哪些机器学习算法可以估计参数呢?

微分方程中可以不求解,通过学习参数来解决问题,高斯过程非参数贝叶斯机器学习可
以用来估计参数,那还有哪些机器学习的算法也可以估计参数呢?

1个回答

机器学习算法都可以“估计参数”,机器学习无论什么算法,本质上都是通过估计参数渐进地提高算法的准确性。
如果你要问有哪些机器学习算法,那么常用的有支持向量机(估计参数是超平面的方程参数)、决策树(估计的参数是分割平面)、神经网络(权重和偏置)、贝叶斯(先验概率)、期望值最大化(期望)等等。

jangell
jangell 哦哦,明白了,谢谢!
一年多之前 回复
Csdn user default icon
上传中...
上传图片
插入图片
抄袭、复制答案,以达到刷声望分或其他目的的行为,在CSDN问答是严格禁止的,一经发现立刻封号。是时候展现真正的技术了!
其他相关推荐
细胞自动机可以和哪些机器学习算法结合使用?

有大神了解细胞自动机(元胞自动机)吗?知不知道有哪些机器学习的算法可以和元胞自动机结合使用?具体能怎么使用? 遗传算法和神经网络可以和细胞自动机结合吗?有没有大神指点一下。

如何进行机器学习算法的实验?

学习了很多的机器学习算法,但是理解的还是不够透彻,想自己跑实验试试,但是有不知如何下手?! 请教各位大神该如何深入理解和运用?

机器学习算法-决策树对未知类别标签数据进行分类问题

机器学习算法还处于基础阶段,对决策树分类问题疑惑已久:构建好一颗决策树后,用该决策树对未知标签的数据进行分类,只能得到绝对的类别标签吗?有什么方法可以得到分类结果的概率呢? 比如:类别标签有两个:yes,no。决策树对某条未知标签的分类结果是yes,能否求出“yes”这个结果的概率,而不是绝对的一个类别标签。

关于机器学习中垃圾图像识别的特征提取问题。

如题,想用: **决策树、朴素贝叶斯和SVM**这三个传统机器学习算法,对github上的garythung的垃圾数据集进行识别分类。 1.但是对于图像预处理的特征提取有点云里雾里的,应该选取什么特征比较好啊?看了很多大神分享的博客,发现大家都是图像预处理之后,选择神经网络CNN进行训练的,无需特征提取。 所以有点困惑,了解到的有HOG,SIFT特征。 2.对于传统的机器学习算法,一定要进行特征提取吗?一些颜色特征、边缘特征也可以吗?这些颜色边缘一类的特征如何进行提取呢?也是使用opencv吗? 万分感谢万分感谢

新闻标题党识别算法(机器学习)

对标题党新闻识别技术的相关知识进行研究和总结,包括网页去噪工作原理、向量空间模型和矩阵的奇异值分解的相关知识。了解基于潜在语义分析的标题党识别系统,学习其相关技术,包括向量空间模型的构建、基于SVD的塌陷矩阵构建模块和基于LSA算法的标题党新闻判定模块。 主要工作内容:数据集特征分析及模型训练 哪位大神帮忙指导下学习思路和研究步骤,万分感谢,急求

请教机器学习来做机械设备故障诊断实现的思路

目前有一个项目,采集了一批气压数据。 包括五个气压接口的气压变化数据,五个气压接口之间是有相互耦合关系的。 想用机器学习建立一个模型,当检测到一组新的五个气压数据变化后,来判断出设备是否正常。 其实感觉属于比较简单的机器学习领域,请问用哪种模型比较好呢?

怎样用机器学习识别图片中的重要部分

新手,最近在做一个项目,想以一定尺寸裁剪所给图片,使得裁剪出来的部分是图片的重点内容,想请教怎样用机器学习完成这项工作。

机器学习knn算法中目标变量转换为factor

向大神们请教:1,学习knn算法中将目标变量转换为factor,目的是什么?且他的level设定有什么具体的要求么?使用knn算法时,变量必须要处理成有序分类变量么?

机器学习模型及其算法的框架疑问

刚开始学机器学习,对其中的模型及其适用的算法,都有些没搞明白。。也努力去看了些文章,还是越高越迷糊。。求高手指点一二。。 我自己弄了下大致框架,就是想知道到底哪些模型,适用哪些算法?(这个神经网络,按正常分类,应该属于深度学习范畴的,到底属于生成法还是判别法,还是都不算?) 现在什么梯度下降法,极大似然估计,最小二乘法,核函数等,简直把我搞晕了。。 ![图片说明](https://img-ask.csdn.net/upload/201904/14/1555205748_608313.png)

机器学习根据结果预测条件

各位大佬,想问一下机器学习如何根据结果预测条件是什么呀,比如预测房价,然后预测房价的条件有很多,现在让房价达到一个指定的值,需要条件达到什么值呢,这个东西可以做么,跪求各位大佬解答呀,谢谢啦!!!

关于机器学习模型调参的正确步骤是怎样的?

机器学习的模型,要涉及到不少参数的调参。。那其正确的步骤应该是怎样的呢? 第一种做法是,对一个个或一组组参数去调,其他参数使用默认值。。调出一个或一组参数后,记录下来。下一次继续调另外一个或一组参数。。直至所有要调的参数全部调节完毕。然后将所获得的最优参数一股脑传入模型中,正式训练。 第二种做法是,先对一个或一组参数进行调参,得出最优值后,传入模型中,再调第二个或第二组参数。与前面一种的区别就是,前面那种调出最优参数后,并没有马上传入模型训练,而只是记录下来,到最后一股脑传入。而这种则是一步步地固定最优参数组合,直到最后。。 当然,还有的做法是一股脑对所有参数调参,这种做法相对较少,只能针对简单的模型。对复杂的模型而言,调参耗时过大。。 因此,想请教下各位,正确的做法,应该是怎样的呢??

机器学习到底要不要大数据的支持,如果要数据的支持,支持到哪一步?

机器学习到底要不要大数据的支持,如果要数据的支持,支持到哪一步? 众所周知AlphaGo是需要大量的数据来进行学习的,ZERO却只需要少量的数据样本即可达到甚至超过AlphaGo的水准,那么问题来了,这个数据量的多少从科学的角度来说它的一个标准是什么,或者说它怎么来度量? ———————————————————————————————— 谢谢各位的回答,实际上我对我自己提出的两个问题中的前一个和大家的看法是差不多的,但实际上我希望得到第二个问题的解答。 我们的共识是,机器学习在大部分时候都是需要大量数据的(实际上我没有见过不需要大量数据就能训练出来的智能),然而在现实操作中总会面临数据量不是不够就是浪费的情况(且不说数据的质量),所以去预测一个具体需要的数据量就是极其必要的。打个比方,在运用人工智能对医学影像进行分析的时候,我们需要极其大量的数据,但我们不可能去向医院索取它的全部数据,所以就会想要通过计算得到一个大概的数据量的值,而不需要三番五次地去向医院申请数据。 再举一个例子,比如我们在打磨一个适用于某处的齿轮,我们当然可以一边打磨一边拿去比较大小是否合适,但这一点也不方便,我们通常通过测量来获取需要的数据,然后直接按照这个数据来打磨齿轮。 所以精确计算每次训练时所需要的数据量,这显然是极其必要的,既可以让我们避免数据不足的情况又不至于让我们一直盲目地收集数据。 可问题就出在这里,这个数据量如何去测量? ———————————————————————————————— 回复caozhy:感谢你的回答:)。是的,数据的获取存在困难是一个现实存在的问题,例如医院里病人的数据签了保密协议,要取出是很麻烦的,其他领域也是一样,只有用钱把数据砸出来,从这方面来说估计一个需要的数据的量也是必要的。即使是能够获取到大量的数据,我们也希望能通过计算直接得到一个最优的数据量,如果这个计算方法真的存在并且被发现,自然是一桩好事。 ———————————————————————————————— 说明一下,这个问题是在最近的第194期双清论坛上由高文院士提出的,我有幸听到教授的转述,才会对此有所思考,当然才疏学浅,对人工智能的理解也不够深入,只能做上述的一些浅层解读,请点拨指正。

从事机器学习算法工作,具体需要哪些数学知识

从事机器学习算法工作,具体需要哪些数学知识。能否列举一下相关的数学分支, 涵盖基础和进阶的。非常感谢。

数据分析数据结构,有没有相关的机器学习算法? 急求大神指点

比如一个表格,用ocr识别后,内容很乱,希望恢复成原有的数据结构。 对于这种事情,有相应的机器学习方法吗? 急切求助,非常感谢。 比如: ![图片说明](https://img-ask.csdn.net/upload/201812/28/1545985609_513797.png) 恢复数据结构为 [1,BAST,谷草转氨酶,21,**<37,IU/L] 即,恢复为原有的数组形式**

机器学习k近邻算法算出结果不对

输入代码 ``` from numpy import * import operator def createDataSet(): group = array([[ 1.0, 1.1],[ 1.0, 1.0],[0,0],[0, 0.1]]) labels = ['A','A','B','B'] return group, labels def classify0(inX,dataSet,labels,k): dataSetSize = dataSet.shape[0] #❶(以下三行)距离计算 diffMat = tile(inX,(dataSetSize,1)) - dataSet sqDiffMat = diffMat**2 sqDistances=sqDiffMat.sum(axis=1) distances = sqDistances**0.5 sortedDistIndicies=distances.argsort() classCount={} #❷(以下两行)选择距离最小的k个点 for i in range(k): voteIlabel = labels[sortedDistIndicies[i]] classCount[voteIlabel] = classCount.get(voteIlabel,0)+1 #❸排序 sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1), reverse=True) return sortedClassCount[0][0] def file2matrix(filename): fr = open(filename) arrayOlines= fr.readlines() numberOfLines = len(arrayOlines) #❶ 得到文件行数 returnMat = zeros((numberOfLines,3)) #❷ 创建返回的Numpy 矩阵 classLabelVector = [] classLabelVector = [] index = 0 #❸ (以下三行)解析文件数据到列表 for line in arrayOlines: line = line.strip() listFromLine = line.split('\t') returnMat[index,:] = listFromLine[0:3] classLabelVector.append(int(listFromLine[-1])) index += 1 return returnMat,classLabelVector ``` 错误执行结果 ``` >>> datingDataMat array([[4.092000e+04, 8.326976e+00, 9.539520e-01], [0.000000e+00, 0.000000e+00, 0.000000e+00], [0.000000e+00, 0.000000e+00, 0.000000e+00], ..., [0.000000e+00, 0.000000e+00, 0.000000e+00], [0.000000e+00, 0.000000e+00, 0.000000e+00], [0.000000e+00, 0.000000e+00, 0.000000e+00]]) >>> datingLabels[0:20] [3] ``` 正确的应该是 ``` >>> datingDataMat array([[ 7. 29170000e+ 04, 7. 10627300e+ 00, 2. 23600000e- 01], [ 1. 42830000e+ 04, 2. 44186700e+ 00, 1. 90838000e- 01], [ 7. 34750000e+ 04, 8. 31018900e+ 00, 8. 52795000e- 01], ..., [ 1. 24290000e+ 04, 4. 43233100e+ 00, 9. 24649000e- 01], [ 2. 52880000e+ 04, 1. 31899030e+ 01, 1. 05013800e+ 00], [ 4. 91800000e+ 03, 3. 01112400e+ 00, 1. 90663000e- 01]]) >>> datingLabels[ 0: 20] [3, 2, 1, 1, 1, 1, 3, 3, 1, 3, 1, 1, 2, 1, 1, 1, 1, 1, 2, 3] ``` 请大佬看下哪里出错了

理论问题,数据挖掘一共有多少种算法(需列出)?有哪些算法是平时不常用的?

如题, 数据挖掘一共有多少种算法(需列出)? 有哪些算法是平时不常用的?

使用预测算法分析短期和长期影响

在MATLAB或者spss中在进行实际问题预测时,需要分别分析长期影响和短期影响,请问对应应该用到什么算法比较合适

自适应学习是什么呢?它与在线学习又有什么区别和联系呢?

本人是一个机器学习的入门小白,现在在苦苦探索中。 现在遇到一个问题,就是自适应学习到底是指什么呢?它有哪些分类?另外,与在线学习、增量学习有什么区别与联系呢?? 还请麻烦各位对这方面了解的老师和同学们可以帮我解决这个问题!十分感谢!

机器学习的模型文件怎么理解,谁能解答一下

机器学习的模型文件是什么,通俗的解释是什么?怎么理解模型的概念呢,能举个例子吗?谢谢大佬们

初级玩转Linux+Ubuntu(嵌入式开发基础课程)

课程主要面向嵌入式Linux初学者、工程师、学生 主要从一下几方面进行讲解: 1.linux学习路线、基本命令、高级命令 2.shell、vi及vim入门讲解 3.软件安装下载、NFS、Samba、FTP等服务器配置及使用

我以为我对Mysql事务很熟,直到我遇到了阿里面试官

太惨了,面试又被吊打

Python代码实现飞机大战

文章目录经典飞机大战一.游戏设定二.我方飞机三.敌方飞机四.发射子弹五.发放补给包六.主模块 经典飞机大战 源代码以及素材资料(图片,音频)可从下面的github中下载: 飞机大战源代码以及素材资料github项目地址链接 ————————————————————————————————————————————————————————— 不知道大家有没有打过飞机,喜不喜欢打飞机。当我第一次接触这个东西的时候,我的内心是被震撼到的。第一次接触打飞机的时候作者本人是身心愉悦的,因为周边的朋友都在打飞机, 每

Python数据分析与挖掘

92讲视频课+16大项目实战+源码+¥800元课程礼包+讲师社群1V1答疑+社群闭门分享会=99元 &nbsp; 为什么学习数据分析? &nbsp; &nbsp; &nbsp; 人工智能、大数据时代有什么技能是可以运用在各种行业的?数据分析就是。 &nbsp; &nbsp; &nbsp; 从海量数据中获得别人看不见的信息,创业者可以通过数据分析来优化产品,营销人员可以通过数据分析改进营销策略,产品经理可以通过数据分析洞察用户习惯,金融从业者可以通过数据分析规避投资风险,程序员可以通过数据分析进一步挖掘出数据价值,它和编程一样,本质上也是一个工具,通过数据来对现实事物进行分析和识别的能力。不管你从事什么行业,掌握了数据分析能力,往往在其岗位上更有竞争力。 &nbsp;&nbsp; 本课程共包含五大模块: 一、先导篇: 通过分析数据分析师的一天,让学员了解全面了解成为一个数据分析师的所有必修功法,对数据分析师不在迷惑。 &nbsp; 二、基础篇: 围绕Python基础语法介绍、数据预处理、数据可视化以及数据分析与挖掘......这些核心技能模块展开,帮助你快速而全面的掌握和了解成为一个数据分析师的所有必修功法。 &nbsp; 三、数据采集篇: 通过网络爬虫实战解决数据分析的必经之路:数据从何来的问题,讲解常见的爬虫套路并利用三大实战帮助学员扎实数据采集能力,避免没有数据可分析的尴尬。 &nbsp; 四、分析工具篇: 讲解数据分析避不开的科学计算库Numpy、数据分析工具Pandas及常见可视化工具Matplotlib。 &nbsp; 五、算法篇: 算法是数据分析的精华,课程精选10大算法,包括分类、聚类、预测3大类型,每个算法都从原理和案例两个角度学习,让你不仅能用起来,了解原理,还能知道为什么这么做。

如何在虚拟机VM上使用串口

在系统内核开发中,经常会用到串口调试,利用VMware的Virtual Machine更是为调试系统内核如虎添翼。那么怎么搭建串口调试环境呢?因为最近工作涉及到这方面,利用强大的google搜索和自己

程序员的兼职技能课

获取讲师答疑方式: 在付费视频第一节(触摸命令_ALL)片头有二维码及加群流程介绍 限时福利 原价99元,今日仅需39元!购课添加小助手(微信号:csdn590)按提示还可领取价值800元的编程大礼包! 讲师介绍: 苏奕嘉&nbsp;前阿里UC项目工程师 脚本开发平台官方认证满级(六级)开发者。 我将如何教会你通过【定制脚本】赚到你人生的第一桶金? 零基础程序定制脚本开发课程,是完全针对零脚本开发经验的小白而设计,课程内容共分为3大阶段: ①前期将带你掌握Q开发语言和界面交互开发能力; ②中期通过实战来制作有具体需求的定制脚本; ③后期将解锁脚本的更高阶玩法,打通任督二脉; ④应用定制脚本合法赚取额外收入的完整经验分享,带你通过程序定制脚本开发这项副业,赚取到你的第一桶金!

MFC一站式终极全套课程包

该套餐共包含从C小白到C++到MFC的全部课程,整套学下来绝对成为一名C++大牛!!!

C++语言基础视频教程

C++语言基础视频培训课程:本课与主讲者在大学开出的程序设计课程直接对接,准确把握知识点,注重教学视频与实践体系的结合,帮助初学者有效学习。本教程详细介绍C++语言中的封装、数据隐藏、继承、多态的实现等入门知识;主要包括类的声明、对象定义、构造函数和析构函数、运算符重载、继承和派生、多态性实现等。 课程需要有C语言程序设计的基础(可以利用本人开出的《C语言与程序设计》系列课学习)。学习者能够通过实践的方式,学会利用C++语言解决问题,具备进一步学习利用C++开发应用程序的基础。

北京师范大学信息科学与技术学院笔试10复试真题

北京师范大学信息科学与技术学院笔试,可以更好的让你了解北师大该学院的复试内容,获得更好的成绩。

深度学习原理+项目实战+算法详解+主流框架(套餐)

深度学习系列课程从深度学习基础知识点开始讲解一步步进入神经网络的世界再到卷积和递归神经网络,详解各大经典网络架构。实战部分选择当下最火爆深度学习框架PyTorch与Tensorflow/Keras,全程实战演示框架核心使用与建模方法。项目实战部分选择计算机视觉与自然语言处理领域经典项目,从零开始详解算法原理,debug模式逐行代码解读。适合准备就业和转行的同学们加入学习! 建议按照下列课程顺序来进行学习 (1)掌握深度学习必备经典网络架构 (2)深度框架实战方法 (3)计算机视觉与自然语言处理项目实战。(按照课程排列顺序即可)

网络工程师小白入门--【思科CCNA、华为HCNA等网络工程师认证】

本课程适合CCNA或HCNA网络小白同志,高手请绕道,可以直接学习进价课程。通过本预科课程的学习,为学习网络工程师、思科CCNA、华为HCNA这些认证打下坚实的基础! 重要!思科认证2020年2月24日起,已启用新版认证和考试,包括题库都会更新,由于疫情原因,请关注官网和本地考点信息。题库网络上很容易下载到。

Python界面版学生管理系统

前不久上传了一个控制台版本的学生管理系统,这个是Python界面版学生管理系统,这个是使用pycharm开发的一个有界面的学生管理系统,基本的增删改查,里面又演示视频和完整代码,有需要的伙伴可以自行下

软件测试2小时入门

本课程内容系统、全面、简洁、通俗易懂,通过2个多小时的介绍,让大家对软件测试有个系统的理解和认识,具备基本的软件测试理论基础。 主要内容分为5个部分: 1 软件测试概述,了解测试是什么、测试的对象、原则、流程、方法、模型;&nbsp; 2.常用的黑盒测试用例设计方法及示例演示;&nbsp; 3 常用白盒测试用例设计方法及示例演示;&nbsp; 4.自动化测试优缺点、使用范围及示例‘;&nbsp; 5.测试经验谈。

Tomcat服务器下载、安装、配置环境变量教程(超详细)

未经我的允许,请不要转载我的文章,在此郑重声明!!! 请先配置安装好Java的环境,若没有安装,请参照我博客上的步骤进行安装! 安装Java环境教程https://blog.csdn.net/qq_40881680/article/details/83585542 Tomcat部署Web项目(一)·内嵌https://blog.csdn.net/qq_40881680/article/d...

2019数学建模A题高压油管的压力控制 省一论文即代码

2019数学建模A题高压油管的压力控制省一完整论文即详细C++和Matlab代码,希望对同学们有所帮助

图书管理系统(Java + Mysql)我的第一个完全自己做的实训项目

图书管理系统 Java + MySQL 完整实训代码,MVC三层架构组织,包含所有用到的图片资源以及数据库文件,大三上学期实训,注释很详细,按照阿里巴巴Java编程规范编写

linux下利用/proc进行进程树的打印

在linux下利用c语言实现的进程树的打印,主要通过/proc下的目录中的进程文件,获取status中的进程信息内容,然后利用递归实现进程树的打印

微信小程序开发实战之番茄时钟开发

微信小程序番茄时钟视频教程,本课程将带着各位学员开发一个小程序初级实战类项目,针对只看过官方文档而又无从下手的开发者来说,可以作为一个较好的练手项目,对于有小程序开发经验的开发者而言,可以更好加深对小程序各类组件和API 的理解,为更深层次高难度的项目做铺垫。

[已解决]踩过的坑之mysql连接报“Communications link failure”错误

目录 前言 第一种方法: 第二种方法 第三种方法(适用于项目和数据库在同一台服务器) 第四种方法 第五种方法(项目和数据库不在同一台服务器) 总结 前言 先给大家简述一下我的坑吧,(我用的是mysql,至于oracle有没有这样的问题,有心的小伙伴们可以测试一下哈), 在自己做个javaweb测试项目的时候,因为买的是云服务器,所以数据库连接的是用ip地址,用IDE开发好...

人工智能-计算机视觉实战之路(必备算法+深度学习+项目实战)

系列课程主要分为3大阶段:(1)首先掌握计算机视觉必备算法原理,结合Opencv进行学习与练手,通过实际视项目进行案例应用展示。(2)进军当下最火的深度学习进行视觉任务实战,掌握深度学习中必备算法原理与网络模型架构。(3)结合经典深度学习框架与实战项目进行实战,基于真实数据集展开业务分析与建模实战。整体风格通俗易懂,项目驱动学习与就业面试。 建议同学们按照下列顺序来进行学习:1.Python入门视频课程 2.Opencv计算机视觉实战(Python版) 3.深度学习框架-PyTorch实战/人工智能框架实战精讲:Keras项目 4.Python-深度学习-物体检测实战 5.后续实战课程按照自己喜好选择就可以

2019 AI开发者大会

2019 AI开发者大会(AI ProCon 2019)是由中国IT社区CSDN主办的AI技术与产业年度盛会。多年经验淬炼,如今蓄势待发:2019年9月6-7日,大会将有近百位中美顶尖AI专家、知名企业代表以及千余名AI开发者齐聚北京,进行技术解读和产业论证。我们不空谈口号,只谈技术,诚挚邀请AI业内人士一起共铸人工智能新篇章!

机器学习初学者必会的案例精讲

通过六个实际的编码项目,带领同学入门人工智能。这些项目涉及机器学习(回归,分类,聚类),深度学习(神经网络),底层数学算法,Weka数据挖掘,利用Git开源项目实战等。

Python数据分析师-实战系列

系列课程主要包括Python数据分析必备工具包,数据分析案例实战,核心算法实战与企业级数据分析与建模解决方案实战,建议大家按照系列课程阶段顺序进行学习。所有数据集均为企业收集的真实数据集,整体风格以实战为导向,通俗讲解Python数据分析核心技巧与实战解决方案。

YOLOv3目标检测实战系列课程

《YOLOv3目标检测实战系列课程》旨在帮助大家掌握YOLOv3目标检测的训练、原理、源码与网络模型改进方法。 本课程的YOLOv3使用原作darknet(c语言编写),在Ubuntu系统上做项目演示。 本系列课程包括三门课: (1)《YOLOv3目标检测实战:训练自己的数据集》 包括:安装darknet、给自己的数据集打标签、整理自己的数据集、修改配置文件、训练自己的数据集、测试训练出的网络模型、性能统计(mAP计算和画出PR曲线)和先验框聚类。 (2)《YOLOv3目标检测:原理与源码解析》讲解YOLOv1、YOLOv2、YOLOv3的原理、程序流程并解析各层的源码。 (3)《YOLOv3目标检测:网络模型改进方法》讲解YOLOv3的改进方法,包括改进1:不显示指定类别目标的方法 (增加功能) ;改进2:合并BN层到卷积层 (加快推理速度) ; 改进3:使用GIoU指标和损失函数 (提高检测精度) ;改进4:tiny YOLOv3 (简化网络模型)并介绍 AlexeyAB/darknet项目。

2021考研数学张宇基础30讲.pdf

张宇:博士,全国著名考研数学辅导专家,教育部“国家精品课程建设骨干教师”,全国畅销书《张宇高等数学18讲》《张宇线性代数9讲》《张宇概率论与数理统计9讲》《张宇考研数学题源探析经典1000题》《张宇考

三个项目玩转深度学习(附1G源码)

从事大数据与人工智能开发与实践约十年,钱老师亲自见证了大数据行业的发展与人工智能的从冷到热。事实证明,计算机技术的发展,算力突破,海量数据,机器人技术等,开启了第四次工业革命的序章。深度学习图像分类一直是人工智能的经典任务,是智慧零售、安防、无人驾驶等机器视觉应用领域的核心技术之一,掌握图像分类技术是机器视觉学习的重中之重。针对现有线上学习的特点与实际需求,我们开发了人工智能案例实战系列课程。打造:以项目案例实践为驱动的课程学习方式,覆盖了智能零售,智慧交通等常见领域,通过基础学习、项目案例实践、社群答疑,三维立体的方式,打造最好的学习效果。

DirectX修复工具V4.0增强版

DirectX修复工具(DirectX Repair)是一款系统级工具软件,简便易用。本程序为绿色版,无需安装,可直接运行。 本程序的主要功能是检测当前系统的DirectX状态,如果发现异常则进行修复

期末考试评分标准的数学模型

大学期末考试与高中的考试存在很大的不同之处,大学的期末考试成绩是主要分为两个部分:平时成绩和期末考试成绩。平时成绩和期末考试成绩总分一般为一百分,然而平时成绩与期末考试成绩所占的比例不同会导致出现不同

Vue.js 2.0之全家桶系列视频课程

基于新的Vue.js 2.3版本, 目前新全的Vue.js教学视频,让你少走弯路,直达技术前沿! 1. 包含Vue.js全家桶(vue.js、vue-router、axios、vuex、vue-cli、webpack、ElementUI等) 2. 采用笔记+代码案例的形式讲解,通俗易懂

c语言项目开发实例

十个c语言案例 (1)贪吃蛇 (2)五子棋游戏 (3)电话薄管理系统 (4)计算器 (5)万年历 (6)电子表 (7)客户端和服务器通信 (8)潜艇大战游戏 (9)鼠标器程序 (10)手机通讯录系统

相关热词 c# dbml文件 修改 c#遍历tree c# 能够控制单片机 c#对象写入数据库 c# 添加activex c#2005 json c# 数据库在云端 c# 字符串移位加密 c#禁用滚轮 c#实体类list去重复
立即提问