零零乙 2012-04-26 13:41 采纳率: 33.3%
浏览 245
已采纳

比较浮点值有多危险?

I know UIKit uses CGFloat because of the resolution independent coordinate system.

But every time I want to check if for example frame.origin.x is 0 it makes me feel sick:

if (theView.frame.origin.x == 0) {
    // do important operation
}

Isn't CGFloat vulnerable to false positives when comparing with ==, <=, >=, <, >? It is a floating point and they have unprecision problems: 0.0000000000041 for example.

Is Objective-C handling this internally when comparing or can it happen that a origin.x which reads as zero does not compare to 0 as true?

转载于:https://stackoverflow.com/questions/10334688/how-dangerous-is-it-to-compare-floating-point-values

  • 写回答

9条回答 默认 最新

  • ℡Wang Yan 2012-04-26 14:33
    关注

    First of all, floating point values are not "random" in their behavior. Exact comparison can and does make sense in plenty of real-world usages. But if you're going to use floating point you need to be aware of how it works. Erring on the side of assuming floating point works like real numbers will get you code that quickly breaks. Erring on the side of assuming floating point results have large random fuzz associated with them (like most of the answers here suggest) will get you code that appears to work at first but ends up having large-magnitude errors and broken corner cases.

    First of all, if you want to program with floating point, you should read this:

    What Every Computer Scientist Should Know About Floating-Point Arithmetic

    Yes, read all of it. If that's too much of a burden, you should use integers/fixed point for your calculations until you have time to read it. :-)

    Now, with that said, the biggest issues with exact floating point comparisons come down to:

    1. The fact that lots of values you may write in the source, or read in with scanf or strtod, do not exist as floating point values and get silently converted to the nearest approximation. This is what demon9733's answer was talking about.

    2. The fact that many results get rounded due to not having enough precision to represent the actual result. An easy example where you can see this is adding x = 0x1fffffe and y = 1 as floats. Here, x has 24 bits of precision in the mantissa (ok) and y has just 1 bit, but when you add them, their bits are not in overlapping places, and the result would need 25 bits of precision. Instead, it gets rounded (to 0x2000000 in the default rounding mode).

    3. The fact that many results get rounded due to needing infinitely many places for the correct value. This includes both rational results like 1/3 (which you're familiar with from decimal where it takes infinitely many places) but also 1/10 (which also takes infinitely many places in binary, since 5 is not a power of 2), as well as irrational results like the square root of anything that's not a perfect square.

    4. Double rounding. On some systems (particularly x86), floating point expressions are evaluated in higher precision than their nominal types. This means that when one of the above types of rounding happens, you'll get two rounding steps, first a rounding of the result to the higher-precision type, then a rounding to the final type. As an example, consider what happens in decimal if you round 1.49 to an integer (1), versus what happens if you first round it to one decimal place (1.5) then round that result to an integer (2). This is actually one of the nastiest areas to deal with in floating point, since the behaviour of the compiler (especially for buggy, non-conforming compilers like GCC) is unpredictable.

    5. Transcendental functions (trig, exp, log, etc.) are not specified to have correctly rounded results; the result is just specified to be correct within one unit in the last place of precision (usually referred to as 1ulp).

    When you're writing floating point code, you need to keep in mind what you're doing with the numbers that could cause the results to be inexact, and make comparisons accordingly. Often times it will make sense to compare with an "epsilon", but that epsilon should be based on the magnitude of the numbers you are comparing, not an absolute constant. (In cases where an absolute constant epsilon would work, that's strongly indicative that fixed point, not floating point, is the right tool for the job!)

    Edit: In particular, a magnitude-relative epsilon check should look something like:

    if (fabs(x-y) < K * FLT_EPSILON * fabs(x+y))
    

    Where FLT_EPSILON is the constant from float.h (replace it with DBL_EPSILON fordoubles or LDBL_EPSILON for long doubles) and K is a constant you choose such that the accumulated error of your computations is definitely bounded by K units in the last place (and if you're not sure you got the error bound calculation right, make K a few times bigger than what your calculations say it should be).

    Finally, note that if you use this, some special care may be needed near zero, since FLT_EPSILON does not make sense for denormals. A quick fix would be to make it:

    if (fabs(x-y) < K * FLT_EPSILON * fabs(x+y) || fabs(x-y) < FLT_MIN)
    

    and likewise substitute DBL_MIN if using doubles.

    本回答被题主选为最佳回答 , 对您是否有帮助呢?
    评论
查看更多回答(8条)

报告相同问题?

悬赏问题

  • ¥15 用verilog实现tanh函数和softplus函数
  • ¥15 求京东批量付款能替代天诚
  • ¥15 slaris 系统断电后,重新开机后一直自动重启
  • ¥15 51寻迹小车定点寻迹
  • ¥15 谁能帮我看看这拒稿理由啥意思啊阿啊
  • ¥15 关于vue2中methods使用call修改this指向的问题
  • ¥15 idea自动补全键位冲突
  • ¥15 请教一下写代码,代码好难
  • ¥15 iis10中如何阻止别人网站重定向到我的网站
  • ¥15 滑块验证码移动速度不一致问题