495: 本人遇到同样问题,您最后解决了吗?怎样解决的?
一年多之前 回复
qq_36386495
A_chaos 感谢回复,其实这个我之前找到过,但是在阅读了一两天后发现仍然不理解,无法解决。
接近 2 年之前 回复

'ProgbarLogger' object has no attribute 'log_values' 可能库版本变动,注意相应版本是否有这个属性

qq_36386495
A_chaos 在callback中,当批次发生的时候会产生log_values属性,显然此处有问题,但是不知道怎样解决
接近 2 年之前 回复

先大概看深度学习的概念,然后再是探索代码的过程。楼上已给出搜索错误的连接。

Csdn user default icon
上传中...
上传图片
插入图片
抄袭、复制答案,以达到刷声望分或其他目的的行为,在CSDN问答是严格禁止的,一经发现立刻封号。是时候展现真正的技术了!
其他相关推荐
保存keras模型时出现的问题
求助各路大神,小弟最近用keras跑神经网络模型,在训练和测试时都很好没问题,但是在保存时出现问题 小弟保存模型用的语句: json_string = model.to_json() open('my_model_architecture.json', 'w').write(json_string) #保存网络结构 model.save_weights('my_model_weights.h5',overwrite='true') #保存权重 但是运行后会显示Process finished with exit code -1073741819 (0xC0000005) 然后保存权重的.h5文件没有内容 求助各位大神是怎么回事啊
sklearn和keras中的数据集分割问题
用sklearn的train_test_split分割了数据集后还有没有必要在keras里的model.fit()里面用validation_split分割
关于Colab上Keras模型转TPU模型的问题
使用TPU加速训练,将Keras模型转TPU模型时报错,如图![图片说明](https://img-ask.csdn.net/upload/202001/14/1578998736_238721.png) 关键代码如下 引用库: ``` %tensorflow_version 1.x import json import os import numpy as np import tensorflow as tf from tensorflow.python.keras.applications import resnet from tensorflow.python.keras import callbacks from tensorflow.python.keras.preprocessing.image import ImageDataGenerator import matplotlib.pyplot as plt ``` 转换TPU模型代码如下 ``` # This address identifies the TPU we'll use when configuring TensorFlow. TPU_WORKER = 'grpc://' + os.environ['COLAB_TPU_ADDR'] tf.logging.set_verbosity(tf.logging.INFO) self.model = tf.contrib.tpu.keras_to_tpu_model(self.model, strategy=tf.contrib.tpu.TPUDistributionStrategy(tf.contrib.cluster_resolver.TPUClusterResolver(TPU_WORKER))) self.model = resnet50.ResNet50(weights=None, input_shape=dataset.input_shape, classes=num_classes) ```
keras 训练网络时出现ValueError
rt 使用keras中的model.fit函数进行训练时出现错误:ValueError: None values not supported. 错误信息如下: ``` File "C:/Users/Desktop/MNISTpractice/mnist.py", line 93, in <module> model.fit(x_train,y_train, epochs=2, callbacks=callback_list,validation_data=(x_val,y_val)) File "C:\Anaconda3\lib\site-packages\keras\engine\training.py", line 1575, in fit self._make_train_function() File "C:\Anaconda3\lib\site-packages\keras\engine\training.py", line 960, in _make_train_function loss=self.total_loss) File "C:\Anaconda3\lib\site-packages\keras\legacy\interfaces.py", line 87, in wrapper return func(*args, **kwargs) File "C:\Anaconda3\lib\site-packages\keras\optimizers.py", line 432, in get_updates m_t = (self.beta_1 * m) + (1. - self.beta_1) * g File "C:\Anaconda3\lib\site-packages\tensorflow\python\ops\math_ops.py", line 820, in binary_op_wrapper y = ops.convert_to_tensor(y, dtype=x.dtype.base_dtype, name="y") File "C:\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py", line 639, in convert_to_tensor as_ref=False) File "C:\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py", line 704, in internal_convert_to_tensor ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref) File "C:\Anaconda3\lib\site-packages\tensorflow\python\framework\constant_op.py", line 113, in _constant_tensor_conversion_function return constant(v, dtype=dtype, name=name) File "C:\Anaconda3\lib\site-packages\tensorflow\python\framework\constant_op.py", line 102, in constant tensor_util.make_tensor_proto(value, dtype=dtype, shape=shape, verify_shape=verify_shape)) File "C:\Anaconda3\lib\site-packages\tensorflow\python\framework\tensor_util.py", line 360, in make_tensor_proto raise ValueError("None values not supported.") ValueError: None values not supported. ```
keras多输出模型和多任务学习multi-task learning的关系
看多任务学习的资料,有一种机制是主要任务和辅助任务会相互帮助提高性能,那么keras的多输出模型属不属于这种多任务学习尼?还是只是单纯的相互独立的多类别学习而已?
Ubuntu系统keras如何修改默认学习率
最近编程遇到关于学习率的问题,查找资料已知keras学习率默认值为0.01,想修改这个默认值,网络上说修改keras安装路径下optimizer.py文件即可,但是optimizer.py文件有好几个,不知修改哪一个?求高人指点迷津。
用keras制作数据集的问题
有没有大神用keras做过边缘检测的模型?比如用BSDS500数据集,要怎么训练? 数据集要怎么用?官方文档查不到类似的问题。。我知道x_train要用照片,那y_train是ground truth,但是完全不会用啊 推荐标签:keras, 边缘检测
如何利用Keras的函数式模型搭建一个局部连接的卷积神经网络模型?
最近在学习卷积神经网络模型,在对CNN鼻祖LeNet5进行构建时遇到了如下问题: 首先有这样一个连接模式: ![图片说明](https://img-ask.csdn.net/upload/201910/28/1572246925_411564.jpg) 需要由S2层的6个特征图谱生成C3层的16个特征图谱,但这16个map并不都是与上一层进行全连接卷积求和得到的 例如C3的map1只与S2的map1,2,3进行局部连接,卷积求和在加上一个bias就得到了C3的第一个特征图谱 那么这样的连接模式怎么使用Keras来表示呢? 首先考虑最简单的序贯模型,发现并没有相关的API可以用来指定上一层的某一部分特征图作为一下层的输入(也许是我没发现),然后考虑函数式模型: ``` import keras from keras.layers import Conv2D, MaxPooling2D, Input, Dense, Flatten from keras.models import Model input_LeNet5=Input(shape=(32,32,1)) c1=Conv2D(6,(5,5))(input_LeNet5) s2=MaxPooling2D((2,2))(c1) print(np.shape(s2)) ``` 这里我搭建出了LeNet5的前两层,并打印出了S2的形状,是一个(?,14,14,6)的张量,这里的6显然就是代表了S2中6张不同的map ``` TensorShape([Dimension(None), Dimension(14), Dimension(14), Dimension(6)]) ``` 那么是不是就可以考虑对张量的最后一维进行切片,如下,将S21作为c31的输入,代码是可以编译通过的 ``` s21=s2[:,:,:,0:3] c31=Conv2D(1,(5,5))(S21) ``` 但是最后调用Model对整个模型进行编译时就出错了 ``` model = Model(inputs=input_LeNet5, outputs=C31) ``` ``` AttributeError: 'NoneType' object has no attribute '_inbound_nodes' ``` 经过测试发现只要是对上一层的输入进行切片就会出现这样的问题,猜测是切片使得S21丢失了S2的数据类型以及属性 看了很多别人搭建的模型也没有涉及这一操作的,keras文档也没有相关描述。 特来请教有没有大牛搭建过类似的模型,不用keras也行
keras安装与环境配置,按照keras中文文档一步一步来的,最后安装有问题,也看不懂说是啥,求教!
![图片说明](https://img-ask.csdn.net/upload/201702/22/1487771794_330857.png)有人遇到这种情况吗,keras安装与环境配置,按照keras中文文档一步一步来的,最后安装有问题,也看不懂说是啥,求教!
关于 keras 中用ImageDataGenerator 做 data augmentation 的问题
各位大神好,小白刚接触深度学习和keras. 有两个问题一直困扰着我,用keras中的 ImageDataGenerator做data augmentation时, (1)每个epoch的图片都不同,这样的做,反向传播时修改的参数还准确吗,训练模型严谨吗, (2)我试着输出过训练图像,发现里面没有原始图像,这样做数据扩张感觉很慌,是不是我使用方法的问题啊,请大佬指点迷津 ``` datagen = ImageDataGenerator( rescale=None, shear_range=0.2, zoom_range=[0.95,1.05], rotation_range=10, horizontal_flip=True, vertical_flip=True, fill_mode='reflect', ) training = model.fit_generator(datagen.flow(data_train, label_train_binary, batch_size=n_batch, shuffle=True), callbacks=[checkpoint,tensorboard,csvlog],validation_data=(data_val,label_val_binary),steps_per_epoch=len(data_train)//n_batch, nb_epoch=10000, verbose=1) ```
keras 运行cnn时报内存错误
如题,我早先自学的是tf,昨天入了一下keras的坑,没用服务器,用我这个丐版的联想本装了一个基于theano的keras,一开始跑了一个全连接的神经网络,没啥问题。然后又做了一个很小的cnn,(代码如下),能够用 model.summary()输出网络的结构,但是运行起来就会弹出信息框报错: 代码: ``` import keras import numpy as np from keras.models import load_model input1=keras.layers.Input(shape=(25,)) x=keras.layers.Reshape([5,5,1])(input1) x1=keras.layers.Conv2D(filters=2,kernel_size=(2,2),strides=(1,1),padding='valid',activation='elu')(x) x2=keras.layers.MaxPooling2D(pool_size=(2,2),strides=(1,1),padding='valid')(x1) x3=keras.layers.Conv2D(filters=4,kernel_size=(2,2),strides=(1,1),padding='valid',activation='elu')(x2) x4=keras.layers.AveragePooling2D(pool_size=(2,2),strides=(1,1),padding='valid')(x3) x5=keras.layers.Reshape([4*4*2,])(x1) xx=keras.layers.Dense(1,activation='elu')(x5) model=keras.models.Model(inputs=input1,outputs=xx) model.summary() model.compile(loss='mse', optimizer='sgd') def data(): data=np.random.randint(0,2,[1,25]) return(data) def num(data): data=np.reshape(data,[25]) sum_=0 for i in data: sum_=sum_+i if sum_>10: result=[[1]] else: result=[[0]] return(result) while True: for i in range(100): x=data() y=num(x) cost = model.train_on_batch([x], [y]) print(i) x=data() y=num(x) cost = model.evaluate(x, y) print('loss=',cost) x=data() y=num(x) print('x=',x) print('y=',y) Y_pred = model.predict(x) print(Y_pred) words=input('continue??\::') if words=='n': break ``` 可以输出模型的结构![图片说明](https://img-ask.csdn.net/upload/202001/07/1578376564_807468.png) 但是再往下运行,就会弹出信息框报错: ![图片说明](https://img-ask.csdn.net/upload/202001/07/1578376772_416127.png) 请问各位高手有何高见 我的电脑是xp系统,32位,内存不到1G(老掉牙的耍着玩),装的是python 2.7.15,numpy(1.16.6),scipy(1.2.2),theano(1.0.4),keras(2.3.1) 勿喷,一般都是在服务器上写tf,这台电脑纯属娱乐。。 求教求教。。。
keras实现人脸识别,训练失败……请教大神指点迷津!!!
![图片说明](https://img-ask.csdn.net/upload/201904/26/1556209614_615215.jpg) 各位大神,如图所示,在训练过程中,第二轮开始出现问题,这是什么原因呢? 代码如下: ------------------------------------------------- ``` import random import keras import numpy as np import cv2 from sklearn.model_selection import train_test_split from keras.preprocessing.image import ImageDataGenerator from keras.models import Sequential from keras.layers import Dense, Dropout, Activation, Flatten from keras.layers import Convolution2D, MaxPooling2D from keras.optimizers import SGD from keras.utils import np_utils from keras.models import load_model from keras import backend as K from source_data import load_dataset,resize_img #定义数据集格式 class Dataset: def __init__(self, path_name): #训练数据集 self.train_images = None self.train_labels = None #测试集 self.valid_images = None self.valid_labels = None #样本数据 self.test_images = None self.test_labels = None #load路径 self.path_name = path_name #维度顺序 self.input_shape = None #加载数据集并按照交叉验证的原则划分数据集,完成数据预处理 def load(self,img_rows=64, img_cols=64,img_channels = 3,nb_classes = 2): #加载数据集到内存 images,labels=load_dataset(self.path_name)#函数调用 train_images, valid_images, train_labels, valid_labels= train_test_split(images, labels, test_size = 0.3, random_state = random.randint(0, 100)) _, test_images, _, test_labels = train_test_split(images, labels, test_size = 0.5, random_state = random.randint(0, 100)) #根据backend类型确定输入图片数据时的顺序为:channels,rows,cols,否则:rows,cols,channels #这部分代码就是根据keras库要求的维度顺序重组训练数据集 train_images = train_images.reshape(train_images.shape[0], img_rows, img_cols, img_channels) valid_images = valid_images.reshape(valid_images.shape[0], img_rows, img_cols, img_channels) test_images = test_images.reshape(test_images.shape[0], img_rows, img_cols, img_channels) self.input_shape = (img_rows, img_cols, img_channels) #输出训练集、验证集、测试集的数量 print(train_images.shape[0], 'train samples') print(valid_images.shape[0], 'valid samples') print(test_images.shape[0], 'test samples') #我们的模型使用categorical_crossentropy作为损失函数,因此需要根据类别数量nb_classes将 #类别标签进行one-hot编码使其向量化,在这里我们的类别只有两种,经过转化后标签数据变为二维 train_labels = np_utils.to_categorical(train_labels, nb_classes) valid_labels = np_utils.to_categorical(valid_labels, nb_classes) test_labels = np_utils.to_categorical(test_labels, nb_classes) #像素数据浮点化以便归一化 train_images = train_images.astype('float32') valid_images = valid_images.astype('float32') test_images = test_images.astype('float32') #将其归一化,图像的各像素值归一化到0—1区间 train_images /= 255 valid_images /= 255 test_images /= 255 self.train_images = train_images self.valid_images = valid_images self.test_images = test_images self.train_labels = train_labels self.valid_labels = valid_labels self.test_labels = test_labels class Model: def __init__(self): self.model = None #建立keras模型 def build_model(self, dataset, nb_classes = 2): #构建一个空的网络模型,序贯模型或线性堆叠模型,添加各个layer self.model = Sequential() #以下代码将顺序添加CNN网络需要的各层,一个add就是一个网络层 self.model.add(Convolution2D(32, 3, 3, border_mode='same', input_shape = dataset.input_shape)) #1 2维卷积层 self.model.add(Activation('relu')) #2 激活函数层 self.model.add(Convolution2D(32, 3, 3)) #3 2维卷积层 self.model.add(Activation('relu')) #4 激活函数层 self.model.add(MaxPooling2D(pool_size=(2, 2))) #5 池化层 self.model.add(Dropout(0.25)) #6 Dropout层 self.model.add(Convolution2D(64, 3, 3, border_mode='same')) #7 2维卷积层 self.model.add(Activation('relu')) #8 激活函数层 self.model.add(Convolution2D(64, 3, 3)) #9 2维卷积层 self.model.add(Activation('relu')) #10 激活函数层 self.model.add(MaxPooling2D(pool_size=(2, 2))) #11 池化层 self.model.add(Dropout(0.25)) #12 Dropout层 self.model.add(Flatten()) #13 Flatten层 self.model.add(Dense(512)) #14 Dense层,又被称作全连接层 self.model.add(Activation('relu')) #15 激活函数层 self.model.add(Dropout(0.5)) #16 Dropout层 self.model.add(Dense(nb_classes)) #17 Dense层 self.model.add(Activation('softmax')) #18 分类层,输出最终结果 #Prints a string summary of the network self.model.summary() #训练模型 def train(self, dataset, batch_size = 20, nb_epoch = 10, data_augmentation = True): sgd = SGD(lr = 0.01, decay = 1e-6, momentum = 0.9, nesterov = True) #采用随机梯度下降优化器进行训练,首先生成一个优化器对象 self.model.compile(loss='categorical_crossentropy', optimizer=sgd,metrics=['accuracy']) #完成实际的模型配置 #不使用数据提升,所谓的提升就是从我们提供的训练数据中利用旋转、翻转、加噪声等方法提升训练数据规模,增加模型训练量 if not data_augmentation: self.model.fit(dataset.train_images, dataset.train_labels, batch_size = batch_size, epochs = nb_epoch, validation_data = (dataset.valid_images, dataset.valid_labels), shuffle = True) #使用实时数据提升 else: #定义数据生成器用于数据提升,其返回一个生成器对象datagen,datagen每被调用一 #次其生成一组数据(顺序生成),节省内存,其实就是python的数据生成器 datagen = ImageDataGenerator( featurewise_center = False, #是否使输入数据去中心化(均值为0), samplewise_center = False, #是否使输入数据的每个样本均值为0 featurewise_std_normalization = False, #是否数据标准化(输入数据除以数据集的标准差) samplewise_std_normalization = False, #是否将每个样本数据除以自身的标准差 zca_whitening = False, #是否对输入数据施以ZCA白化 rotation_range = 20, #数据提升时图片随机转动的角度(范围为0~180) width_shift_range = 0.2, #数据提升时图片水平偏移的幅度(单位为图片宽度的占比,0~1之间的浮点数) height_shift_range = 0.2, #同上,只不过这里是垂直 horizontal_flip = True, #是否进行随机水平翻转 vertical_flip = False) #是否进行随机垂直翻转 #计算整个训练样本集的数量以用于特征值归一化等处理 datagen.fit(dataset.train_images) #利用生成器开始训练模型—0.7*N self.model.fit_generator(datagen.flow(dataset.train_images, dataset.train_labels, batch_size = batch_size), steps_per_epoch = dataset.train_images.shape[0], epochs = nb_epoch, validation_data = (dataset.valid_images, dataset.valid_labels)) if __name__ == '__main__': dataset = Dataset('e:\saving') dataset.load()#实例操作,完成实际数据加载和预处理 model = Model() model.build_model(dataset) #训练数据 model.train(dataset) ```
pip install keras 出现问题
看不懂…求解![图片](https://img-ask.csdn.net/upload/201711/06/1509975346_181543.png)
pycharm使用keras出现进度条信息多行打印
最近在用pycharm运行keras方面的代码时,会出现进度条多行打印问题,不知道是什么原因,但是我把代码放在Spyder上运行时,进度条是正常单行更新的,代码是深度学习的一个例程。在百度上也没搜到好的解决方法,恳请大家能帮忙解决这个问题, ``` from keras import layers,models from keras.datasets import mnist from keras.utils import to_categorical (train_images,train_labels),(test_images,test_labels) = mnist.load_data() train_images = train_images.reshape((60000,28,28,1)) train_images = train_images.astype('float32')/255 test_images = test_images.reshape((10000,28,28,1)) test_images = test_images.astype('float32')/255 train_labels = to_categorical(train_labels) test_labels = to_categorical(test_labels) model = models.Sequential() model.add(layers.Conv2D(32,(3,3),activation='relu',input_shape=(28,28,1))) model.add(layers.MaxPool2D(2,2)) model.add(layers.Conv2D(64,(3,3),activation='relu')) model.add(layers.MaxPool2D(2,2)) model.add(layers.Conv2D(64,(3,3),activation='relu')) model.add(layers.Flatten()) model.add(layers.Dense(64,activation='relu')) model.add(layers.Dense(10,activation='softmax')) model.summary() model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) model.fit(train_images,train_labels,epochs=6,batch_size=64) #test_loss,test_acc = model.evaluate(test_images,test_labels) # print(test_loss,test_acc) ``` ![图片说明](https://img-ask.csdn.net/upload/201910/07/1570448232_727191.png)
keras input shape怎么写
大家好! 我在尝试使用Keras下面的LSTM做深度学习,我的数据是这样的:X-Train:30000个数据,每个数据6个数值,所以我的X_train是(30000*6) 根据keras的说明文档,input shape应该是(samples,timesteps,input_dim) 所以我觉得我的input shape应该是:input_shape=(30000,1,6),但是运行后报错: Input 0 is incompatible with layer lstm_6: expected ndim=3, found ndim=4 我觉得是input shape错了,改成(1,6)错误又变成了: ValueError: Error when checking input: expected lstm_7_input to have 3 dimensions, but got array with shape (30000, 6) 改成(30000,6)错误提示一样 我该怎么设置input shape呢,多谢!
基于keras写的模型中自定义的函数(如损失函数)如何保存到模型中?
```python batch_size = 128 original_dim = 100 #25*4 latent_dim = 16 # z的维度 intermediate_dim = 256 # 中间层的维度 nb_epoch = 50 # 训练轮数 epsilon_std = 1.0 # 重参数 #my tips:encoding x = Input(batch_shape=(batch_size,original_dim)) h = Dense(intermediate_dim, activation='relu')(x) z_mean = Dense(latent_dim)(h) # mu z_log_var = Dense(latent_dim)(h) # sigma #my tips:Gauss sampling,sample Z def sampling(args): # 重采样 z_mean, z_log_var = args epsilon = K.random_normal(shape=(128, 16), mean=0., stddev=1.0) return z_mean + K.exp(z_log_var / 2) * epsilon # note that "output_shape" isn't necessary with the TensorFlow backend # my tips:get sample z(encoded) z = Lambda(sampling, output_shape=(latent_dim,))([z_mean, z_log_var]) # we instantiate these layers separately so as to reuse them later decoder_h = Dense(intermediate_dim, activation='relu') # 中间层 decoder_mean = Dense(original_dim, activation='sigmoid') # 输出层 h_decoded = decoder_h(z) x_decoded_mean = decoder_mean(h_decoded) #my tips:loss(restruct X)+KL def vae_loss(x, x_decoded_mean): xent_loss = original_dim * objectives.binary_crossentropy(x, x_decoded_mean) kl_loss = - 0.5 * K.mean(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1) return xent_loss + kl_loss vae = Model(x, x_decoded_mean) vae.compile(optimizer='rmsprop', loss=vae_loss) vae.fit(x_train, x_train, shuffle=True, epochs=nb_epoch, verbose=2, batch_size=batch_size, validation_data=(x_valid, x_valid)) vae.save(path+'//VAE.h5') ``` 一段搭建VAE结构的代码,在保存模型后调用时先是出现了sampling中一些全局变量未定义的问题,将变量改为确定数字后又出现了vae_loss函数未定义的问题(unknown loss function: vae_loss) 个人认为是模型中自定义的函数在保存上出现问题,但是也不知道怎么解决。刚刚上手keras和tensorflow这些框架,很多问题是第一次遇到,麻烦大神们帮帮忙!感谢!
用Keras实现圆心的识别,输出层要怎么写?
不太清楚Keras最后输出的是什么,可以直接输出圆心的坐标吗?还是输出一个二维数组? model.add(Dense(28*28, activation = 'softmax'))???
tf.keras 关于 胶囊网络 capsule的问题
``` from tensorflow.keras import backend as K from tensorflow.keras.layers import Layer from tensorflow.keras import activations from tensorflow.keras import utils from tensorflow.keras.models import Model from tensorflow.keras.layers import * from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.callbacks import TensorBoard import mnist import tensorflow batch_size = 128 num_classes = 10 epochs = 20 """ 压缩函数,我们使用0.5替代hinton论文中的1,如果是1,所有的向量的范数都将被缩小。 如果是0.5,小于0.5的范数将缩小,大于0.5的将被放大 """ def squash(x, axis=-1): s_quared_norm = K.sum(K.square(x), axis, keepdims=True) + K.epsilon() scale = K.sqrt(s_quared_norm) / (0.5 + s_quared_norm) result = scale * x return result # 定义我们自己的softmax函数,而不是K.softmax.因为K.softmax不能指定轴 def softmax(x, axis=-1): ex = K.exp(x - K.max(x, axis=axis, keepdims=True)) result = ex / K.sum(ex, axis=axis, keepdims=True) return result # 定义边缘损失,输入y_true, p_pred,返回分数,传入即可fit时候即可 def margin_loss(y_true, y_pred): lamb, margin = 0.5, 0.1 result = K.sum(y_true * K.square(K.relu(1 - margin -y_pred)) + lamb * (1-y_true) * K.square(K.relu(y_pred - margin)), axis=-1) return result class Capsule(Layer): """编写自己的Keras层需要重写3个方法以及初始化方法 1.build(input_shape):这是你定义权重的地方。 这个方法必须设self.built = True,可以通过调用super([Layer], self).build()完成。 2.call(x):这里是编写层的功能逻辑的地方。 你只需要关注传入call的第一个参数:输入张量,除非你希望你的层支持masking。 3.compute_output_shape(input_shape): 如果你的层更改了输入张量的形状,你应该在这里定义形状变化的逻辑,这让Keras能够自动推断各层的形状。 4.初始化方法,你的神经层需要接受的参数 """ def __init__(self, num_capsule, dim_capsule, routings=3, share_weights=True, activation='squash', **kwargs): super(Capsule, self).__init__(**kwargs) # Capsule继承**kwargs参数 self.num_capsule = num_capsule self.dim_capsule = dim_capsule self.routings = routings self.share_weights = share_weights if activation == 'squash': self.activation = squash else: self.activation = activation.get(activation) # 得到激活函数 # 定义权重 def build(self, input_shape): input_dim_capsule = input_shape[-1] if self.share_weights: # 自定义权重 self.kernel = self.add_weight( name='capsule_kernel', shape=(1, input_dim_capsule, self.num_capsule * self.dim_capsule), initializer='glorot_uniform', trainable=True) else: input_num_capsule = input_shape[-2] self.kernel = self.add_weight( name='capsule_kernel', shape=(input_num_capsule, input_dim_capsule, self.num_capsule * self.dim_capsule), initializer='glorot_uniform', trainable=True) super(Capsule, self).build(input_shape) # 必须继承Layer的build方法 # 层的功能逻辑(核心) def call(self, inputs): if self.share_weights: hat_inputs = K.conv1d(inputs, self.kernel) else: hat_inputs = K.local_conv1d(inputs, self.kernel, [1], [1]) batch_size = K.shape(inputs)[0] input_num_capsule = K.shape(inputs)[1] hat_inputs = K.reshape(hat_inputs, (batch_size, input_num_capsule, self.num_capsule, self.dim_capsule)) hat_inputs = K.permute_dimensions(hat_inputs, (0, 2, 1, 3)) b = K.zeros_like(hat_inputs[:, :, :, 0]) for i in range(self.routings): c = softmax(b, 1) o = self.activation(K.batch_dot(c, hat_inputs, [2, 2])) if K.backend() == 'theano': o = K.sum(o, axis=1) if i < self.routings-1: b += K.batch_dot(o, hat_inputs, [2, 3]) if K.backend() == 'theano': o = K.sum(o, axis=1) return o def compute_output_shape(self, input_shape): # 自动推断shape return (None, self.num_capsule, self.dim_capsule) def MODEL(): input_image = Input(shape=(32, 32, 3)) x = Conv2D(64, (3, 3), activation='relu')(input_image) x = Conv2D(64, (3, 3), activation='relu')(x) x = AveragePooling2D((2, 2))(x) x = Conv2D(128, (3, 3), activation='relu')(x) x = Conv2D(128, (3, 3), activation='relu')(x) """ 现在我们将它转换为(batch_size, input_num_capsule, input_dim_capsule),然后连接一个胶囊神经层。模型的最后输出是10个维度为16的胶囊网络的长度 """ x = Reshape((-1, 128))(x) # (None, 100, 128) 相当于前一层胶囊(None, input_num, input_dim) capsule = Capsule(num_capsule=10, dim_capsule=16, routings=3, share_weights=True)(x) # capsule-(None,10, 16) output = Lambda(lambda z: K.sqrt(K.sum(K.square(z), axis=2)))(capsule) # 最后输出变成了10个概率值 model = Model(inputs=input_image, output=output) return model if __name__ == '__main__': # 加载数据 (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 y_train = tensorflow.keras.utils.to_categorical(y_train, num_classes) y_test = tensorflow.keras.utils.to_categorical(y_test, num_classes) # 加载模型 model = MODEL() model.compile(loss=margin_loss, optimizer='adam', metrics=['accuracy']) model.summary() tfck = TensorBoard(log_dir='capsule') # 训练 data_augmentation = True if not data_augmentation: print('Not using data augmentation.') model.fit( x_train, y_train, batch_size=batch_size, epochs=epochs, validation_data=(x_test, y_test), callbacks=[tfck], shuffle=True) else: print('Using real-time data augmentation.') # This will do preprocessing and realtime data augmentation: datagen = ImageDataGenerator( featurewise_center=False, # set input mean to 0 over the dataset samplewise_center=False, # set each sample mean to 0 featurewise_std_normalization=False, # divide inputs by dataset std samplewise_std_normalization=False, # divide each input by its std zca_whitening=False, # apply ZCA whitening rotation_range=0, # randomly rotate images in 0 to 180 degrees width_shift_range=0.1, # randomly shift images horizontally height_shift_range=0.1, # randomly shift images vertically horizontal_flip=True, # randomly flip images vertical_flip=False) # randomly flip images # Compute quantities required for feature-wise normalization # (std, mean, and principal components if ZCA whitening is applied). datagen.fit(x_train) # Fit the model on the batches generated by datagen.flow(). model.fit_generator( datagen.flow(x_train, y_train, batch_size=batch_size), epochs=epochs, validation_data=(x_test, y_test), callbacks=[tfck], workers=4) ``` 以上为代码 运行后出现该问题 ![图片说明](https://img-ask.csdn.net/upload/201902/26/1551184741_476774.png) ![图片说明](https://img-ask.csdn.net/upload/201902/26/1551184734_845838.png) 用官方的胶囊网络keras实现更改为tf下的keras实现仍出现该错误。
关于keras框架的问题?????
Traceback (most recent call last): File "F:/python3.5/projects/untitled1/CNN/MN/test2.py", line 11, in <module> from keras.models import Sequential File "F:\python3.5\lib\site-packages\keras\__init__.py", line 3, in <module> from . import utils File "F:\python3.5\lib\site-packages\keras\utils\__init__.py", line 6, in <module> from . import conv_utils File "F:\python3.5\lib\site-packages\keras\utils\conv_utils.py", line 9, in <module> from .. import backend as K File "F:\python3.5\lib\site-packages\keras\backend\__init__.py", line 72, in <module> assert _backend in {'theano', 'tensorflow', 'cntk'} AssertionError 为什么kears出现这种错误 后端的tensorflow也配置了 求大神解答一下
终于明白阿里百度这样的大公司,为什么面试经常拿ThreadLocal考验求职者了
点击上面↑「爱开发」关注我们每晚10点,捕获技术思考和创业资源洞察什么是ThreadLocalThreadLocal是一个本地线程副本变量工具类,各个线程都拥有一份线程私有的数
win10系统安装教程(U盘PE+UEFI安装)
一、准备工作 u盘,电脑一台,win10原版镜像(msdn官网) 二、下载wepe工具箱  极力推荐微pe(微pe官方下载) 下载64位的win10 pe,使用工具箱制作启动U盘打开软件,   选择安装到U盘(按照操作无需更改) 三、重启进入pe系统   1、关机后,将U盘插入电脑 2、按下电源后,按住F12进入启动项选择(技嘉主板是F12)     选择需要启
程序员必须掌握的核心算法有哪些?
由于我之前一直强调数据结构以及算法学习的重要性,所以就有一些读者经常问我,数据结构与算法应该要学习到哪个程度呢?,说实话,这个问题我不知道要怎么回答你,主要取决于你想学习到哪些程度,不过针对这个问题,我稍微总结一下我学过的算法知识点,以及我觉得值得学习的算法。这些算法与数据结构的学习大多数是零散的,并没有一本把他们全部覆盖的书籍。下面是我觉得值得学习的一些算法以及数据结构,当然,我也会整理一些看过
《奇巧淫技》系列-python!!每天早上八点自动发送天气预报邮件到QQ邮箱
将代码部署服务器,每日早上定时获取到天气数据,并发送到邮箱。 也可以说是一个小人工智障。 思路可以运用在不同地方,主要介绍的是思路。
Nginx 软件层面加强Nginx性能优化的面试问答和解决方案
Nginx 软件层面加强Nginx性能优化的面试问答和解决方案 去年我去爱卡汽车面试PHP,一轮和二轮面的都不错,在三轮面到Nginx的时候很多问题当时不知道怎么回答,确实没有深入学习过,花了一段时间的学习,终于能解答Nginx高性能优化的问题了,10月24号为了获得程序员勋章,发布了半个优化笔记,浏览到了1000+,受到这个鼓舞,我抽时间在仔细整理下关于Nginx性能优化的问题,我们从软件说起。...
【管理系统课程设计】美少女手把手教你后台管理
【文章后台管理系统】URL设计与建模分析+项目源码+运行界面 栏目管理、文章列表、用户管理、角色管理、权限管理模块(文章最后附有源码) 1. 这是一个什么系统? 1.1 学习后台管理系统的原因 随着时代的变迁,现如今各大云服务平台横空出世,市面上有许多如学生信息系统、图书阅读系统、停车场管理系统等的管理系统,而本人家里就有人在用烟草销售系统,直接在网上完成挑选、购买与提交收货点,方便又快捷。 试想,若没有烟草销售系统,本人家人想要购买烟草,还要独自前往药...
11月19日科技资讯|华为明日发布鸿蒙整体战略;京东宣告全面向技术转型;Kotlin 1.3.60 发布
「极客头条」—— 技术人员的新闻圈! CSDN 的读者朋友们早上好哇,「极客头条」来啦,快来看今天都有哪些值得我们技术人关注的重要新闻吧。扫描上方二维码进入 CSDN App 可以收听御姐萌妹 Style 的人工版音频哟。 一分钟速览新闻点! 6G 专家组成员:速率是 5G 的 10 至 100 倍,预计 2030 年商用 雷军:很多人多次劝我放弃WPS,能坚持下来并不是纯粹的商业决定 ...
C语言魔塔游戏
很早就很想写这个,今天终于写完了。 游戏截图: 编译环境: VS2017 游戏需要一些图片,如果有想要的或者对游戏有什么看法的可以加我的QQ 2985486630 讨论,如果暂时没有回应,可以在博客下方留言,到时候我会看到。 下面我来介绍一下游戏的主要功能和实现方式 首先是玩家的定义,使用结构体,这个名字是可以自己改变的 struct gamerole { char n
化繁为简 - 腾讯计费高一致TDXA的实践之路
导语:腾讯计费是孵化于支撑腾讯内部业务千亿级营收的互联网计费平台,在如此庞大的业务体量下,腾讯计费要支撑业务的快速增长,同时还要保证每笔交易不错账。采用最终一致性或离线补...
Python爬虫爬取淘宝,京东商品信息
小编是一个理科生,不善长说一些废话。简单介绍下原理然后直接上代码。 使用的工具(Python+pycharm2019.3+selenium+xpath+chromedriver)其中要使用pycharm也可以私聊我selenium是一个框架可以通过pip下载 pip install selenium -i https://pypi.tuna.tsinghua.edu.cn/simple/ 
Java学习笔记(七十二)—— Cookie
概述 会话技术: 会话:一次会话中包含多次请求和响应 一次会话:浏览器第一次给服务器发送资源请求,会话建立,直到有一方断开为止 功能:在一次会话的范围内的多次请求间,共享数据 方式: 客户端会话技术:Cookie,把数据存储到客户端 服务器端会话技术:Session,把数据存储到服务器端 Cookie 概念:客户端会话技术,将数据存储到客户端 快速入门: 使用步骤: 创建C
阿里程序员写了一个新手都写不出的低级bug,被骂惨了。
这种新手都不会范的错,居然被一个工作好几年的小伙子写出来,差点被当场开除了。
Java工作4年来应聘要16K最后没要,细节如下。。。
前奏: 今天2B哥和大家分享一位前几天面试的一位应聘者,工作4年26岁,统招本科。 以下就是他的简历和面试情况。 基本情况: 专业技能: 1、&nbsp;熟悉Sping了解SpringMVC、SpringBoot、Mybatis等框架、了解SpringCloud微服务 2、&nbsp;熟悉常用项目管理工具:SVN、GIT、MAVEN、Jenkins 3、&nbsp;熟悉Nginx、tomca
2020年,冯唐49岁:我给20、30岁IT职场年轻人的建议
点击“技术领导力”关注∆  每天早上8:30推送 作者| Mr.K   编辑| Emma 来源| 技术领导力(ID:jishulingdaoli) 前天的推文《冯唐:职场人35岁以后,方法论比经验重要》,收到了不少读者的反馈,觉得挺受启发。其实,冯唐写了不少关于职场方面的文章,都挺不错的。可惜大家只记住了“春风十里不如你”、“如何避免成为油腻腻的中年人”等不那么正经的文章。 本文整理了冯
程序员该看的几部电影
##1、骇客帝国(1999) 概念:在线/离线,递归,循环,矩阵等 剧情简介: 不久的将来,网络黑客尼奥对这个看似正常的现实世界产生了怀疑。 他结识了黑客崔妮蒂,并见到了黑客组织的首领墨菲斯。 墨菲斯告诉他,现实世界其实是由一个名叫“母体”的计算机人工智能系统控制,人们就像他们饲养的动物,没有自由和思想,而尼奥就是能够拯救人类的救世主。 可是,救赎之路从来都不会一帆风顺,到底哪里才是真实的世界?
作为一个程序员,CPU的这些硬核知识你必须会!
CPU对每个程序员来说,是个既熟悉又陌生的东西? 如果你只知道CPU是中央处理器的话,那可能对你并没有什么用,那么作为程序员的我们,必须要搞懂的就是CPU这家伙是如何运行的,尤其要搞懂它里面的寄存器是怎么一回事,因为这将让你从底层明白程序的运行机制。 随我一起,来好好认识下CPU这货吧 把CPU掰开来看 对于CPU来说,我们首先就要搞明白它是怎么回事,也就是它的内部构造,当然,CPU那么牛的一个东
@程序员,如何花式构建线程?
作者 |曾建责编 | 郭芮出品 | CSDN(ID:CSDNnews)在项目和业务的开发中,我们难免要经常使用线程来进行业务处理,使用线程可以保证我们的业务在相互处理之间可以保证原子性...
破14亿,Python分析我国存在哪些人口危机!
2020年1月17日,国家统计局发布了2019年国民经济报告,报告中指出我国人口突破14亿。 猪哥的朋友圈被14亿人口刷屏,但是很多人并没有看到我国复杂的人口问题:老龄化、男女比例失衡、生育率下降、人口红利下降等。 今天我们就来分析一下我们国家的人口数据吧! 一、背景 1.人口突破14亿 2020年1月17日,国家统计局发布了 2019年国民经济报告 ,报告中指出:年末中国大陆总人口(包括31个
强烈推荐10本程序员在家读的书
很遗憾,这个鼠年春节注定是刻骨铭心的,新型冠状病毒让每个人的神经都是紧绷的。那些处在武汉的白衣天使们,尤其值得我们的尊敬。而我们这些窝在家里的程序员,能不外出就不外出,就是对社会做出的最大的贡献。 有些读者私下问我,窝了几天,有点颓丧,能否推荐几本书在家里看看。我花了一天的时间,挑选了 10 本我最喜欢的书,你可以挑选感兴趣的来读一读。读书不仅可以平复恐惧的压力,还可以对未来充满希望,毕竟苦难终
Linux自学篇——linux命令英文全称及解释
man: Manual 意思是手册,可以用这个命令查询其他命令的用法。 pwd:Print working directory 显示当前目录 su:Swith user 切换用户,切换到root用户 cd:Change directory 切换目录 ls:List files 列出目录下的文件 ps:Process Status 进程状态 mk
Python实战:抓肺炎疫情实时数据,画2019-nCoV疫情地图
文章目录1. 前言2. 数据下载3. 数据处理4. 数据可视化 1. 前言 今天,群里白垩老师问如何用python画武汉肺炎疫情地图。白垩老师是研究海洋生态与地球生物的学者,国家重点实验室成员,于不惑之年学习python,实为我等学习楷模。先前我并没有关注武汉肺炎的具体数据,也没有画过类似的数据分布图。于是就拿了两个小时,专门研究了一下,遂成此文。 2月6日追记:本文发布后,腾讯的数据源多次变更u
智力题(程序员面试经典)
NO.1  有20瓶药丸,其中19瓶装有1克/粒的药丸,余下一瓶装有1.1克/粒的药丸。给你一台称重精准的天平,怎么找出比较重的那瓶药丸?天平只能用一次。 解法 有时候,严格的限制条件有可能反倒是解题的线索。在这个问题中,限制条件是天平只能用一次。 因为天平只能用一次,我们也得以知道一个有趣的事实:一次必须同时称很多药丸,其实更准确地说,是必须从19瓶拿出药丸进行称重。否则,如果跳过两瓶或更多瓶药
在家远程办公效率低?那你一定要收好这个「在家办公」神器!
相信大家都已经收到国务院延长春节假期的消息,接下来,在家远程办公可能将会持续一段时间。 但是问题来了。远程办公不是人在电脑前就当坐班了,相反,对于沟通效率,文件协作,以及信息安全都有着极高的要求。有着非常多的挑战,比如: 1在异地互相不见面的会议上,如何提高沟通效率? 2文件之间的来往反馈如何做到及时性?如何保证信息安全? 3如何规划安排每天工作,以及如何进行成果验收? ......
作为一个程序员,内存和磁盘的这些事情,你不得不知道啊!!!
截止目前,我已经分享了如下几篇文章: 一个程序在计算机中是如何运行的?超级干货!!! 作为一个程序员,CPU的这些硬核知识你必须会! 作为一个程序员,内存的这些硬核知识你必须懂! 这些知识可以说是我们之前都不太重视的基础知识,可能大家在上大学的时候都学习过了,但是嘞,当时由于老师讲解的没那么有趣,又加上这些知识本身就比较枯燥,所以嘞,大家当初几乎等于没学。 再说啦,学习这些,也看不出来有什么用啊!
2020年的1月,我辞掉了我的第一份工作
其实,这篇文章,我应该早点写的,毕竟现在已经2月份了。不过一些其它原因,或者是我的惰性、还有一些迷茫的念头,让自己迟迟没有试着写一点东西,记录下,或者说是总结下自己前3年的工作上的经历、学习的过程。 我自己知道的,在写自己的博客方面,我的文笔很一般,非技术类的文章不想去写;另外我又是一个还比较热衷于技术的人,而平常复杂一点的东西,如果想写文章写的清楚点,是需要足够...
别低估自己的直觉,也别高估自己的智商
所有群全部吵翻天,朋友圈全部沦陷,公众号疯狂转发。这两周没怎么发原创,只发新闻,可能有人注意到了。我不是懒,是文章写了却没发,因为大家的关注力始终在这次的疫情上面,发了也没人看。当然,我...
Java坑人面试题系列: 包装类(中级难度)
Java Magazine上面有一个专门坑人的面试题系列: https://blogs.oracle.com/javamagazine/quiz-2。 这些问题的设计宗旨,主要是测试面试者对Java语言的了解程度,而不是为了用弯弯绕绕的手段把面试者搞蒙。 如果你看过往期的问题,就会发现每一个都不简单。 这些试题模拟了认证考试中的一些难题。 而 “中级(intermediate)” 和 “高级(ad
Spring Boot 2.x基础教程:使用JdbcTemplate访问MySQL数据库
在第2章节中,我们介绍了如何通过Spring Boot来实现HTTP接口,以及围绕HTTP接口相关的单元测试、文档生成等实用技能。但是,这些内容还不足以帮助我们构建一个动态应用的服务端程序。不论我们是要做App、小程序、还是传统的Web站点,对于用户的信息、相关业务的内容,通常都需要对其进行存储,而不是像第2章节中那样,把用户信息存储在内存中(重启就丢了!)。 对于信息的存储,现在已经有非常非常多...
基于Python的人脸自动戴口罩系统
目录 1、项目背景 2、页面设计 3、器官识别 4、退出系统 1、项目背景 2019年新型冠状病毒感染的肺炎疫情发生以来,牵动人心,举国哀痛,口罩、酒精、消毒液奇货可居。 抢不到口罩,怎么办?作为技术人今天分享如何使用Python实现自动戴口罩系统,来安慰自己,系统效果如下所示: 本系统的实现原理是借助 Dlib模块的Landmark人脸68个关键点检测库轻松识别出人脸五官
这个世界上人真的分三六九等,你信吗?
偶然间,在知乎上看到一个问题 一时间,勾起了我深深的回忆。 以前在厂里打过两次工,做过家教,干过辅导班,做过中介。零下几度的晚上,贴过广告,满脸、满手地长冻疮。   再回首那段岁月,虽然苦,但让我学会了坚持和忍耐。让我明白了,在这个世界上,无论环境多么的恶劣,只要心存希望,星星之火,亦可燎原。   下文是原回答,希望能对你能有所启发。   如果我说,这个世界上人真的分三六九等,
相关热词 c#如何定义数组列表 c#倒序读取txt文件 java代码生成c# c# tcp发送数据 c#解决时间格式带星期 c#类似hashmap c#设置istbox的值 c#获取多线程返回值 c# 包含数字 枚举 c# timespan
立即提问