openvino demo 文件运行报错问题。

demo里面的 object detection demo 运行的时候出现错误如下
严重性 代码 说明 项目 文件 行 禁止显示状态
错误 C4996 'std::basic_string,std::allocator>::copy': Call to 'std::basic_string::copy' with parameters that may be unsafe - this call relies on the caller to check that the passed values are correct. To disable this warning, use -D_SCL_SECURE_NO_WARNINGS. See documentation on how to use Visual C++ 'Checked Iterators' 88999 d:\open_model_zoo-2018\demos\extension\ext_list.hpp 56

是怎么回事,求各位老师解答

1个回答

Csdn user default icon
上传中...
上传图片
插入图片
抄袭、复制答案,以达到刷声望分或其他目的的行为,在CSDN问答是严格禁止的,一经发现立刻封号。是时候展现真正的技术了!
其他相关推荐
abdroid 关于支付宝官方给的Demo运行报错问题,急!急!急!

新手第一次做支付宝支付,我下载了官网上的支付Demo,导入后将下面这些参数配好后 ![图片说明](https://img-ask.csdn.net/upload/201510/21/1445418250_887322.png) 运行Demo,点击支付报了如下错误,大神些麻烦帮我看看是怎么回事啊?不懂... ![图片说明](https://img-ask.csdn.net/upload/201510/21/1445418388_510994.png) ![图片说明](https://img-ask.csdn.net/upload/201510/21/1445418343_655306.png)

IM demo 运行时报错,运行不了

![图片说明](https://img-ask.csdn.net/upload/201508/11/1439274465_151914.png) IM demo 运行时报错,运行不了, SQLiteLog (1) no such Column:isblack 是数据库没有这一列吗?如果是的话,请问怎么修改呢?

VS2013上MFC界面,编译成功,运行报错!!!求教

问题描述:同样的项目,在debug下编译成功,但运行报错,如下图: ![图片说明](https://img-ask.csdn.net/upload/201812/02/1543744285_332719.png) 修复了VS2013,报错。。。 查找错误日志: 电脑->管理->事件查看器->Windows日志->应用程序查看错误日志显示如下: ![图片说明](https://img-ask.csdn.net/upload/201812/02/1543744499_272557.png) 报错如下:“F:\DEMO\PoliceImgSys4.0\Debug\opencv_imgproc230d.dll”的激活上下文生成失败。 找不到从属程序集 Microsoft.VC90.DebugCRT,processorArchitecture="x86",publicKeyToken="1fc8b3b9a1e18e3b",type="win32",version="9.0.21022.8"。 请使用 sxstrace.exe 进行详细诊断。 解决:其中激活上下文文件,找不到从属集的有:opencv_core230d.dll,opencv_legacy230d.dll,opencv_highgui230d.dll,opencv_imgproc230d.dll等。找到对应的缺失文件放入.exe文件夹下,依旧报错。。。 问题描述:同样的项目,在release下编译成功,但运行报错,如下图: ![图片说明](https://img-ask.csdn.net/upload/201812/02/1543744898_726633.png) 点击忽略,界面可以正常运行。 但是点击文件下的.exe可执行文件文件,报错如下图,还是哪里有问题: ![图片说明](https://img-ask.csdn.net/upload/201812/02/1543745079_413182.png) 尝试了很多方法,都没能成功,希望有哪位大佬给与帮助,感谢!!!****

Tensorflow Object Detection API Demo运行报错求?

![图片说明](https://img-ask.csdn.net/upload/201810/12/1539335033_129004.png) 这个能运行但是在jupyter运行Demo就报下面的错误是怎么回事..... ![图片说明](https://img-ask.csdn.net/upload/201810/12/1539335054_656491.png)

初学者学习中使用maven管理项目spring的Demo运行报错,求指导

Exception in thread "main" java.lang.NoClassDefFoundError: org/springframework/beans/factory/ListableBeanFactory at java.lang.ClassLoader.defineClass1(Native Method) at java.lang.ClassLoader.defineClassCond(ClassLoader.java:637) at java.lang.ClassLoader.defineClass(ClassLoader.java:621) at java.security.SecureClassLoader.defineClass(SecureClassLoader.java:141) at java.net.URLClassLoader.defineClass(URLClassLoader.java:283) at java.net.URLClassLoader.access$000(URLClassLoader.java:58) at java.net.URLClassLoader$1.run(URLClassLoader.java:197) at java.security.AccessController.doPrivileged(Native Method) at java.net.URLClassLoader.findClass(URLClassLoader.java:190) at java.lang.ClassLoader.loadClass(ClassLoader.java:306) at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:301) at java.lang.ClassLoader.loadClass(ClassLoader.java:247) Caused by: java.lang.ClassNotFoundException: org.springframework.beans.factory.ListableBeanFactory at java.net.URLClassLoader$1.run(URLClassLoader.java:202) at java.security.AccessController.doPrivileged(Native Method) at java.net.URLClassLoader.findClass(URLClassLoader.java:190) at java.lang.ClassLoader.loadClass(ClassLoader.java:306) at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:301) at java.lang.ClassLoader.loadClass(ClassLoader.java:247) ... 12 more

百度地图demo 运行时报错

下载百度地图的参考demo,改了key值后,运行直接报java.lang.NoClassDefFoundError: com.baidu.mapapi.SDKInitializer的错。。。想知道是哪里配置错误吗,求大神解答

微信sdk demo运行报错 求救

java.lang.SecurityException: Permission Denial: get/set setting for user asks to run as user -2 but is calling from user 0; this requires android.permission.INTERACT_ACROSS_USERS_FULL。 这是什么错误?怎么解决啊

xcode9开发AR程序demo运行报错

如题,控制台说不能运行那个demo,但是自己xcode和ios版本都没问题

linux下pandoc使用自定义的template模板将md文件转换为中文pdf文件-报错问题

## linux下pandoc使用自定义的template模板m将md文件转换为中文pdf文件报错问题 --- 在linux环境下使用pandoc将md文件转换为pdf文件(中文的),使用了自定义的模板,该模板来自于[tzengyuxio](https://github.com/tzengyuxio/pages/tree/gh-pages/pandoc)的pm-template.latex文件,我将该模板文件放到pandoc的模板文件夹下(linux默认的路径是:/usr/share/pandoc/data/templates) --- **linux下一安装pandoc(1.16.0.2),texlive2017并且已经配置好中文环境** *转换指令* ``` pandoc demo.md -o new.pdf --latex-engine=xelatex --template=pm-template.latex ``` - 报错问题 - - 1.第一次报错问题(已解决) ![图片说明](https://img-ask.csdn.net/upload/201912/19/1576724614_579189.png) 该问题已经通过[killercup](https://github.com/killercup/trpl-ebook/issues/18)得到了解决,在pm-templatex.latex文件导言区加入如下内容 ``` \newcommand{\tightlist}{% \setlength{\itemsep}{0pt}\setlength{\parskip}{0pt}} ``` - - 2.**第二次报错问题(就是我想请教各位前辈的)** ![图片说明](https://img-ask.csdn.net/upload/201912/19/1576724974_966113.png) 如果哪位前辈知道这个报错问题的话,qing指点我一下,万分感谢

Xcode 10 编译运行报错

今天把Xcode10.1升级到 Xcode10.3,在真机环境中编译运行一直报错,“This application’s bundle identifier does not match its code signing identifier.”,求大佬们助攻下! 编译环境:Xcode 10.2 、Xcode 10.3 得到库的过程:用Carthage github "NordicSemiconductor/IOS-Pods-DFU-Library" ~> 4.5 用到的动态库:iOSDFULibrary.framework 4.5.0版本、ZIPFoundation.framework 0.9.9版本 真机中运行报错信息:“This application’s bundle identifier does not match its code signing identifier.” 一开始认为都是自己证书,签名配置有问题。然后更换了一波 bundle ID 、signing Certificate。甚至去了开发者官网,重新更换了 开发者证书,并下载到本地,进行app的签名证书配置,还是报上面的错误。 然后认为是自己Xcode版本的问题,删除Xcode,重新下载安装最新版本Xcode 10.3,编译运行,问题依旧。 最后写了一个小demo,用来测试 iOSDFULibrary.framework 4.5.0版本、ZIPFoundation.framework 0.9.9 版本 动态库,发现在真机情况下编译运行还是有相同的错误。模拟器还是可以正常的编译运行。 ![图片说明](https://img-ask.csdn.net/upload/201908/21/1566353221_502387.png)

openvino里的object detection demo 运行的时候有很多报错是怎么回事?

代码如下:/* // Copyright (c) 2018 Intel Corporation // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. */ #include <gflags/gflags.h> #include <algorithm> #include <functional> #include <iostream> #include <fstream> #include <random> #include <string> #include <memory> #include <vector> #include <limits> #include <chrono> #include <format_reader_ptr.h> #include <inference_engine.hpp> #include <ext_list.hpp> #include <samples/common.hpp> #include <samples/slog.hpp> #include <samples/args_helper.hpp> #include "object_detection_demo.h" #include "detectionoutput.h" using namespace InferenceEngine; bool ParseAndCheckCommandLine(int argc, char *argv[]) { // ---------------------------Parsing and validation of input args-------------------------------------- slog::info << "Parsing input parameters" << slog::endl; gflags::ParseCommandLineNonHelpFlags(&argc, &argv, true); if (FLAGS_h) { showUsage(); return false; } if (FLAGS_ni < 1) { throw std::logic_error("Parameter -ni should be greater than 0 (default: 1)"); } if (FLAGS_i.empty()) { throw std::logic_error("Parameter -i is not set"); } if (FLAGS_m.empty()) { throw std::logic_error("Parameter -m is not set"); } return true; } /** * \brief The entry point for the Inference Engine object_detection demo application * \file object_detection_demo/main.cpp * \example object_detection_demo/main.cpp */ int main(int argc, char *argv[]) { try { /** This demo covers certain topology and cannot be generalized for any object detection one **/ slog::info << "InferenceEngine: " << GetInferenceEngineVersion() << "\n"; // ------------------------------ Parsing and validation of input args --------------------------------- if (!ParseAndCheckCommandLine(argc, argv)) { return 0; } /** This vector stores paths to the processed images **/ std::vector<std::string> images; parseImagesArguments(images); if (images.empty()) throw std::logic_error("No suitable images were found"); // ----------------------------------------------------------------------------------------------------- // --------------------------- 1. Load Plugin for inference engine ------------------------------------- slog::info << "Loading plugin" << slog::endl; InferencePlugin plugin = PluginDispatcher({ FLAGS_pp, "../../../lib/intel64" , "" }).getPluginByDevice(FLAGS_d); /*If CPU device, load default library with extensions that comes with the product*/ if (FLAGS_d.find("CPU") != std::string::npos) { /** * cpu_extensions library is compiled from "extension" folder containing * custom MKLDNNPlugin layer implementations. These layers are not supported * by mkldnn, but they can be useful for inferencing custom topologies. **/ plugin.AddExtension(std::make_shared<Extensions::Cpu::CpuExtensions>()); } if (!FLAGS_l.empty()) { // CPU(MKLDNN) extensions are loaded as a shared library and passed as a pointer to base extension IExtensionPtr extension_ptr = make_so_pointer<IExtension>(FLAGS_l); plugin.AddExtension(extension_ptr); slog::info << "CPU Extension loaded: " << FLAGS_l << slog::endl; } if (!FLAGS_c.empty()) { // clDNN Extensions are loaded from an .xml description and OpenCL kernel files plugin.SetConfig({ { PluginConfigParams::KEY_CONFIG_FILE, FLAGS_c } }); slog::info << "GPU Extension loaded: " << FLAGS_c << slog::endl; } /** Setting plugin parameter for per layer metrics **/ if (FLAGS_pc) { plugin.SetConfig({ { PluginConfigParams::KEY_PERF_COUNT, PluginConfigParams::YES } }); } /** Printing plugin version **/ printPluginVersion(plugin, std::cout); // ----------------------------------------------------------------------------------------------------- // --------------------------- 2. Read IR Generated by ModelOptimizer (.xml and .bin files) ------------ std::string binFileName = fileNameNoExt(FLAGS_m) + ".bin"; slog::info << "Loading network files:" "\n\t" << FLAGS_m << "\n\t" << binFileName << slog::endl; CNNNetReader networkReader; /** Read network model **/ networkReader.ReadNetwork(FLAGS_m); /** Extract model name and load weigts **/ networkReader.ReadWeights(binFileName); CNNNetwork network = networkReader.getNetwork(); Precision p = network.getPrecision(); // ----------------------------------------------------------------------------------------------------- // --------------------------- 3. Configure input & output --------------------------------------------- // ------------------------------ Adding DetectionOutput ----------------------------------------------- /** * The only meaningful difference between Faster-RCNN and SSD-like topologies is the interpretation * of the output data. Faster-RCNN has 2 output layers which (the same format) are presented inside SSD. * * But SSD has an additional post-processing DetectionOutput layer that simplifies output filtering. * So here we are adding 3 Reshapes and the DetectionOutput to the end of Faster-RCNN so it will return the * same result as SSD and we can easily parse it. */ std::string firstLayerName = network.getInputsInfo().begin()->first; int inputWidth = network.getInputsInfo().begin()->second->getTensorDesc().getDims()[3]; int inputHeight = network.getInputsInfo().begin()->second->getTensorDesc().getDims()[2]; DataPtr bbox_pred_reshapeInPort = ((ICNNNetwork&)network).getData(FLAGS_bbox_name.c_str()); if (bbox_pred_reshapeInPort == nullptr) { throw std::logic_error(std::string("Can't find output layer named ") + FLAGS_bbox_name); } SizeVector bbox_pred_reshapeOutDims = { bbox_pred_reshapeInPort->getTensorDesc().getDims()[0] * bbox_pred_reshapeInPort->getTensorDesc().getDims()[1], 1 }; DataPtr rois_reshapeInPort = ((ICNNNetwork&)network).getData(FLAGS_proposal_name.c_str()); if (rois_reshapeInPort == nullptr) { throw std::logic_error(std::string("Can't find output layer named ") + FLAGS_proposal_name); } SizeVector rois_reshapeOutDims = { rois_reshapeInPort->getTensorDesc().getDims()[0] * rois_reshapeInPort->getTensorDesc().getDims()[1], 1 }; DataPtr cls_prob_reshapeInPort = ((ICNNNetwork&)network).getData(FLAGS_prob_name.c_str()); if (cls_prob_reshapeInPort == nullptr) { throw std::logic_error(std::string("Can't find output layer named ") + FLAGS_prob_name); } SizeVector cls_prob_reshapeOutDims = { cls_prob_reshapeInPort->getTensorDesc().getDims()[0] * cls_prob_reshapeInPort->getTensorDesc().getDims()[1], 1 }; /* Detection output */ int normalized = 0; int prior_size = normalized ? 4 : 5; int num_priors = rois_reshapeOutDims[0] / prior_size; // num_classes guessed from the output dims if (bbox_pred_reshapeOutDims[0] % (num_priors * 4) != 0) { throw std::logic_error("Can't guess number of classes. Something's wrong with output layers dims"); } int num_classes = bbox_pred_reshapeOutDims[0] / (num_priors * 4); slog::info << "num_classes guessed: " << num_classes << slog::endl; LayerParams detectionOutParams; detectionOutParams.name = "detection_out"; detectionOutParams.type = "DetectionOutput"; detectionOutParams.precision = p; CNNLayerPtr detectionOutLayer = CNNLayerPtr(new CNNLayer(detectionOutParams)); detectionOutLayer->params["background_label_id"] = "0"; detectionOutLayer->params["code_type"] = "caffe.PriorBoxParameter.CENTER_SIZE"; detectionOutLayer->params["eta"] = "1.0"; detectionOutLayer->params["input_height"] = std::to_string(inputHeight); detectionOutLayer->params["input_width"] = std::to_string(inputWidth); detectionOutLayer->params["keep_top_k"] = "200"; detectionOutLayer->params["nms_threshold"] = "0.3"; detectionOutLayer->params["normalized"] = std::to_string(normalized); detectionOutLayer->params["num_classes"] = std::to_string(num_classes); detectionOutLayer->params["share_location"] = "0"; detectionOutLayer->params["top_k"] = "400"; detectionOutLayer->params["variance_encoded_in_target"] = "1"; detectionOutLayer->params["visualize"] = "False"; detectionOutLayer->insData.push_back(bbox_pred_reshapeInPort); detectionOutLayer->insData.push_back(cls_prob_reshapeInPort); detectionOutLayer->insData.push_back(rois_reshapeInPort); SizeVector detectionOutLayerOutDims = { 7, 200, 1, 1 }; DataPtr detectionOutLayerOutPort = DataPtr(new Data("detection_out", detectionOutLayerOutDims, p, TensorDesc::getLayoutByDims(detectionOutLayerOutDims))); detectionOutLayerOutPort->creatorLayer = detectionOutLayer; detectionOutLayer->outData.push_back(detectionOutLayerOutPort); DetectionOutputPostProcessor detOutPostProcessor(detectionOutLayer.get()); network.addOutput(FLAGS_bbox_name, 0); network.addOutput(FLAGS_prob_name, 0); network.addOutput(FLAGS_proposal_name, 0); // --------------------------- Prepare input blobs ----------------------------------------------------- slog::info << "Preparing input blobs" << slog::endl; /** Taking information about all topology inputs **/ InputsDataMap inputsInfo(network.getInputsInfo()); /** SSD network has one input and one output **/ if (inputsInfo.size() != 1 && inputsInfo.size() != 2) throw std::logic_error("Demo supports topologies only with 1 or 2 inputs"); std::string imageInputName, imInfoInputName; InputInfo::Ptr inputInfo = inputsInfo.begin()->second; SizeVector inputImageDims; /** Stores input image **/ /** Iterating over all input blobs **/ for (auto & item : inputsInfo) { /** Working with first input tensor that stores image **/ if (item.second->getInputData()->getTensorDesc().getDims().size() == 4) { imageInputName = item.first; slog::info << "Batch size is " << std::to_string(networkReader.getNetwork().getBatchSize()) << slog::endl; /** Creating first input blob **/ Precision inputPrecision = Precision::U8; item.second->setPrecision(inputPrecision); } else if (item.second->getInputData()->getTensorDesc().getDims().size() == 2) { imInfoInputName = item.first; Precision inputPrecision = Precision::FP32; item.second->setPrecision(inputPrecision); if ((item.second->getTensorDesc().getDims()[1] != 3 && item.second->getTensorDesc().getDims()[1] != 6) || item.second->getTensorDesc().getDims()[0] != 1) { throw std::logic_error("Invalid input info. Should be 3 or 6 values length"); } } } // ------------------------------ Prepare output blobs ------------------------------------------------- slog::info << "Preparing output blobs" << slog::endl; OutputsDataMap outputsInfo(network.getOutputsInfo()); const int maxProposalCount = detectionOutLayerOutDims[1]; const int objectSize = detectionOutLayerOutDims[0]; /** Set the precision of output data provided by the user, should be called before load of the network to the plugin **/ outputsInfo[FLAGS_bbox_name]->setPrecision(Precision::FP32); outputsInfo[FLAGS_prob_name]->setPrecision(Precision::FP32); outputsInfo[FLAGS_proposal_name]->setPrecision(Precision::FP32); // ----------------------------------------------------------------------------------------------------- // --------------------------- 4. Loading model to the plugin ------------------------------------------ slog::info << "Loading model to the plugin" << slog::endl; ExecutableNetwork executable_network = plugin.LoadNetwork(network, {}); // ----------------------------------------------------------------------------------------------------- // --------------------------- 5. Create infer request ------------------------------------------------- InferRequest infer_request = executable_network.CreateInferRequest(); // ----------------------------------------------------------------------------------------------------- // --------------------------- 6. Prepare input -------------------------------------------------------- /** Collect images data ptrs **/ std::vector<std::shared_ptr<unsigned char>> imagesData, originalImagesData; std::vector<int> imageWidths, imageHeights; for (auto & i : images) { FormatReader::ReaderPtr reader(i.c_str()); if (reader.get() == nullptr) { slog::warn << "Image " + i + " cannot be read!" << slog::endl; continue; } /** Store image data **/ std::shared_ptr<unsigned char> originalData(reader->getData()); std::shared_ptr<unsigned char> data(reader->getData(inputInfo->getTensorDesc().getDims()[3], inputInfo->getTensorDesc().getDims()[2])); if (data.get() != nullptr) { originalImagesData.push_back(originalData); imagesData.push_back(data); imageWidths.push_back(reader->width()); imageHeights.push_back(reader->height()); } } if (imagesData.empty()) throw std::logic_error("Valid input images were not found!"); size_t batchSize = network.getBatchSize(); slog::info << "Batch size is " << std::to_string(batchSize) << slog::endl; if (batchSize != imagesData.size()) { slog::warn << "Number of images " + std::to_string(imagesData.size()) + \ " doesn't match batch size " + std::to_string(batchSize) << slog::endl; slog::warn << std::to_string(std::min(imagesData.size(), batchSize)) + \ " images will be processed" << slog::endl; batchSize = std::min(batchSize, imagesData.size()); } /** Creating input blob **/ Blob::Ptr imageInput = infer_request.GetBlob(imageInputName); /** Filling input tensor with images. First b channel, then g and r channels **/ size_t num_channels = imageInput->getTensorDesc().getDims()[1]; size_t image_size = imageInput->getTensorDesc().getDims()[3] * imageInput->getTensorDesc().getDims()[2]; unsigned char* data = static_cast<unsigned char*>(imageInput->buffer()); /** Iterate over all input images **/ for (size_t image_id = 0; image_id < std::min(imagesData.size(), batchSize); ++image_id) { /** Iterate over all pixel in image (b,g,r) **/ for (size_t pid = 0; pid < image_size; pid++) { /** Iterate over all channels **/ for (size_t ch = 0; ch < num_channels; ++ch) { /** [images stride + channels stride + pixel id ] all in bytes **/ data[image_id * image_size * num_channels + ch * image_size + pid] = imagesData.at(image_id).get()[pid*num_channels + ch]; } } } if (imInfoInputName != "") { Blob::Ptr input2 = infer_request.GetBlob(imInfoInputName); auto imInfoDim = inputsInfo.find(imInfoInputName)->second->getTensorDesc().getDims()[1]; /** Fill input tensor with values **/ float *p = input2->buffer().as<PrecisionTrait<Precision::FP32>::value_type*>(); for (size_t image_id = 0; image_id < std::min(imagesData.size(), batchSize); ++image_id) { p[image_id * imInfoDim + 0] = static_cast<float>(inputsInfo[imageInputName]->getTensorDesc().getDims()[2]); p[image_id * imInfoDim + 1] = static_cast<float>(inputsInfo[imageInputName]->getTensorDesc().getDims()[3]); for (int k = 2; k < imInfoDim; k++) { p[image_id * imInfoDim + k] = 1.0f; // all scale factors are set to 1.0 } } } // ----------------------------------------------------------------------------------------------------- // ---------------------------- 7. Do inference -------------------------------------------------------- slog::info << "Start inference (" << FLAGS_ni << " iterations)" << slog::endl; typedef std::chrono::high_resolution_clock Time; typedef std::chrono::duration<double, std::ratio<1, 1000>> ms; typedef std::chrono::duration<float> fsec; double total = 0.0; /** Start inference & calc performance **/ for (int iter = 0; iter < FLAGS_ni; ++iter) { auto t0 = Time::now(); infer_request.Infer(); auto t1 = Time::now(); fsec fs = t1 - t0; ms d = std::chrono::duration_cast<ms>(fs); total += d.count(); } // ----------------------------------------------------------------------------------------------------- // ---------------------------- 8. Process output ------------------------------------------------------ slog::info << "Processing output blobs" << slog::endl; Blob::Ptr bbox_output_blob = infer_request.GetBlob(FLAGS_bbox_name); Blob::Ptr prob_output_blob = infer_request.GetBlob(FLAGS_prob_name); Blob::Ptr rois_output_blob = infer_request.GetBlob(FLAGS_proposal_name); std::vector<Blob::Ptr> detOutInBlobs = { bbox_output_blob, prob_output_blob, rois_output_blob }; Blob::Ptr output_blob = std::make_shared<TBlob<float>>(Precision::FP32, Layout::NCHW, detectionOutLayerOutDims); output_blob->allocate(); std::vector<Blob::Ptr> detOutOutBlobs = { output_blob }; detOutPostProcessor.execute(detOutInBlobs, detOutOutBlobs, nullptr); const float* detection = static_cast<PrecisionTrait<Precision::FP32>::value_type*>(output_blob->buffer()); std::vector<std::vector<int> > boxes(batchSize); std::vector<std::vector<int> > classes(batchSize); /* Each detection has image_id that denotes processed image */ for (int curProposal = 0; curProposal < maxProposalCount; curProposal++) { float image_id = detection[curProposal * objectSize + 0]; float label = detection[curProposal * objectSize + 1]; float confidence = detection[curProposal * objectSize + 2]; float xmin = detection[curProposal * objectSize + 3] * imageWidths[image_id]; float ymin = detection[curProposal * objectSize + 4] * imageHeights[image_id]; float xmax = detection[curProposal * objectSize + 5] * imageWidths[image_id]; float ymax = detection[curProposal * objectSize + 6] * imageHeights[image_id]; /* MKLDnn and clDNN have little differente in DetectionOutput layer, so we need this check */ if (image_id < 0 || confidence == 0) { continue; } std::cout << "[" << curProposal << "," << label << "] element, prob = " << confidence << " (" << xmin << "," << ymin << ")-(" << xmax << "," << ymax << ")" << " batch id : " << image_id; if (confidence > 0.5) { /** Drawing only objects with >50% probability **/ classes[image_id].push_back(static_cast<int>(label)); boxes[image_id].push_back(static_cast<int>(xmin)); boxes[image_id].push_back(static_cast<int>(ymin)); boxes[image_id].push_back(static_cast<int>(xmax - xmin)); boxes[image_id].push_back(static_cast<int>(ymax - ymin)); std::cout << " WILL BE PRINTED!"; } std::cout << std::endl; } for (size_t batch_id = 0; batch_id < batchSize; ++batch_id) { addRectangles(originalImagesData[batch_id].get(), imageHeights[batch_id], imageWidths[batch_id], boxes[batch_id], classes[batch_id]); const std::string image_path = "out_" + std::to_string(batch_id) + ".bmp"; if (writeOutputBmp(image_path, originalImagesData[batch_id].get(), imageHeights[batch_id], imageWidths[batch_id])) { slog::info << "Image " + image_path + " created!" << slog::endl; } else { throw std::logic_error(std::string("Can't create a file: ") + image_path); } } // ----------------------------------------------------------------------------------------------------- std::cout << std::endl << "total inference time: " << total << std::endl; std::cout << "Average running time of one iteration: " << total / static_cast<double>(FLAGS_ni) << " ms" << std::endl; std::cout << std::endl << "Throughput: " << 1000 * static_cast<double>(FLAGS_ni) * batchSize / total << " FPS" << std::endl; std::cout << std::endl; /** Show performace results **/ if (FLAGS_pc) { printPerformanceCounts(infer_request, std::cout); } } catch (const std::exception& error) { slog::err << error.what() << slog::endl; return 1; } catch (...) { slog::err << "Unknown/internal exception happened." << slog::endl; return 1; } slog::info << "Execution successful" << slog::endl; return 0; } 有如下报错:严重性 代码 说明 项目 文件 行 禁止显示状态 错误 LNK2019 无法解析的外部符号 CreateFormatReader,该符号在函数 "public: __cdecl FormatReader::ReaderPtr::ReaderPtr(char const *)" (??0ReaderPtr@FormatReader@@QEAA@PEBD@Z) 中被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1 错误(活动) 无法引用 函数 "InferenceEngine::make_so_pointer<T>(const std::string &name) [其中 T=InferenceEngine::IExtension]" (已声明 所在行数:164,所属文件:"c:\Users\颜俊毅\Desktop\dldt-2018\inference-engine\include\details\ie_so_pointer.hpp") -- 它是已删除的函数 88999 c:\Users\颜俊毅\Documents\Visual Studio 2015\Projects\88999\88999\7521.cpp 102 错误 LNK2019 无法解析的外部符号 __imp_CreateDefaultAllocator,该符号在函数 "protected: virtual class std::shared_ptr<class InferenceEngine::IAllocator> const & __cdecl InferenceEngine::TBlob<int,struct std::enable_if<1,void> >::getAllocator(void)const " (?getAllocator@?$TBlob@HU?$enable_if@$00X@std@@@InferenceEngine@@MEBAAEBV?$shared_ptr@VIAllocator@InferenceEngine@@@std@@XZ) 中被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1 错误 LNK2019 无法解析的外部符号 "__declspec(dllimport) public: __cdecl InferenceEngine::BlockingDesc::BlockingDesc(class std::vector<unsigned __int64,class std::allocator<unsigned __int64> > const &,class std::vector<unsigned __int64,class std::allocator<unsigned __int64> > const &)" (__imp_??0BlockingDesc@InferenceEngine@@QEAA@AEBV?$vector@_KV?$allocator@_K@std@@@std@@0@Z),该符号在函数 "public: __cdecl DetectionOutputPostProcessor::DetectionOutputPostProcessor(class InferenceEngine::CNNLayer const *)" (??0DetectionOutputPostProcessor@@QEAA@PEBVCNNLayer@InferenceEngine@@@Z) 中被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1 错误 LNK2019 无法解析的外部符号 "__declspec(dllimport) public: virtual __cdecl InferenceEngine::BlockingDesc::~BlockingDesc(void)" (__imp_??1BlockingDesc@InferenceEngine@@UEAA@XZ),该符号在函数 "public: __cdecl DetectionOutputPostProcessor::DetectionOutputPostProcessor(class InferenceEngine::CNNLayer const *)" (??0DetectionOutputPostProcessor@@QEAA@PEBVCNNLayer@InferenceEngine@@@Z) 中被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1 错误 LNK2019 无法解析的外部符号 "__declspec(dllimport) public: __cdecl InferenceEngine::TensorDesc::TensorDesc(class InferenceEngine::Precision const &,class std::vector<unsigned __int64,class std::allocator<unsigned __int64> >,class InferenceEngine::BlockingDesc const &)" (__imp_??0TensorDesc@InferenceEngine@@QEAA@AEBVPrecision@1@V?$vector@_KV?$allocator@_K@std@@@std@@AEBVBlockingDesc@1@@Z),该符号在函数 "public: __cdecl DetectionOutputPostProcessor::DetectionOutputPostProcessor(class InferenceEngine::CNNLayer const *)" (??0DetectionOutputPostProcessor@@QEAA@PEBVCNNLayer@InferenceEngine@@@Z) 中被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1 错误 LNK2019 无法解析的外部符号 "__declspec(dllimport) public: __cdecl InferenceEngine::TensorDesc::TensorDesc(class InferenceEngine::Precision const &,class std::vector<unsigned __int64,class std::allocator<unsigned __int64> >,enum InferenceEngine::Layout)" (__imp_??0TensorDesc@InferenceEngine@@QEAA@AEBVPrecision@1@V?$vector@_KV?$allocator@_K@std@@@std@@W4Layout@1@@Z),该符号在函数 "public: __cdecl InferenceEngine::Blob::Blob(class InferenceEngine::Precision,enum InferenceEngine::Layout,class std::vector<unsigned __int64,class std::allocator<unsigned __int64> > const &)" (??0Blob@InferenceEngine@@QEAA@VPrecision@1@W4Layout@1@AEBV?$vector@_KV?$allocator@_K@std@@@std@@@Z) 中被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1 错误 LNK2019 无法解析的外部符号 "__declspec(dllimport) public: virtual __cdecl InferenceEngine::TensorDesc::~TensorDesc(void)" (__imp_??1TensorDesc@InferenceEngine@@UEAA@XZ),该符号在函数 "public: __cdecl InferenceEngine::Blob::Blob(class InferenceEngine::TensorDesc)" (??0Blob@InferenceEngine@@QEAA@VTensorDesc@1@@Z) 中被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1 错误 LNK2019 无法解析的外部符号 "__declspec(dllimport) public: class std::vector<unsigned __int64,class std::allocator<unsigned __int64> > & __cdecl InferenceEngine::TensorDesc::getDims(void)" (__imp_?getDims@TensorDesc@InferenceEngine@@QEAAAEAV?$vector@_KV?$allocator@_K@std@@@std@@XZ),该符号在函数 "public: virtual void __cdecl InferenceEngine::TBlob<int,struct std::enable_if<1,void> >::allocate(void)" (?allocate@?$TBlob@HU?$enable_if@$00X@std@@@InferenceEngine@@UEAAXXZ) 中被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1 错误 LNK2019 无法解析的外部符号 "__declspec(dllimport) public: class std::vector<unsigned __int64,class std::allocator<unsigned __int64> > const & __cdecl InferenceEngine::TensorDesc::getDims(void)const " (__imp_?getDims@TensorDesc@InferenceEngine@@QEBAAEBV?$vector@_KV?$allocator@_K@std@@@std@@XZ),该符号在函数 "public: unsigned __int64 __cdecl InferenceEngine::Blob::byteSize(void)const " (?byteSize@Blob@InferenceEngine@@QEBA_KXZ) 中被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1 错误 LNK2019 无法解析的外部符号 "__declspec(dllimport) public: static enum InferenceEngine::Layout __cdecl InferenceEngine::TensorDesc::getLayoutByDims(class std::vector<unsigned __int64,class std::allocator<unsigned __int64> >)" (__imp_?getLayoutByDims@TensorDesc@InferenceEngine@@SA?AW4Layout@2@V?$vector@_KV?$allocator@_K@std@@@std@@@Z),该符号在函数 main 中被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1 错误 LNK2019 无法解析的外部符号 "__declspec(dllimport) public: __cdecl InferenceEngine::TensorDesc::TensorDesc(class InferenceEngine::TensorDesc const &)" (__imp_??0TensorDesc@InferenceEngine@@QEAA@AEBV01@@Z),该符号在函数 "public: __cdecl InferenceEngine::TBlob<int,struct std::enable_if<1,void> >::TBlob<int,struct std::enable_if<1,void> >(class InferenceEngine::TensorDesc const &)" (??0?$TBlob@HU?$enable_if@$00X@std@@@InferenceEngine@@QEAA@AEBVTensorDesc@1@@Z) 中被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1 错误 LNK2019 无法解析的外部符号 "__declspec(dllimport) public: __cdecl InferenceEngine::Data::Data(class std::basic_string<char,struct std::char_traits<char>,class std::allocator<char> > const &,class std::vector<unsigned __int64,class std::allocator<unsigned __int64> > const &,class InferenceEngine::Precision,enum InferenceEngine::Layout)" (__imp_??0Data@InferenceEngine@@QEAA@AEBV?$basic_string@DU?$char_traits@D@std@@V?$allocator@D@2@@std@@AEBV?$vector@_KV?$allocator@_K@std@@@3@VPrecision@1@W4Layout@1@@Z),该符号在函数 main 中被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1 错误 LNK2019 无法解析的外部符号 "__declspec(dllimport) public: class InferenceEngine::TensorDesc const & __cdecl InferenceEngine::Data::getTensorDesc(void)const " (__imp_?getTensorDesc@Data@InferenceEngine@@QEBAAEBVTensorDesc@2@XZ),该符号在函数 "public: virtual class std::map<class std::basic_string<char,struct std::char_traits<char>,class std::allocator<char> >,class std::vector<unsigned __int64,class std::allocator<unsigned __int64> >,struct std::less<class std::basic_string<char,struct std::char_traits<char>,class std::allocator<char> > >,class std::allocator<struct std::pair<class std::basic_string<char,struct std::char_traits<char>,class std::allocator<char> > const ,class std::vector<unsigned __int64,class std::allocator<unsigned __int64> > > > > __cdecl InferenceEngine::CNNNetwork::getInputShapes(void)" (?getInputShapes@CNNNetwork@InferenceEngine@@UEAA?AV?$map@V?$basic_string@DU?$char_traits@D@std@@V?$allocator@D@2@@std@@V?$vector@_KV?$allocator@_K@std@@@2@U?$less@V?$basic_string@DU?$char_traits@D@std@@V?$allocator@D@2@@std@@@2@V?$allocator@U?$pair@$$CBV?$basic_string@DU?$char_traits@D@std@@V?$allocator@D@2@@std@@V?$vector@_KV?$allocator@_K@std@@@2@@std@@@2@@std@@XZ) 中被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1 错误 LNK2019 无法解析的外部符号 "__declspec(dllimport) public: void __cdecl InferenceEngine::Data::setPrecision(class InferenceEngine::Precision const &)" (__imp_?setPrecision@Data@InferenceEngine@@QEAAXAEBVPrecision@2@@Z),该符号在函数 "public: void __cdecl InferenceEngine::InputInfo::setPrecision(class InferenceEngine::Precision)" (?setPrecision@InputInfo@InferenceEngine@@QEAAXVPrecision@2@@Z) 中被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1 错误 LNK2019 无法解析的外部符号 "__declspec(dllimport) public: __cdecl InferenceEngine::Data::~Data(void)" (__imp_??1Data@InferenceEngine@@QEAA@XZ),该符号在函数 "public: void * __cdecl InferenceEngine::Data::`scalar deleting destructor'(unsigned int)" (??_GData@InferenceEngine@@QEAAPEAXI@Z) 中被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1 错误 LNK2019 无法解析的外部符号 __imp_findPlugin,该符号在函数 "public: class InferenceEngine::details::SOPointer<class InferenceEngine::IInferencePlugin,class InferenceEngine::details::SharedObjectLoader> __cdecl InferenceEngine::PluginDispatcher::getSuitablePlugin(enum InferenceEngine::TargetDevice)const " (?getSuitablePlugin@PluginDispatcher@InferenceEngine@@QEBA?AV?$SOPointer@VIInferencePlugin@InferenceEngine@@VSharedObjectLoader@details@2@@details@2@W4TargetDevice@2@@Z) 中被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1 错误 LNK2019 无法解析的外部符号 __imp_GetInferenceEngineVersion,该符号在函数 main 中被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1 错误 LNK2019 无法解析的外部符号 __imp_CreateCNNNetReader,该符号在函数 "public: __cdecl InferenceEngine::CNNNetReader::CNNNetReader(void)" (??0CNNNetReader@InferenceEngine@@QEAA@XZ) 中被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1 错误 LNK2019 无法解析的外部符号 "__declspec(dllimport) public: __cdecl InferenceEngine::Extensions::Cpu::CpuExtensions::CpuExtensions(void)" (__imp_??0CpuExtensions@Cpu@Extensions@InferenceEngine@@QEAA@XZ),该符号在函数 "public: __cdecl std::_Ref_count_obj<class InferenceEngine::Extensions::Cpu::CpuExtensions>::_Ref_count_obj<class InferenceEngine::Extensions::Cpu::CpuExtensions><>(void)" (??$?0$$V@?$_Ref_count_obj@VCpuExtensions@Cpu@Extensions@InferenceEngine@@@std@@QEAA@XZ) 中被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1 错误 LNK2019 无法解析的外部符号 "__declspec(dllimport) public: virtual __cdecl InferenceEngine::Extensions::Cpu::CpuExtensions::~CpuExtensions(void)" (__imp_??1CpuExtensions@Cpu@Extensions@InferenceEngine@@UEAA@XZ),该符号在函数 "public: virtual void * __cdecl InferenceEngine::Extensions::Cpu::CpuExtensions::`scalar deleting destructor'(unsigned int)" (??_GCpuExtensions@Cpu@Extensions@InferenceEngine@@UEAAPEAXI@Z) 中被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1 错误 LNK2001 无法解析的外部符号 "public: virtual void __cdecl InferenceEngine::Extensions::Cpu::CpuExtensions::GetVersion(struct InferenceEngine::Version const * &)const " (?GetVersion@CpuExtensions@Cpu@Extensions@InferenceEngine@@UEBAXAEAPEBUVersion@4@@Z) 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1 错误 LNK2001 无法解析的外部符号 "public: virtual void __cdecl InferenceEngine::Extensions::Cpu::CpuExtensions::Release(void)" (?Release@CpuExtensions@Cpu@Extensions@InferenceEngine@@UEAAXXZ) 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1 错误 LNK2001 无法解析的外部符号 "public: virtual void __cdecl InferenceEngine::Extensions::Cpu::CpuExtensions::SetLogCallback(class InferenceEngine::IErrorListener &)" (?SetLogCallback@CpuExtensions@Cpu@Extensions@InferenceEngine@@UEAAXAEAVIErrorListener@4@@Z) 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1 错误 LNK2001 无法解析的外部符号 "public: virtual void __cdecl InferenceEngine::Extensions::Cpu::CpuExtensions::Unload(void)" (?Unload@CpuExtensions@Cpu@Extensions@InferenceEngine@@UEAAXXZ) 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1 错误 LNK2001 无法解析的外部符号 "public: virtual enum InferenceEngine::StatusCode __cdecl InferenceEngine::Extensions::Cpu::CpuExtensions::getFactoryFor(class InferenceEngine::ILayerImplFactory * &,class InferenceEngine::CNNLayer const *,struct InferenceEngine::ResponseDesc *)" (?getFactoryFor@CpuExtensions@Cpu@Extensions@InferenceEngine@@UEAA?AW4StatusCode@4@AEAPEAVILayerImplFactory@4@PEBVCNNLayer@4@PEAUResponseDesc@4@@Z) 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1 错误 LNK2001 无法解析的外部符号 "public: virtual enum InferenceEngine::StatusCode __cdecl InferenceEngine::Extensions::Cpu::CpuExtensions::getPrimitiveTypes(char * * &,unsigned int &,struct InferenceEngine::ResponseDesc *)" (?getPrimitiveTypes@CpuExtensions@Cpu@Extensions@InferenceEngine@@UEAA?AW4StatusCode@4@AEAPEAPEADAEAIPEAUResponseDesc@4@@Z) 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1 错误 LNK2001 无法解析的外部符号 "public: virtual enum InferenceEngine::StatusCode __cdecl InferenceEngine::Extensions::Cpu::CpuExtensions::getShapeInferImpl(class std::shared_ptr<class InferenceEngine::IShapeInferImpl> &,char const *,struct InferenceEngine::ResponseDesc *)" (?getShapeInferImpl@CpuExtensions@Cpu@Extensions@InferenceEngine@@UEAA?AW4StatusCode@4@AEAV?$shared_ptr@VIShapeInferImpl@InferenceEngine@@@std@@PEBDPEAUResponseDesc@4@@Z) 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1 错误 LNK1120 27 个无法解析的外部命令 88999 c:\users\颜俊毅\documents\visual studio 2015\Projects\88999\x64\Debug\88999.exe 1

友盟推送自带demo导入报错问题

将友盟推送自带的demo导入进eclipse之后就报红色感叹号,有两个错误提示: Project 'PushExample4Eclipse' is missing required Java project: 'com.umeng.message.lib' The project cannot be built until build path errors are resolved这两个错误提示,翻译之后说是路径有错误,但是不知道该怎么找。。

tkinter程序运行时报错

学习tkinter项目,照着老师写的代码写却仍然报错.具体代码如下: ![图片说明](https://img-ask.csdn.net/upload/201912/17/1576544180_961000.jpg) 运行的时候标黄色的那一行总是报错如下: File "E:/Program Files/Python/FollowMyHeart/GUI/Phase6/Demo.py", line 21, in addfile info['text'] = '\n'.join(filelists) NameError: name 'info' is not defined 按说label_info都已经定义过了.老师写的代码也是可以运行的.为什么在我的电脑就就运行不了呢

运行RN的安卓项目报错。

装好RN环境,第一次运行安卓Demo,报错信息如下: ![图片说明](https://img-ask.csdn.net/upload/201905/26/1558856313_132103.png) 然后我用百度的方法,修改本地的gradle版本后,又报错如下: ![图片说明](https://img-ask.csdn.net/upload/201905/26/1558856420_301284.png) 求助各位大佬,这个问题怎么解决啊?

python执行tornado报错

今天装了tornado 写了个测试demo代码如下 ![图片说明](https://img-ask.csdn.net/upload/201804/29/1525007168_382510.png) 在Windows下执行时没有问题的在Linux下执行提示没有zlib模块于是我下载了zlib包执行报错如下 ![图片说明](https://img-ask.csdn.net/upload/201804/29/1525007401_668393.png) 下载了好几个zlib包都报这个错

下载的银联demo怎么运行java版呀,配置了src/upmp.properties

在用浏览器测试时,总是显示无法显示网页,如何测试,刚学java,不是很懂

arcgis android 撒点报错 VerifyError,demo中运行没问题的

代码在demo中跑起来完全正常,但是在整合到项目中之后能显示地图,但是无法撒点,卡在GraphicsLayer.addGraphic(),每次一到这里就报错,闪退 java.lang.VerifyError: com/esri/core/internal/util/d at com.esri.core.symbol.PictureMarkerSymbol.toJson(SourceFile:264) at com.esri.android.map.GraphicsLayer.addGraphic(SourceFile:257) at com.mlight.chat.activities.jqxx.JqxxMapActivity.sprinkle(JqxxMapActivity.java:427) at com.mlight.chat.activities.jqxx.JqxxMapActivity.access$300(JqxxMapActivity.java:52) at com.mlight.chat.activities.jqxx.JqxxMapActivity$2.handleMessage(JqxxMapActivity.java:349) at android.os.Handler.dispatchMessage(Handler.java:102) at android.os.Looper.loop(Looper.java:136) at android.app.ActivityThread.main(ActivityThread.java:5336) at java.lang.reflect.Method.invokeNative(Native Method) at java.lang.reflect.Method.invoke(Method.java:515) at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java:873) at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:689) at dalvik.system.NativeStart.main(Native Method)

okhttp demo 使用报错,似乎是libs的问题

07-07 09:45:53.645: E/AndroidRuntime(6578): java.lang.RuntimeException: Unable to instantiate activity Component Info {com.example.okhttp/com.example.okhttp.MainActivity}: java.lang.ClassNotFoundException: Didn't find class "com.example.okhttp.MainActivity" on path: DexPathList[[zip file "/data/app/com.example.okhttp-2/base.apk"],nativeLibraryDirectories=[/data/app/com.example.okhttp-2/lib/arm, /vendor/lib, /system/lib]] 这是什么原因,如何解决。android4.3 jre1.8 真机调试,虚拟机调试都出错

学习Servlet时运行报错,如何解决?

**JSP页面错误**: type Exception report message Error instantiating servlet class com.rl.servlet.ServeltDemo1 description The server encountered an internal error that prevented it from fulfilling this request. exception javax.servlet.ServletException: Error instantiating servlet class com.rl.servlet.ServeltDemo1 org.apache.catalina.authenticator.AuthenticatorBase.invoke(AuthenticatorBase.java:502) org.apache.catalina.valves.ErrorReportValve.invoke(ErrorReportValve.java:79) org.apache.catalina.valves.AbstractAccessLogValve.invoke(AbstractAccessLogValve.java:616) org.apache.catalina.connector.CoyoteAdapter.service(CoyoteAdapter.java:522) org.apache.coyote.http11.AbstractHttp11Processor.process(AbstractHttp11Processor.java:1095) org.apache.coyote.AbstractProtocol$AbstractConnectionHandler.process(AbstractProtocol.java:672) org.apache.tomcat.util.net.NioEndpoint$SocketProcessor.doRun(NioEndpoint.java:1500) org.apache.tomcat.util.net.NioEndpoint$SocketProcessor.run(NioEndpoint.java:1456) java.util.concurrent.ThreadPoolExecutor.runWorker(Unknown Source) java.util.concurrent.ThreadPoolExecutor$Worker.run(Unknown Source) org.apache.tomcat.util.threads.TaskThread$WrappingRunnable.run(TaskThread.java:61) java.lang.Thread.run(Unknown Source) root cause java.lang.IllegalAccessException: Class org.apache.catalina.core.DefaultInstanceManager can not access a member of class com.rl.servlet.ServeltDemo1 with modifiers "" sun.reflect.Reflection.ensureMemberAccess(Unknown Source) java.lang.Class.newInstance(Unknown Source) org.apache.catalina.authenticator.AuthenticatorBase.invoke(AuthenticatorBase.java:502) org.apache.catalina.valves.ErrorReportValve.invoke(ErrorReportValve.java:79) org.apache.catalina.valves.AbstractAccessLogValve.invoke(AbstractAccessLogValve.java:616) org.apache.catalina.connector.CoyoteAdapter.service(CoyoteAdapter.java:522) org.apache.coyote.http11.AbstractHttp11Processor.process(AbstractHttp11Processor.java:1095) org.apache.coyote.AbstractProtocol$AbstractConnectionHandler.process(AbstractProtocol.java:672) org.apache.tomcat.util.net.NioEndpoint$SocketProcessor.doRun(NioEndpoint.java:1500) org.apache.tomcat.util.net.NioEndpoint$SocketProcessor.run(NioEndpoint.java:1456) java.util.concurrent.ThreadPoolExecutor.runWorker(Unknown Source) java.util.concurrent.ThreadPoolExecutor$Worker.run(Unknown Source) org.apache.tomcat.util.threads.TaskThread$WrappingRunnable.run(TaskThread.java:61) java.lang.Thread.run(Unknown Source) note The full stack trace of the root cause is available in the Apache Tomcat/8.0.32 logs. **控制台报错**: 严重: Allocate exception for servlet helloServlet java.lang.IllegalAccessException: Class org.apache.catalina.core.DefaultInstanceManager can not access a member of class com.rl.servlet.ServeltDemo1 with modifiers "" at sun.reflect.Reflection.ensureMemberAccess(Unknown Source) at java.lang.Class.newInstance(Unknown Source) at org.apache.catalina.core.DefaultInstanceManager.newInstance(DefaultInstanceManager.java:119) at org.apache.catalina.core.StandardWrapper.loadServlet(StandardWrapper.java:1102) at org.apache.catalina.core.StandardWrapper.allocate(StandardWrapper.java:828) at org.apache.catalina.core.StandardWrapperValve.invoke(StandardWrapperValve.java:135) at org.apache.catalina.core.StandardContextValve.invoke(StandardContextValve.java:106) at org.apache.catalina.authenticator.AuthenticatorBase.invoke(AuthenticatorBase.java:502) at org.apache.catalina.core.StandardHostValve.invoke(StandardHostValve.java:141) at org.apache.catalina.valves.ErrorReportValve.invoke(ErrorReportValve.java:79) at org.apache.catalina.valves.AbstractAccessLogValve.invoke(AbstractAccessLogValve.java:616) at org.apache.catalina.core.StandardEngineValve.invoke(StandardEngineValve.java:88) at org.apache.catalina.connector.CoyoteAdapter.service(CoyoteAdapter.java:522) at org.apache.coyote.http11.AbstractHttp11Processor.process(AbstractHttp11Processor.java:1095) at org.apache.coyote.AbstractProtocol$AbstractConnectionHandler.process(AbstractProtocol.java:672) at org.apache.tomcat.util.net.NioEndpoint$SocketProcessor.doRun(NioEndpoint.java:1500) at org.apache.tomcat.util.net.NioEndpoint$SocketProcessor.run(NioEndpoint.java:1456) at java.util.concurrent.ThreadPoolExecutor.runWorker(Unknown Source) at java.util.concurrent.ThreadPoolExecutor$Worker.run(Unknown Source) at org.apache.tomcat.util.threads.TaskThread$WrappingRunnable.run(TaskThread.java:61) at java.lang.Thread.run(Unknown Source) **实现类代码**: class ServeltDemo1 implements Servlet { @Override public void init(ServletConfig arg0) throws ServletException { System.out.println("相应请求"); System.out.println("Servlet组件被创建了"); } @Override public void service(ServletRequest request, ServletResponse response) throws ServletException, IOException { response.getOutputStream().write("<font color = 'red'>Hello Servlet</font>".getBytes()); } @Override public void destroy() { System.out.println("Servlet销毁了"); } } **web.xml代码**: <?xml version="1.0" encoding="UTF-8"?> <web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://java.sun.com/xml/ns/javaee" xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd" id="WebApp_ID" version="3.0"> <servlet> <!-- 设置Servlet名称 --> <servlet-name>helloServlet</servlet-name> <!-- 具体的Servlet类 --> <servlet-class>com.rl.servlet.ServeltDemo1</servlet-class> </servlet> <servlet-mapping> <servlet-name>helloServlet</servlet-name> <url-pattern>/hello</url-pattern> </servlet-mapping> </web-app>

YOLOv3目标检测实战:训练自己的数据集

YOLOv3目标检测实战:训练自己的数据集

150讲轻松搞定Python网络爬虫

150讲轻松搞定Python网络爬虫

实用主义学Python(小白也容易上手的Python实用案例)

实用主义学Python(小白也容易上手的Python实用案例)

我说我不会算法,阿里把我挂了。

不说了,字节跳动也反手把我挂了。

立方体线框模型透视投影 (计算机图形学实验)

计算机图形学实验 立方体线框模型透视投影 的可执行文件,亲测可运行,若需报告可以联系我,期待和各位交流

2019 AI开发者大会

2019 AI开发者大会

组成原理课程设计(实现机器数的真值还原等功能)

实现机器数的真值还原(定点小数)、定点小数的单符号位补码加减运算、定点小数的补码乘法运算和浮点数的加减运算。

C/C++跨平台研发从基础到高阶实战系列套餐

一 专题从基础的C语言核心到c++ 和stl完成基础强化; 二 再到数据结构,设计模式完成专业计算机技能强化; 三 通过跨平台网络编程,linux编程,qt界面编程,mfc编程,windows编程,c++与lua联合编程来完成应用强化 四 最后通过基于ffmpeg的音视频播放器,直播推流,屏幕录像,

MFC一站式终极全套课程包

该套餐共包含从C小白到C++到MFC的全部课程,整套学下来绝对成为一名C++大牛!!!

软件测试2小时入门

软件测试2小时入门

三个项目玩转深度学习(附1G源码)

三个项目玩转深度学习(附1G源码)

计算机图形学-球的光照模型课程设计

计算机图形学-球的光照模型,有代码完美运行,有课程设计书

Linux常用命令大全(非常全!!!)

Linux常用命令大全(非常全!!!) 最近都在和Linux打交道,感觉还不错。我觉得Linux相比windows比较麻烦的就是很多东西都要用命令来控制,当然,这也是很多人喜欢linux的原因,比较短小但却功能强大。我将我了解到的命令列举一下,仅供大家参考: 系统信息 arch 显示机器的处理器架构 uname -m 显示机器的处理器架构 uname -r 显示正在使用的内核版本 d...

因为看了这些书,我大二就拿了华为Offer

四年了,四年,你知道大学这四年我怎么过的么?

深度学习原理+项目实战+算法详解+主流框架(套餐)

深度学习系列课程从深度学习基础知识点开始讲解一步步进入神经网络的世界再到卷积和递归神经网络,详解各大经典网络架构。实战部分选择当下最火爆深度学习框架PyTorch与Tensorflow/Keras,全程实战演示框架核心使用与建模方法。项目实战部分选择计算机视觉与自然语言处理领域经典项目,从零开始详解算法原理,debug模式逐行代码解读。适合准备就业和转行的同学们加入学习! 建议按照下列课程顺序来进行学习 (1)掌握深度学习必备经典网络架构 (2)深度框架实战方法 (3)计算机视觉与自然语言处理项目实战。(按照课程排列顺序即可)

fakeLocation13.5.1.zip

fakeLocation13.5.1 虚拟定位 ios13.5.1的最新驱动下载,iPhone/iPad免越狱虚拟定位工具Location-cleaned驱动已更新

UnityLicence

UnityLicence

Python可以这样学(第一季:Python内功修炼)

Python可以这样学(第一季:Python内功修炼)

Python+OpenCV计算机视觉

Python+OpenCV计算机视觉

土豆浏览器

土豆浏览器可以用来看各种搞笑、电影、电视剧视频

【数据结构与算法综合实验】欢乐连连看(C++ & MFC)案例

这是武汉理工大学计算机学院数据结构与算法综合实验课程的第三次项目:欢乐连连看(C++ & MFC)迭代开发代码。运行环境:VS2017。已经实现功能:开始游戏、消子、判断胜负、提示、重排、计时、帮助。

php+mysql学生成绩管理系统

学生成绩管理系统,分三个模块:学生,教师和管理员。 管理员模块:负责学生、老师信息的增删改;发布课程信息的增删改,以便让学生选课;审核老师提交的学生成绩并且打印成绩存档;按照课号查询每个课号的学生成绩

多功能数字钟.zip

利用数字电子计数知识设计并制作的数字电子钟(含multisim仿真),该数字钟具有显示星期、24小时制时间、闹铃、整点报时、时间校准功能

推荐24个国外黄色网站欣赏

在中国清朝,明黄色的衣服只有皇子才有资格穿,慢慢的黄色在中国就成了高贵的颜色。在人们的色彩印象中,黄色也表现为暂停。所以当你的网页设计采用黄色的时候,会让人们在你的网页前停留。 黄色,就像橙色和红色,黄色也是一个暖色。它有大自然、阳光、春天的涵义,而且通常被认为是一个快乐和有希望的色彩。黄色是所有色相中最能发光的颜色,给人轻快,透明,辉煌,充满希望的色彩印象。 黄色是一个高可见的色...

u-boot-2015.07.tar.bz2

uboot-2015-07最新代码,喜欢的朋友请拿去

一学即懂的计算机视觉(第一季)

一学即懂的计算机视觉(第一季)

学生成绩管理系统(PHP + MYSQL)

做的是数据库课程设计,使用的php + MySQL,本来是黄金搭配也就没啥说的,推荐使用wamp服务器,里面有详细的使用说明,带有界面的啊!呵呵 不行的话,可以给我留言!

Windows版YOLOv4目标检测实战:训练自己的数据集

Windows版YOLOv4目标检测实战:训练自己的数据集

C++语言基础视频教程

C++语言基础视频教程

玩转Python-Python3基础入门

玩转Python-Python3基础入门

相关热词 c#跨线程停止timer c#批量写入sql数据库 c# 自动安装浏览器 c#语言基础考试题 c# 偏移量打印是什么 c# 绘制曲线图 c#框体中的退出函数 c# 按钮透明背景 c# idl 混编出错 c#在位置0处没有任何行
立即提问