openvino里的object detection demo 运行的时候有很多报错是怎么回事? 5C

代码如下:/*
// Copyright (c) 2018 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

#include
#include
#include

#include
#include
#include
#include "object_detection_demo.h"
#include "detectionoutput.h"

using namespace InferenceEngine;

bool ParseAndCheckCommandLine(int argc, char *argv[]) {
// ---------------------------Parsing and validation of input args--------------------------------------
slog::info << "Parsing input parameters" << slog::endl;

gflags::ParseCommandLineNonHelpFlags(&argc, &argv, true);
if (FLAGS_h) {
    showUsage();
    return false;
}

if (FLAGS_ni < 1) {
    throw std::logic_error("Parameter -ni should be greater than 0 (default: 1)");
}

if (FLAGS_i.empty()) {
    throw std::logic_error("Parameter -i is not set");
}

if (FLAGS_m.empty()) {
    throw std::logic_error("Parameter -m is not set");
}

return true;

}

/**

  • \brief The entry point for the Inference Engine object_detection demo application
  • \file object_detection_demo/main.cpp
  • \example object_detection_demo/main.cpp
    /
    int main(int argc, char *argv[]) {
    try {
    /
    * This demo covers certain topology and cannot be generalized for any object detection one **/
    slog::info << "InferenceEngine: " << GetInferenceEngineVersion() << "\n";

    // ------------------------------ Parsing and validation of input args ---------------------------------
    if (!ParseAndCheckCommandLine(argc, argv)) {
        return 0;
    }
    
    /** This vector stores paths to the processed images **/
    std::vector<std::string> images;
    parseImagesArguments(images);
    if (images.empty()) throw std::logic_error("No suitable images were found");
    // -----------------------------------------------------------------------------------------------------
    
    // --------------------------- 1. Load Plugin for inference engine -------------------------------------
    slog::info << "Loading plugin" << slog::endl;
    InferencePlugin plugin = PluginDispatcher({ FLAGS_pp, "../../../lib/intel64" , "" }).getPluginByDevice(FLAGS_d);
    
    /*If CPU device, load default library with extensions that comes with the product*/
    if (FLAGS_d.find("CPU") != std::string::npos) {
        /**
        * cpu_extensions library is compiled from "extension" folder containing
        * custom MKLDNNPlugin layer implementations. These layers are not supported
        * by mkldnn, but they can be useful for inferencing custom topologies.
        **/
        plugin.AddExtension(std::make_shared<Extensions::Cpu::CpuExtensions>());
    }
    
    if (!FLAGS_l.empty()) {
        // CPU(MKLDNN) extensions are loaded as a shared library and passed as a pointer to base extension
        IExtensionPtr extension_ptr = make_so_pointer<IExtension>(FLAGS_l);
        plugin.AddExtension(extension_ptr);
        slog::info << "CPU Extension loaded: " << FLAGS_l << slog::endl;
    }
    
    if (!FLAGS_c.empty()) {
        // clDNN Extensions are loaded from an .xml description and OpenCL kernel files
        plugin.SetConfig({ { PluginConfigParams::KEY_CONFIG_FILE, FLAGS_c } });
        slog::info << "GPU Extension loaded: " << FLAGS_c << slog::endl;
    }
    
    /** Setting plugin parameter for per layer metrics **/
    if (FLAGS_pc) {
        plugin.SetConfig({ { PluginConfigParams::KEY_PERF_COUNT, PluginConfigParams::YES } });
    }
    
    /** Printing plugin version **/
    printPluginVersion(plugin, std::cout);
    // -----------------------------------------------------------------------------------------------------
    
    // --------------------------- 2. Read IR Generated by ModelOptimizer (.xml and .bin files) ------------
    std::string binFileName = fileNameNoExt(FLAGS_m) + ".bin";
    slog::info << "Loading network files:"
        "\n\t" << FLAGS_m <<
        "\n\t" << binFileName <<
        slog::endl;
    
    CNNNetReader networkReader;
    /** Read network model **/
    networkReader.ReadNetwork(FLAGS_m);
    
    /** Extract model name and load weigts **/
    networkReader.ReadWeights(binFileName);
    CNNNetwork network = networkReader.getNetwork();
    
    Precision p = network.getPrecision();
    // -----------------------------------------------------------------------------------------------------
    
    // --------------------------- 3. Configure input & output ---------------------------------------------
    
    // ------------------------------ Adding DetectionOutput -----------------------------------------------
    
    /**
    * The only meaningful difference between Faster-RCNN and SSD-like topologies is the interpretation
    * of the output data. Faster-RCNN has 2 output layers which (the same format) are presented inside SSD.
    *
    * But SSD has an additional post-processing DetectionOutput layer that simplifies output filtering.
    * So here we are adding 3 Reshapes and the DetectionOutput to the end of Faster-RCNN so it will return the
    * same result as SSD and we can easily parse it.
    */
    
    std::string firstLayerName = network.getInputsInfo().begin()->first;
    
    int inputWidth = network.getInputsInfo().begin()->second->getTensorDesc().getDims()[3];
    int inputHeight = network.getInputsInfo().begin()->second->getTensorDesc().getDims()[2];
    
    DataPtr bbox_pred_reshapeInPort = ((ICNNNetwork&)network).getData(FLAGS_bbox_name.c_str());
    if (bbox_pred_reshapeInPort == nullptr) {
        throw std::logic_error(std::string("Can't find output layer named ") + FLAGS_bbox_name);
    }
    
    SizeVector bbox_pred_reshapeOutDims = {
        bbox_pred_reshapeInPort->getTensorDesc().getDims()[0] *
        bbox_pred_reshapeInPort->getTensorDesc().getDims()[1], 1
    };
    DataPtr rois_reshapeInPort = ((ICNNNetwork&)network).getData(FLAGS_proposal_name.c_str());
    if (rois_reshapeInPort == nullptr) {
        throw std::logic_error(std::string("Can't find output layer named ") + FLAGS_proposal_name);
    }
    
    SizeVector rois_reshapeOutDims = { rois_reshapeInPort->getTensorDesc().getDims()[0] * rois_reshapeInPort->getTensorDesc().getDims()[1], 1 };
    
    DataPtr cls_prob_reshapeInPort = ((ICNNNetwork&)network).getData(FLAGS_prob_name.c_str());
    if (cls_prob_reshapeInPort == nullptr) {
        throw std::logic_error(std::string("Can't find output layer named ") + FLAGS_prob_name);
    }
    
    SizeVector cls_prob_reshapeOutDims = { cls_prob_reshapeInPort->getTensorDesc().getDims()[0] * cls_prob_reshapeInPort->getTensorDesc().getDims()[1], 1 };
    
    /*
    Detection output
    */
    
    int normalized = 0;
    int prior_size = normalized ? 4 : 5;
    int num_priors = rois_reshapeOutDims[0] / prior_size;
    
    // num_classes guessed from the output dims
    if (bbox_pred_reshapeOutDims[0] % (num_priors * 4) != 0) {
        throw std::logic_error("Can't guess number of classes. Something's wrong with output layers dims");
    }
    int num_classes = bbox_pred_reshapeOutDims[0] / (num_priors * 4);
    slog::info << "num_classes guessed: " << num_classes << slog::endl;
    
    LayerParams detectionOutParams;
    detectionOutParams.name = "detection_out";
    detectionOutParams.type = "DetectionOutput";
    detectionOutParams.precision = p;
    CNNLayerPtr detectionOutLayer = CNNLayerPtr(new CNNLayer(detectionOutParams));
    detectionOutLayer->params["background_label_id"] = "0";
    detectionOutLayer->params["code_type"] = "caffe.PriorBoxParameter.CENTER_SIZE";
    detectionOutLayer->params["eta"] = "1.0";
    detectionOutLayer->params["input_height"] = std::to_string(inputHeight);
    detectionOutLayer->params["input_width"] = std::to_string(inputWidth);
    detectionOutLayer->params["keep_top_k"] = "200";
    detectionOutLayer->params["nms_threshold"] = "0.3";
    detectionOutLayer->params["normalized"] = std::to_string(normalized);
    detectionOutLayer->params["num_classes"] = std::to_string(num_classes);
    detectionOutLayer->params["share_location"] = "0";
    detectionOutLayer->params["top_k"] = "400";
    detectionOutLayer->params["variance_encoded_in_target"] = "1";
    detectionOutLayer->params["visualize"] = "False";
    
    detectionOutLayer->insData.push_back(bbox_pred_reshapeInPort);
    detectionOutLayer->insData.push_back(cls_prob_reshapeInPort);
    detectionOutLayer->insData.push_back(rois_reshapeInPort);
    
    SizeVector detectionOutLayerOutDims = { 7, 200, 1, 1 };
    DataPtr detectionOutLayerOutPort = DataPtr(new Data("detection_out", detectionOutLayerOutDims, p,
        TensorDesc::getLayoutByDims(detectionOutLayerOutDims)));
    detectionOutLayerOutPort->creatorLayer = detectionOutLayer;
    detectionOutLayer->outData.push_back(detectionOutLayerOutPort);
    
    DetectionOutputPostProcessor detOutPostProcessor(detectionOutLayer.get());
    
    network.addOutput(FLAGS_bbox_name, 0);
    network.addOutput(FLAGS_prob_name, 0);
    network.addOutput(FLAGS_proposal_name, 0);
    
    // --------------------------- Prepare input blobs -----------------------------------------------------
    slog::info << "Preparing input blobs" << slog::endl;
    
    /** Taking information about all topology inputs **/
    InputsDataMap inputsInfo(network.getInputsInfo());
    
    /** SSD network has one input and one output **/
    if (inputsInfo.size() != 1 && inputsInfo.size() != 2) throw std::logic_error("Demo supports topologies only with 1 or 2 inputs");
    
    std::string imageInputName, imInfoInputName;
    
    InputInfo::Ptr inputInfo = inputsInfo.begin()->second;
    
    SizeVector inputImageDims;
    /** Stores input image **/
    
    /** Iterating over all input blobs **/
    for (auto & item : inputsInfo) {
        /** Working with first input tensor that stores image **/
        if (item.second->getInputData()->getTensorDesc().getDims().size() == 4) {
            imageInputName = item.first;
    
            slog::info << "Batch size is " << std::to_string(networkReader.getNetwork().getBatchSize()) << slog::endl;
    
            /** Creating first input blob **/
            Precision inputPrecision = Precision::U8;
            item.second->setPrecision(inputPrecision);
    
        }
        else if (item.second->getInputData()->getTensorDesc().getDims().size() == 2) {
            imInfoInputName = item.first;
    
            Precision inputPrecision = Precision::FP32;
            item.second->setPrecision(inputPrecision);
            if ((item.second->getTensorDesc().getDims()[1] != 3 && item.second->getTensorDesc().getDims()[1] != 6) ||
                item.second->getTensorDesc().getDims()[0] != 1) {
                throw std::logic_error("Invalid input info. Should be 3 or 6 values length");
            }
        }
    }
    
    // ------------------------------ Prepare output blobs -------------------------------------------------
    slog::info << "Preparing output blobs" << slog::endl;
    
    OutputsDataMap outputsInfo(network.getOutputsInfo());
    
    const int maxProposalCount = detectionOutLayerOutDims[1];
    const int objectSize = detectionOutLayerOutDims[0];
    
    /** Set the precision of output data provided by the user, should be called before load of the network to the plugin **/
    
    outputsInfo[FLAGS_bbox_name]->setPrecision(Precision::FP32);
    outputsInfo[FLAGS_prob_name]->setPrecision(Precision::FP32);
    outputsInfo[FLAGS_proposal_name]->setPrecision(Precision::FP32);
    // -----------------------------------------------------------------------------------------------------
    
    // --------------------------- 4. Loading model to the plugin ------------------------------------------
    slog::info << "Loading model to the plugin" << slog::endl;
    
    ExecutableNetwork executable_network = plugin.LoadNetwork(network, {});
    // -----------------------------------------------------------------------------------------------------
    
    // --------------------------- 5. Create infer request -------------------------------------------------
    InferRequest infer_request = executable_network.CreateInferRequest();
    // -----------------------------------------------------------------------------------------------------
    
    // --------------------------- 6. Prepare input --------------------------------------------------------
    /** Collect images data ptrs **/
    std::vector<std::shared_ptr<unsigned char>> imagesData, originalImagesData;
    std::vector<int> imageWidths, imageHeights;
    for (auto & i : images) {
        FormatReader::ReaderPtr reader(i.c_str());
        if (reader.get() == nullptr) {
            slog::warn << "Image " + i + " cannot be read!" << slog::endl;
            continue;
        }
        /** Store image data **/
        std::shared_ptr<unsigned char> originalData(reader->getData());
        std::shared_ptr<unsigned char> data(reader->getData(inputInfo->getTensorDesc().getDims()[3], inputInfo->getTensorDesc().getDims()[2]));
        if (data.get() != nullptr) {
            originalImagesData.push_back(originalData);
            imagesData.push_back(data);
            imageWidths.push_back(reader->width());
            imageHeights.push_back(reader->height());
        }
    }
    if (imagesData.empty()) throw std::logic_error("Valid input images were not found!");
    
    size_t batchSize = network.getBatchSize();
    slog::info << "Batch size is " << std::to_string(batchSize) << slog::endl;
    if (batchSize != imagesData.size()) {
        slog::warn << "Number of images " + std::to_string(imagesData.size()) + \
            " doesn't match batch size " + std::to_string(batchSize) << slog::endl;
        slog::warn << std::to_string(std::min(imagesData.size(), batchSize)) + \
            " images will be processed" << slog::endl;
        batchSize = std::min(batchSize, imagesData.size());
    }
    
    /** Creating input blob **/
    Blob::Ptr imageInput = infer_request.GetBlob(imageInputName);
    
    /** Filling input tensor with images. First b channel, then g and r channels **/
    size_t num_channels = imageInput->getTensorDesc().getDims()[1];
    size_t image_size = imageInput->getTensorDesc().getDims()[3] * imageInput->getTensorDesc().getDims()[2];
    
    unsigned char* data = static_cast<unsigned char*>(imageInput->buffer());
    
    /** Iterate over all input images **/
    for (size_t image_id = 0; image_id < std::min(imagesData.size(), batchSize); ++image_id) {
        /** Iterate over all pixel in image (b,g,r) **/
        for (size_t pid = 0; pid < image_size; pid++) {
            /** Iterate over all channels **/
            for (size_t ch = 0; ch < num_channels; ++ch) {
                /**          [images stride + channels stride + pixel id ] all in bytes            **/
                data[image_id * image_size * num_channels + ch * image_size + pid] = imagesData.at(image_id).get()[pid*num_channels + ch];
            }
        }
    }
    
    if (imInfoInputName != "") {
        Blob::Ptr input2 = infer_request.GetBlob(imInfoInputName);
        auto imInfoDim = inputsInfo.find(imInfoInputName)->second->getTensorDesc().getDims()[1];
    
        /** Fill input tensor with values **/
        float *p = input2->buffer().as<PrecisionTrait<Precision::FP32>::value_type*>();
    
        for (size_t image_id = 0; image_id < std::min(imagesData.size(), batchSize); ++image_id) {
            p[image_id * imInfoDim + 0] = static_cast<float>(inputsInfo[imageInputName]->getTensorDesc().getDims()[2]);
            p[image_id * imInfoDim + 1] = static_cast<float>(inputsInfo[imageInputName]->getTensorDesc().getDims()[3]);
            for (int k = 2; k < imInfoDim; k++) {
                p[image_id * imInfoDim + k] = 1.0f;  // all scale factors are set to 1.0
            }
        }
    }
    // -----------------------------------------------------------------------------------------------------
    
    // ---------------------------- 7. Do inference --------------------------------------------------------
    slog::info << "Start inference (" << FLAGS_ni << " iterations)" << slog::endl;
    
    typedef std::chrono::high_resolution_clock Time;
    typedef std::chrono::duration<double, std::ratio<1, 1000>> ms;
    typedef std::chrono::duration<float> fsec;
    
    double total = 0.0;
    /** Start inference & calc performance **/
    for (int iter = 0; iter < FLAGS_ni; ++iter) {
        auto t0 = Time::now();
        infer_request.Infer();
        auto t1 = Time::now();
        fsec fs = t1 - t0;
        ms d = std::chrono::duration_cast<ms>(fs);
        total += d.count();
    }
    // -----------------------------------------------------------------------------------------------------
    
    // ---------------------------- 8. Process output ------------------------------------------------------
    slog::info << "Processing output blobs" << slog::endl;
    
    Blob::Ptr bbox_output_blob = infer_request.GetBlob(FLAGS_bbox_name);
    Blob::Ptr prob_output_blob = infer_request.GetBlob(FLAGS_prob_name);
    Blob::Ptr rois_output_blob = infer_request.GetBlob(FLAGS_proposal_name);
    
    std::vector<Blob::Ptr> detOutInBlobs = { bbox_output_blob, prob_output_blob, rois_output_blob };
    
    Blob::Ptr output_blob = std::make_shared<TBlob<float>>(Precision::FP32, Layout::NCHW, detectionOutLayerOutDims);
    output_blob->allocate();
    std::vector<Blob::Ptr> detOutOutBlobs = { output_blob };
    
    detOutPostProcessor.execute(detOutInBlobs, detOutOutBlobs, nullptr);
    
    const float* detection = static_cast<PrecisionTrait<Precision::FP32>::value_type*>(output_blob->buffer());
    
    std::vector<std::vector<int> > boxes(batchSize);
    std::vector<std::vector<int> > classes(batchSize);
    
    /* Each detection has image_id that denotes processed image */
    for (int curProposal = 0; curProposal < maxProposalCount; curProposal++) {
        float image_id = detection[curProposal * objectSize + 0];
        float label = detection[curProposal * objectSize + 1];
        float confidence = detection[curProposal * objectSize + 2];
        float xmin = detection[curProposal * objectSize + 3] * imageWidths[image_id];
        float ymin = detection[curProposal * objectSize + 4] * imageHeights[image_id];
        float xmax = detection[curProposal * objectSize + 5] * imageWidths[image_id];
        float ymax = detection[curProposal * objectSize + 6] * imageHeights[image_id];
    
        /* MKLDnn and clDNN have little differente in DetectionOutput layer, so we need this check */
        if (image_id < 0 || confidence == 0) {
            continue;
        }
    
        std::cout << "[" << curProposal << "," << label << "] element, prob = " << confidence <<
            "    (" << xmin << "," << ymin << ")-(" << xmax << "," << ymax << ")" << " batch id : " << image_id;
    
        if (confidence > 0.5) {
            /** Drawing only objects with >50% probability **/
            classes[image_id].push_back(static_cast<int>(label));
            boxes[image_id].push_back(static_cast<int>(xmin));
            boxes[image_id].push_back(static_cast<int>(ymin));
            boxes[image_id].push_back(static_cast<int>(xmax - xmin));
            boxes[image_id].push_back(static_cast<int>(ymax - ymin));
            std::cout << " WILL BE PRINTED!";
        }
        std::cout << std::endl;
    }
    
    for (size_t batch_id = 0; batch_id < batchSize; ++batch_id) {
        addRectangles(originalImagesData[batch_id].get(), imageHeights[batch_id], imageWidths[batch_id], boxes[batch_id], classes[batch_id]);
        const std::string image_path = "out_" + std::to_string(batch_id) + ".bmp";
        if (writeOutputBmp(image_path, originalImagesData[batch_id].get(), imageHeights[batch_id], imageWidths[batch_id])) {
            slog::info << "Image " + image_path + " created!" << slog::endl;
        }
        else {
            throw std::logic_error(std::string("Can't create a file: ") + image_path);
        }
    }
    // -----------------------------------------------------------------------------------------------------
    std::cout << std::endl << "total inference time: " << total << std::endl;
    std::cout << "Average running time of one iteration: " << total / static_cast<double>(FLAGS_ni) << " ms" << std::endl;
    std::cout << std::endl << "Throughput: " << 1000 * static_cast<double>(FLAGS_ni) * batchSize / total << " FPS" << std::endl;
    std::cout << std::endl;
    
    /** Show performace results **/
    if (FLAGS_pc) {
        printPerformanceCounts(infer_request, std::cout);
    }
    

    }
    catch (const std::exception& error) {
    slog::err << error.what() << slog::endl;
    return 1;
    }
    catch (...) {
    slog::err << "Unknown/internal exception happened." << slog::endl;
    return 1;
    }

    slog::info << "Execution successful" << slog::endl;
    return 0;
    }

有如下报错:严重性 代码 说明 项目 文件 行 禁止显示状态
错误 LNK2019 无法解析的外部符号 CreateFormatReader,该符号在函数 "public: cdecl FormatReader::ReaderPtr::ReaderPtr(char const *)" (??0ReaderPtr@FormatReader@@QEAA@PEBD@Z) 中被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1

错误(活动) 无法引用 函数 "InferenceEngine::make_so_pointer(const std::string &name) [其中 T=InferenceEngine::IExtension]" (已声明 所在行数:164,所属文件:"c:\Users\颜俊毅\Desktop\dldt-2018\inference-engine\include\details\ie_so_pointer.hpp") -- 它是已删除的函数 88999 c:\Users\颜俊毅\Documents\Visual Studio 2015\Projects\88999\88999\7521.cpp 102
错误 LNK2019 无法解析的外部符号 __imp_CreateDefaultAllocator,该符号在函数 "protected: virtual class std::shared_ptr const & __cdecl InferenceEngine::TBlob >::getAllocator(void)const " (?getAllocator@?$TBlob@HU?$enable_if@$00X@std@@@InferenceEngine@@MEBAAEBV?$shared_ptr@VIAllocator@InferenceEngine@@@std@@XZ) 中被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1

错误 LNK2019 无法解析的外部符号 "
declspec(dllimport) public: cdecl InferenceEngine::BlockingDesc::BlockingDesc(class std::vector > const &,class std::vector > const &)" (imp_??0BlockingDesc@InferenceEngine@@QEAA@AEBV?$vector@_KV?$allocator@_K@std@@@std@@0@Z),该符号在函数 "public: cdecl DetectionOutputPostProcessor::DetectionOutputPostProcessor(class InferenceEngine::CNNLayer const *)" (??0DetectionOutputPostProcessor@@QEAA@PEBVCNNLayer@InferenceEngine@@@Z) 中被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1

错误 LNK2019 无法解析的外部符号 "
declspec(dllimport) public: virtual cdecl InferenceEngine::BlockingDesc::~BlockingDesc(void)" (imp_??1BlockingDesc@InferenceEngine@@UEAA@XZ),该符号在函数 "public: cdecl DetectionOutputPostProcessor::DetectionOutputPostProcessor(class InferenceEngine::CNNLayer const *)" (??0DetectionOutputPostProcessor@@QEAA@PEBVCNNLayer@InferenceEngine@@@Z) 中被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1

错误 LNK2019 无法解析的外部符号 "
declspec(dllimport) public: cdecl InferenceEngine::TensorDesc::TensorDesc(class InferenceEngine::Precision const &,class std::vector >,class InferenceEngine::BlockingDesc const &)" (imp_??0TensorDesc@InferenceEngine@@QEAA@AEBVPrecision@1@V?$vector@_KV?$allocator@_K@std@@@std@@AEBVBlockingDesc@1@@Z),该符号在函数 "public: cdecl DetectionOutputPostProcessor::DetectionOutputPostProcessor(class InferenceEngine::CNNLayer const *)" (??0DetectionOutputPostProcessor@@QEAA@PEBVCNNLayer@InferenceEngine@@@Z) 中被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1

错误 LNK2019 无法解析的外部符号 "
declspec(dllimport) public: cdecl InferenceEngine::TensorDesc::TensorDesc(class InferenceEngine::Precision const &,class std::vector >,enum InferenceEngine::Layout)" (imp_??0TensorDesc@InferenceEngine@@QEAA@AEBVPrecision@1@V?$vector@_KV?$allocator@_K@std@@@std@@W4Layout@1@@Z),该符号在函数 "public: cdecl InferenceEngine::Blob::Blob(class InferenceEngine::Precision,enum InferenceEngine::Layout,class std::vector > const &)" (??0Blob@InferenceEngine@@QEAA@VPrecision@1@W4Layout@1@AEBV?$vector@_KV?$allocator@_K@std@@@std@@@Z) 中被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1

错误 LNK2019 无法解析的外部符号 "
declspec(dllimport) public: virtual cdecl InferenceEngine::TensorDesc::~TensorDesc(void)" (imp_??1TensorDesc@InferenceEngine@@UEAA@XZ),该符号在函数 "public: cdecl InferenceEngine::Blob::Blob(class InferenceEngine::TensorDesc)" (??0Blob@InferenceEngine@@QEAA@VTensorDesc@1@@Z) 中被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1

错误 LNK2019 无法解析的外部符号 "
declspec(dllimport) public: class std::vector > & cdecl InferenceEngine::TensorDesc::getDims(void)" (imp_?getDims@TensorDesc@InferenceEngine@@QEAAAEAV?$vector@_KV?$allocator@_K@std@@@std@@XZ),该符号在函数 "public: virtual void cdecl InferenceEngine::TBlob >::allocate(void)" (?allocate@?$TBlob@HU?$enable_if@$00X@std@@@InferenceEngine@@UEAAXXZ) 中被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1

错误 LNK2019 无法解析的外部符号 "
declspec(dllimport) public: class std::vector > const & cdecl InferenceEngine::TensorDesc::getDims(void)const " (imp_?getDims@TensorDesc@InferenceEngine@@QEBAAEBV?$vector@_KV?$allocator@_K@std@@@std@@XZ),该符号在函数 "public: unsigned int64 __cdecl InferenceEngine::Blob::byteSize(void)const " (?byteSize@Blob@InferenceEngine@@QEBA_KXZ) 中被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1

错误 LNK2019 无法解析的外部符号 "
declspec(dllimport) public: static enum InferenceEngine::Layout cdecl InferenceEngine::TensorDesc::getLayoutByDims(class std::vector >)" (imp_?getLayoutByDims@TensorDesc@InferenceEngine@@SA?AW4Layout@2@V?$vector@_KV?$allocator@_K@std@@@std@@@Z),该符号在函数 main 中被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1

错误 LNK2019 无法解析的外部符号 "__declspec(dllimport) public: cdecl InferenceEngine::TensorDesc::TensorDesc(class InferenceEngine::TensorDesc const &)" (imp_??0TensorDesc@InferenceEngine@@QEAA@AEBV01@@Z),该符号在函数 "public: cdecl InferenceEngine::TBlob >::TBlob >(class InferenceEngine::TensorDesc const &)" (??0?$TBlob@HU?$enable_if@$00X@std@@@InferenceEngine@@QEAA@AEBVTensorDesc@1@@Z) 中被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1

错误 LNK2019 无法解析的外部符号 "
declspec(dllimport) public: cdecl InferenceEngine::Data::Data(class std::basic_string,class std::allocator > const &,class std::vector > const &,class InferenceEngine::Precision,enum InferenceEngine::Layout)" (imp_??0Data@InferenceEngine@@QEAA@AEBV?$basic_string@DU?$char_traits@D@std@@V?$allocator@D@2@@std@@AEBV?$vector@_KV?$allocator@_K@std@@@3@VPrecision@1@W4Layout@1@@Z),该符号在函数 main 中被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1

错误 LNK2019 无法解析的外部符号 "__declspec(dllimport) public: class InferenceEngine::TensorDesc const & cdecl InferenceEngine::Data::getTensorDesc(void)const " (imp_?getTensorDesc@Data@InferenceEngine@@QEBAAEBVTensorDesc@2@XZ),该符号在函数 "public: virtual class std::map,class std::allocator >,class std::vector >,struct std::less,class std::allocator > >,class std::allocator,class std::allocator > const ,class std::vector > > > > cdecl InferenceEngine::CNNNetwork::getInputShapes(void)" (?getInputShapes@CNNNetwork@InferenceEngine@@UEAA?AV?$map@V?$basic_string@DU?$char_traits@D@std@@V?$allocator@D@2@@std@@V?$vector@_KV?$allocator@_K@std@@@2@U?$less@V?$basic_string@DU?$char_traits@D@std@@V?$allocator@D@2@@std@@@2@V?$allocator@U?$pair@$$CBV?$basic_string@DU?$char_traits@D@std@@V?$allocator@D@2@@std@@V?$vector@_KV?$allocator@_K@std@@@2@@std@@@2@@std@@XZ) 中被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1

错误 LNK2019 无法解析的外部符号 "
declspec(dllimport) public: void cdecl InferenceEngine::Data::setPrecision(class InferenceEngine::Precision const &)" (imp_?setPrecision@Data@InferenceEngine@@QEAAXAEBVPrecision@2@@Z),该符号在函数 "public: void cdecl InferenceEngine::InputInfo::setPrecision(class InferenceEngine::Precision)" (?setPrecision@InputInfo@InferenceEngine@@QEAAXVPrecision@2@@Z) 中被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1

错误 LNK2019 无法解析的外部符号 "
declspec(dllimport) public: cdecl InferenceEngine::Data::~Data(void)" (imp_??1Data@InferenceEngine@@QEAA@XZ),该符号在函数 "public: void * __cdecl InferenceEngine::Data::scalar deleting destructor'(unsigned int)" (??_GData@InferenceEngine@@QEAAPEAXI@Z) 中被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1
错误 LNK2019 无法解析的外部符号 __imp_findPlugin,该符号在函数 "public: class InferenceEngine::details::SOPointer<class InferenceEngine::IInferencePlugin,class InferenceEngine::details::SharedObjectLoader> __cdecl InferenceEngine::PluginDispatcher::getSuitablePlugin(enum InferenceEngine::TargetDevice)const " (?getSuitablePlugin@PluginDispatcher@InferenceEngine@@QEBA?AV?$SOPointer@VIInferencePlugin@InferenceEngine@@VSharedObjectLoader@details@2@@details@2@W4TargetDevice@2@@Z) 中被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1
错误 LNK2019 无法解析的外部符号 __imp_GetInferenceEngineVersion,该符号在函数 main 中被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1
错误 LNK2019 无法解析的外部符号 __imp_CreateCNNNetReader,该符号在函数 "public: __cdecl InferenceEngine::CNNNetReader::CNNNetReader(void)" (??0CNNNetReader@InferenceEngine@@QEAA@XZ) 中被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1
错误 LNK2019 无法解析的外部符号 "__declspec(dllimport) public: __cdecl InferenceEngine::Extensions::Cpu::CpuExtensions::CpuExtensions(void)" (__imp_??0CpuExtensions@Cpu@Extensions@InferenceEngine@@QEAA@XZ),该符号在函数 "public: __cdecl std::_Ref_count_obj<class InferenceEngine::Extensions::Cpu::CpuExtensions>::_Ref_count_obj<class InferenceEngine::Extensions::Cpu::CpuExtensions><>(void)" (??$?0$$V@?$_Ref_count_obj@VCpuExtensions@Cpu@Extensions@InferenceEngine@@@std@@QEAA@XZ) 中被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1
错误 LNK2019 无法解析的外部符号 "__declspec(dllimport) public: virtual __cdecl InferenceEngine::Extensions::Cpu::CpuExtensions::~CpuExtensions(void)" (__imp_??1CpuExtensions@Cpu@Extensions@InferenceEngine@@UEAA@XZ),该符号在函数 "public: virtual void * __cdecl InferenceEngine::Extensions::Cpu::CpuExtensions::
scalar deleting destructor'(unsigned int)" (??_GCpuExtensions@Cpu@Extensions@InferenceEngine@@UEAAPEAXI@Z) 中被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1

错误 LNK2001 无法解析的外部符号 "public: virtual void __cdecl InferenceEngine::Extensions::Cpu::CpuExtensions::GetVersion(struct InferenceEngine::Version const * &)const " (?GetVersion@CpuExtensions@Cpu@Extensions@InferenceEngine@@UEBAXAEAPEBUVersion@4@@Z) 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1

错误 LNK2001 无法解析的外部符号 "public: virtual void __cdecl InferenceEngine::Extensions::Cpu::CpuExtensions::Release(void)" (?Release@CpuExtensions@Cpu@Extensions@InferenceEngine@@UEAAXXZ) 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1

错误 LNK2001 无法解析的外部符号 "public: virtual void __cdecl InferenceEngine::Extensions::Cpu::CpuExtensions::SetLogCallback(class InferenceEngine::IErrorListener &)" (?SetLogCallback@CpuExtensions@Cpu@Extensions@InferenceEngine@@UEAAXAEAVIErrorListener@4@@Z) 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1

错误 LNK2001 无法解析的外部符号 "public: virtual void __cdecl InferenceEngine::Extensions::Cpu::CpuExtensions::Unload(void)" (?Unload@CpuExtensions@Cpu@Extensions@InferenceEngine@@UEAAXXZ) 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1

错误 LNK2001 无法解析的外部符号 "public: virtual enum InferenceEngine::StatusCode __cdecl InferenceEngine::Extensions::Cpu::CpuExtensions::getFactoryFor(class InferenceEngine::ILayerImplFactory * &,class InferenceEngine::CNNLayer const *,struct InferenceEngine::ResponseDesc *)" (?getFactoryFor@CpuExtensions@Cpu@Extensions@InferenceEngine@@UEAA?AW4StatusCode@4@AEAPEAVILayerImplFactory@4@PEBVCNNLayer@4@PEAUResponseDesc@4@@Z) 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1

错误 LNK2001 无法解析的外部符号 "public: virtual enum InferenceEngine::StatusCode __cdecl InferenceEngine::Extensions::Cpu::CpuExtensions::getPrimitiveTypes(char * * &,unsigned int &,struct InferenceEngine::ResponseDesc *)" (?getPrimitiveTypes@CpuExtensions@Cpu@Extensions@InferenceEngine@@UEAA?AW4StatusCode@4@AEAPEAPEADAEAIPEAUResponseDesc@4@@Z) 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1

错误 LNK2001 无法解析的外部符号 "public: virtual enum InferenceEngine::StatusCode __cdecl InferenceEngine::Extensions::Cpu::CpuExtensions::getShapeInferImpl(class std::shared_ptr &,char const *,struct InferenceEngine::ResponseDesc *)" (?getShapeInferImpl@CpuExtensions@Cpu@Extensions@InferenceEngine@@UEAA?AW4StatusCode@4@AEAV?$shared_ptr@VIShapeInferImpl@InferenceEngine@@@std@@PEBDPEAUResponseDesc@4@@Z) 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1

错误 LNK1120 27 个无法解析的外部命令 88999 c:\users\颜俊毅\documents\visual studio 2015\Projects\88999\x64\Debug\88999.exe 1

yuzying
yuzying 我也遇到这个问题,你解决了吗?
12 个月之前 回复

1个回答

Csdn user default icon
上传中...
上传图片
插入图片
抄袭、复制答案,以达到刷声望分或其他目的的行为,在CSDN问答是严格禁止的,一经发现立刻封号。是时候展现真正的技术了!
立即提问