深度学习图片识别循环停止?

最近在跑深度学习的inceptionV3的时候偶尔会遇到一问题,就是代码在运行到某个时间点时,就停止迭代运算,不知道为什么?

图片说明
上面图是个例子,假设运行到291的step的时候停止了,不在继续运算,但是CPU和GPU是满载的。

下面是代码:

 # coding=utf-8
import tensorflow as tf
import numpy as np
import pdb
import os
from datetime import datetime
import slim.inception_model as inception_v3
from create_tf_record import *
import tensorflow.contrib.slim as slim


labels_nums = 7  # 类别个数
batch_size = 64  #
resize_height = 299  # 指定SSS存储图片高度
resize_width = 299  # 指定存储图片宽度
depths = 3
data_shape = [batch_size, resize_height, resize_width, depths]

# 定义input_images为图片数据
input_images = tf.placeholder(dtype=tf.float32, shape=[None, resize_height, resize_width, depths], name='input')
# 定义input_labels为labels数据
# input_labels = tf.placeholder(dtype=tf.int32, shape=[None], name='label')
input_labels = tf.placeholder(dtype=tf.int32, shape=[None, labels_nums], name='label')

# 定义dropout的概率
keep_prob = tf.placeholder(tf.float32, name='keep_prob')
is_training = tf.placeholder(tf.bool, name='is_training')

#config = tf.ConfigProto()
#config = tf.ConfigProto()
#config.gpu_options.allow_growth = True
#tf.Session(config = config)
#tf.Session(config=tf.ConfigProto(allow_growth=True))

def net_evaluation(sess, loss, accuracy, val_images_batch, val_labels_batch, val_nums):
    val_max_steps = int(val_nums / batch_size)
    val_losses = []
    val_accs = []
    for _ in range(val_max_steps):
        val_x, val_y = sess.run([val_images_batch, val_labels_batch])
        # print('labels:',val_y)
        # val_loss = sess.run(loss, feed_dict={x: val_x, y: val_y, keep_prob: 1.0})
        # val_acc = sess.run(accuracy,feed_dict={x: val_x, y: val_y, keep_prob: 1.0})
        val_loss, val_acc = sess.run([loss, accuracy],
                                     feed_dict={input_images: val_x, input_labels: val_y, keep_prob: 1.0,
                                                is_training: False})
        val_losses.append(val_loss)
        val_accs.append(val_acc)
    mean_loss = np.array(val_losses, dtype=np.float32).mean()
    mean_acc = np.array(val_accs, dtype=np.float32).mean()
    return mean_loss, mean_acc


def step_train(train_op, loss, accuracy,
               train_images_batch, train_labels_batch, train_nums, train_log_step,
               val_images_batch, val_labels_batch, val_nums, val_log_step,
               snapshot_prefix, snapshot):
    '''
    循环迭代训练过程
    :param train_op: 训练op
    :param loss:     loss函数
    :param accuracy: 准确率函数
    :param train_images_batch: 训练images数据
    :param train_labels_batch: 训练labels数据
    :param train_nums:         总训练数据
    :param train_log_step:   训练log显示间隔
    :param val_images_batch: 验证images数据
    :param val_labels_batch: 验证labels数据
    :param val_nums:         总验证数据
    :param val_log_step:     验证log显示间隔
    :param snapshot_prefix: 模型保存的路径
    :param snapshot:        模型保存间隔
    :return: None
    '''
    # 初始化
    #init = tf.global_variables_initializer()
    saver = tf.train.Saver()
    max_acc = 0.0
    #ckpt = tf.train.get_checkpoint_state('D:/can_test/inception v3/')
    #saver = tf.train.import_meta_graph(ckpt.model_checkpoint_path + '.meta')
    #tf.reset_default_graph()
    with tf.Session() as sess:
        #sess.run(tf.global_variables_initializer())#恢复训练用
        #saver = tf.train.import_meta_graph('D://can_test/inception v3/best_models_2_0.7500.ckpt.meta')#恢复训练
        #saver.restore(sess, tf.train.latest_checkpoint('D://can_test/inception v3/'))#恢复训练
        sess.run(tf.global_variables_initializer())
        sess.run(tf.local_variables_initializer())
        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(sess=sess, coord=coord)
        for i in range(max_steps + 1):
            batch_input_images, batch_input_labels = sess.run([train_images_batch, train_labels_batch])
            _, train_loss = sess.run([train_op, loss], feed_dict={input_images: batch_input_images,
                                                                  input_labels: batch_input_labels,
                                                                  keep_prob: 0.5, is_training: True})
            # train测试(这里仅测试训练集的一个batch)
            if i % train_log_step == 0:
                train_acc = sess.run(accuracy, feed_dict={input_images: batch_input_images,
                                                          input_labels: batch_input_labels,
                                                          keep_prob: 1.0, is_training: False})
                print(
                "%s: Step [%d]  train Loss : %f, training accuracy :  %g" % (
                    datetime.now(), i, train_loss, train_acc)
                )
            # val测试(测试全部val数据)
            if i % val_log_step == 0:
                mean_loss, mean_acc = net_evaluation(sess, loss, accuracy, val_images_batch, val_labels_batch, val_nums)
                print(
                "%s: Step [%d]  val Loss : %f, val accuracy :  %g" % (datetime.now(), i, mean_loss, mean_acc)
                )
            # 模型保存:每迭代snapshot次或者最后一次保存模型
            if  i == max_steps:
                print('-----save:{}-{}'.format(snapshot_prefix, i))
                saver.save(sess, snapshot_prefix, global_step=i)
            # 保存val准确率最高的模型
            if mean_acc > max_acc and mean_acc > 0.90:
                max_acc = mean_acc
                path = os.path.dirname(snapshot_prefix)
                best_models = os.path.join(path, 'best_models_{}_{:.4f}.ckpt'.format(i, max_acc))
                print('------save:{}'.format(best_models))
                saver.save(sess, best_models)

        coord.request_stop()
        coord.join(threads)


def train(train_record_file,
          train_log_step,
          train_param,
          val_record_file,
          val_log_step,
          labels_nums,
          data_shape,
          snapshot,
          snapshot_prefix):
    '''
    :param train_record_file: 训练的tfrecord文件
    :param train_log_step: 显示训练过程log信息间隔
    :param train_param: train参数
    :param val_record_file: 验证的tfrecord文件
    :param val_log_step: 显示验证过程log信息间隔
    :param val_param: val参数
    :param labels_nums: labels数
    :param data_shape: 输入数据shape
    :param snapshot: 保存模型间隔
    :param snapshot_prefix: 保存模型文件的前缀名
    :return:
    '''
    [base_lr, max_steps] = train_param
    [batch_size, resize_height, resize_width, depths] = data_shape

    # 获得训练和测试的样本数
    train_nums = get_example_nums(train_record_file)
    val_nums = get_example_nums(val_record_file)
    print('train nums:%d,val nums:%d' % (train_nums, val_nums))

    # 从record中读取图片和labels数据
    # train数据,训练数据一般要求打乱顺序shuffle=True
    train_images, train_labels = read_records(train_record_file, resize_height, resize_width, type='normalization')
    train_images_batch, train_labels_batch = get_batch_images(train_images, train_labels,
                                                              batch_size=batch_size, labels_nums=labels_nums,
                                                              one_hot=True, shuffle=True)
    # val数据,验证数据可以不需要打乱数据
    val_images, val_labels = read_records(val_record_file, resize_height, resize_width, type='normalization')
    val_images_batch, val_labels_batch = get_batch_images(val_images, val_labels,
                                                          batch_size=batch_size, labels_nums=labels_nums,
                                                          one_hot=True, shuffle=False)

    # Define the model:
    with slim.arg_scope(inception_v3.inception_v3_arg_scope()):
        out, end_points = inception_v3.inception_v3(inputs=input_images, num_classes=labels_nums,
                                                    dropout_keep_prob=keep_prob, is_training=is_training)

    # Specify the loss function: tf.losses定义的loss函数都会自动添加到loss函数,不需要add_loss()了
    tf.losses.softmax_cross_entropy(onehot_labels=input_labels, logits=out)  # 添加交叉熵损失loss=1.6
    # slim.losses.add_loss(my_loss)
    loss = tf.losses.get_total_loss(add_regularization_losses=True)  # 添加正则化损失loss=2.2
    accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(out, 1), tf.argmax(input_labels, 1)), tf.float32))

    # Specify the optimization scheme:
    optimizer = tf.train.GradientDescentOptimizer(learning_rate=base_lr)

    # global_step = tf.Variable(0, trainable=False)
    # learning_rate = tf.train.exponential_decay(0.05, global_step, 150, 0.9)
    #
    # optimizer = tf.train.MomentumOptimizer(learning_rate, 0.9)
    # # train_tensor = optimizer.minimize(loss, global_step)
    # train_op = slim.learning.create_train_op(loss, optimizer,global_step=global_step)


    # 在定义训练的时候, 注意到我们使用了`batch_norm`层时,需要更新每一层的`average`和`variance`参数,
    # 更新的过程不包含在正常的训练过程中, 需要我们去手动像下面这样更新
    # 通过`tf.get_collection`获得所有需要更新的`op`
    update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
    # 使用`tensorflow`的控制流, 先执行更新算子, 再执行训练
    with tf.control_dependencies(update_ops):
        # create_train_op that ensures that when we evaluate it to get the loss,
        # the update_ops are done and the gradient updates are computed.
        # train_op = slim.learning.create_train_op(total_loss=loss,optimizer=optimizer)
        train_op = slim.learning.create_train_op(total_loss=loss, optimizer=optimizer)

    # 循环迭代过程
    step_train(train_op, loss, accuracy,
               train_images_batch, train_labels_batch, train_nums, train_log_step,
               val_images_batch, val_labels_batch, val_nums, val_log_step,
               snapshot_prefix, snapshot)


if __name__ == '__main__':
    train_record_file = '/home/lab/new_jeremie/train.tfrecords'
    val_record_file = '/home/lab/new_jeremie/val.tfrecords'
    #train_record_file = 'D://cancer_v2/data/cancer/train.tfrecords'
    #val_record_file = 'D://val.tfrecords'
    train_log_step = 1
    base_lr = 0.01  # 学习率
    max_steps = 100000  # 迭代次数
    train_param = [base_lr, max_steps]

    val_log_step = 1
    snapshot = 2000  # 保存文件间隔
    snapshot_prefix = './v3model.ckpt'
    train(train_record_file=train_record_file,
          train_log_step=train_log_step,
          train_param=train_param,
          val_record_file=val_record_file,
          val_log_step=val_log_step,
          #val_log_step=val_log_step,
          labels_nums=labels_nums,
          data_shape=data_shape,
          snapshot=snapshot,
          snapshot_prefix=snapshot_prefix)

1个回答

没看到程序不好说。是随机停止还是不确定,是否gpu出现故障,导致挂起。或者你程序里有early stop的逻辑,loss不再下降以后,就会停止程序。

qq_35292447
jeremie_SYSU 代码我更新了
大约一年之前 回复
Csdn user default icon
上传中...
上传图片
插入图片
抄袭、复制答案,以达到刷声望分或其他目的的行为,在CSDN问答是严格禁止的,一经发现立刻封号。是时候展现真正的技术了!
其他相关推荐
基于深度学习的人脸识别
求助:在基于深度学习的人脸识别系统开发过程中,在完成利用kinect设备以及一系列点云配准等操作后的三维人脸重建后,要如何利用深度学习进行特征提取,从而实现人脸识别呢?懵。。。
基于深度学习的行人重识别在测试时度量损失还需要吗?
基于深度学习的行人重识别在训练时加入度量学习目的是增大类间间距,减小类内间距。那么在测试的时候还用度量损失吗?我看代码都是直接把待检图像和图像库提取特征,然后用一个距离函数对特征进行排序。那度量学习具体在测试中具体是怎么起作用的?求解答!!!!谢谢了!
深度学习视频识别数据集制作(需源码)
1)目前在做一个视频识别功能,需要自己制作数据集,目前我没有找到迭代制作视频数据集的深度学习模型(需要有源码) 希望大家可以给我推荐一个有开源代码的模型。需要附源码。 2)我现在做的是SSD模型,如果有SSD模型使用自己的视频数据集做预测(附源码)是最好的!
深度学习的人体目标识别跟踪
要做一个使用深度学习来实现人体目标识别跟踪的毕业设计,本人菜鸟一枚,不知如何下手,就是用faster rcnn 的demo 实现分类以后该怎么应用到视频里呢实现跟踪呢求大神指教
深度学习使用DBN或者CNN识别ORL人脸库
matlab语言最好,本学期的课程设计,意在比较BP与深度学习人脸识别的区别, 但是本人matlab基础较差,只是编写出来了BP人脸识别,对深度学习实在无能为力, 求大神帮助编写或分享一下一下使用DBN或CNN识别ORL的程序,感激不尽
深度学习训练过程,学习率设置低,训练准确率就高
图像识别过程,使用深度学习算法,训练阶段,将学习率设置的越低,训练准确率增长的越快。当然,也越容易过拟合。搞不懂其中的原因,为什么低学习率会使训练准确率增长的迅速?
新人 人脸识别 python opencv.深度学习 有一些概念性问题 求助一下
刚开始接触学习 人脸识别 网上教程有点多和乱。。看了很多东西。 我总结为下面3个问题。 1.pyyhon的cnn卷积神经网络可以直接做人脸识别? 2.python for opencv 可以直接做出人脸识别? 3 python opencv+深度学习cnn 来做出人脸识别。? 根据百度词条 opencv是一个机器视觉库 看了很多文章他里面应该是有传统的识别haar和llbp特征识别出人脸的 而cnn神经网络算法是和opencv中传统算法所不一样的 是一个深度学习的强化 更好的做人脸识别。 我对上述内容怎么说就是比较懵逼啦。。希望有朋友能帮我梳理出几个学习的框架。我好去学习 另外我现在是想在windows上学习。后期想加在树莓派上的linux系统。 谢谢大家!刚开始用csdn....学生党没有钱了 不好意思各位。。
求一套3w左右的深度学习工作站,可拓展性要高一点
如题,想配一套深度学习工作站,有没有大佬帮忙配下啊,要可拓展性高一点 谢谢!
深度学习下医学图像配准的应用文献。
有没有哪一位大神有深度学习下医学图像配准的应用文献呢?我找了好久都找不到,可以的话麻烦发一下,qq:2264402593。感谢!!!!!
jupyternotebook深度学习和spyder warning问题
1.想问一下大家,在用jupyternotebook做深度学习的模型训练时,为什么显示不了预计运行时间? 2.在用spyder做深度学习模型训练时,出现了以下warning: ![图片说明](https://img-ask.csdn.net/upload/201909/08/1567939370_553504.png)
关于深度学习现实问题的可行性
本人土木研究生,最近在研究混凝土氯离子渗透深度的问题,我能不能将不同混凝土的图片输入进去,分别给他们不同的渗透深度,其他我都不给,经过训练后能通过图片来的出氯离子渗透深度。仅从深度学习的角度可行吗?需要样本量多吗
django服务器部署深度学习模型
想把训练好的深度学习模型部署到服务器上,但是因为加载模型的时候速度较慢,所以web工程启动时就直接加载模型,通过请求URL接口去进行目标检测,考虑到多并发问题,无法同时处理多个请求,看看大神们都什么好的办法呢?
如何利用深度学习对不同网页实现分类
最近最用深度学习做一个网页分类任务,求大牛指点,最好详细一点,我是一个 刚刚入坑的小白
图像分类问题中正负样本如何分类
假设我们要处理图像分类问题,假设batch_size=16,num_class=10,那么进行on e-hot编码之后的label为[16,10]的张量,而经过model后的output也应该为[16,10],假如我现在要获得正样本,负样本,应该如何用代码去实现。 目的是为了使用torch.nn.TripletMarginLoss,其要求输入正样本和负样本: ![图片说明](https://img-ask.csdn.net/upload/202001/23/1579792513_725120.png)
用仿真数据来训练深度学习网络?
各位老师您好,我想使用神经网络的方法来实现轴承故障诊断。 但是目前没有这类轴承信号,而且获取也比较困难。 我可以用动力学模型来得到仿真数据。用仿真数据训练神经网络,这种方法可以 使用吗? 注:迁移学习可以解决这类问题吗?
如何采用深度学习进行工地安全帽佩戴的行为检测
目前安全帽检测都是分两步进行的,从视频流中提取图片后先采用ssd或者yolo检测出人,然后提取出头部信息,进行一个精确的检测。 请问大神们是如何从人的检测框中确定头部位置的(工地作业时工人并不是一直都是站立的),以及采用何种算法检测头部信息的。由于摄像头较远,有些检测尺度很小,检测头部信息时如何提高准确率呢?由于检测实时性的要求,如何提高检测速度呢?
《深度学习技术图像处理入门》中第二章损失函数求偏导的问题
![图片说明](https://img-ask.csdn.net/upload/201911/19/1574143018_985789.jpg) # **为什么求完偏导1/N消失了?** ## ## **还有在这之前的一页中,这种表达是什么意思?** ![图片说明](https://img-ask.csdn.net/upload/201911/19/1574143145_67119.jpg)
blastn跑完后的结果的那一串数字、字母都代表什么。
blastn跑完后的结果的那一串数字、字母都代表什么? (已查过百度,但是出来的都是执行blastn时那些代码dai'biao's'm
深度学习 人脸检测c++实现
深度学习算法c++实现代码,能准确检测人脸即可,手光照等的影响尽可能减少,不需要实现识别
Java学习的正确打开方式
在博主认为,对于入门级学习java的最佳学习方法莫过于视频+博客+书籍+总结,前三者博主将淋漓尽致地挥毫于这篇博客文章中,至于总结在于个人,实际上越到后面你会发现学习的最好方式就是阅读参考官方文档其次就是国内的书籍,博客次之,这又是一个层次了,这里暂时不提后面再谈。博主将为各位入门java保驾护航,各位只管冲鸭!!!上天是公平的,只要不辜负时间,时间自然不会辜负你。 何谓学习?博主所理解的学习,它是一个过程,是一个不断累积、不断沉淀、不断总结、善于传达自己的个人见解以及乐于分享的过程。
程序员必须掌握的核心算法有哪些?
由于我之前一直强调数据结构以及算法学习的重要性,所以就有一些读者经常问我,数据结构与算法应该要学习到哪个程度呢?,说实话,这个问题我不知道要怎么回答你,主要取决于你想学习到哪些程度,不过针对这个问题,我稍微总结一下我学过的算法知识点,以及我觉得值得学习的算法。这些算法与数据结构的学习大多数是零散的,并没有一本把他们全部覆盖的书籍。下面是我觉得值得学习的一些算法以及数据结构,当然,我也会整理一些看过...
大学四年自学走来,这些私藏的实用工具/学习网站我贡献出来了
大学四年,看课本是不可能一直看课本的了,对于学习,特别是自学,善于搜索网上的一些资源来辅助,还是非常有必要的,下面我就把这几年私藏的各种资源,网站贡献出来给你们。主要有:电子书搜索、实用工具、在线视频学习网站、非视频学习网站、软件下载、面试/求职必备网站。 注意:文中提到的所有资源,文末我都给你整理好了,你们只管拿去,如果觉得不错,转发、分享就是最大的支持了。 一、电子书搜索 对于大部分程序员...
linux系列之常用运维命令整理笔录
本博客记录工作中需要的linux运维命令,大学时候开始接触linux,会一些基本操作,可是都没有整理起来,加上是做开发,不做运维,有些命令忘记了,所以现在整理成博客,当然vi,文件操作等就不介绍了,慢慢积累一些其它拓展的命令,博客不定时更新 free -m 其中:m表示兆,也可以用g,注意都要小写 Men:表示物理内存统计 total:表示物理内存总数(total=used+free) use...
比特币原理详解
一、什么是比特币 比特币是一种电子货币,是一种基于密码学的货币,在2008年11月1日由中本聪发表比特币白皮书,文中提出了一种去中心化的电子记账系统,我们平时的电子现金是银行来记账,因为银行的背后是国家信用。去中心化电子记账系统是参与者共同记账。比特币可以防止主权危机、信用风险。其好处不多做赘述,这一层面介绍的文章很多,本文主要从更深层的技术原理角度进行介绍。 二、问题引入 假设现有4个人...
程序员接私活怎样防止做完了不给钱?
首先跟大家说明一点,我们做 IT 类的外包开发,是非标品开发,所以很有可能在开发过程中会有这样那样的需求修改,而这种需求修改很容易造成扯皮,进而影响到费用支付,甚至出现做完了项目收不到钱的情况。 那么,怎么保证自己的薪酬安全呢? 我们在开工前,一定要做好一些证据方面的准备(也就是“讨薪”的理论依据),这其中最重要的就是需求文档和验收标准。一定要让需求方提供这两个文档资料作为开发的基础。之后开发...
网页实现一个简单的音乐播放器(大佬别看。(⊙﹏⊙))
今天闲着无事,就想写点东西。然后听了下歌,就打算写个播放器。 于是乎用h5 audio的加上js简单的播放器完工了。 演示地点演示 html代码如下` music 这个年纪 七月的风 音乐 ` 然后就是css`*{ margin: 0; padding: 0; text-decoration: none; list-...
Python十大装B语法
Python 是一种代表简单思想的语言,其语法相对简单,很容易上手。不过,如果就此小视 Python 语法的精妙和深邃,那就大错特错了。本文精心筛选了最能展现 Python 语法之精妙的十个知识点,并附上详细的实例代码。如能在实战中融会贯通、灵活使用,必将使代码更为精炼、高效,同时也会极大提升代码B格,使之看上去更老练,读起来更优雅。
数据库优化 - SQL优化
以实际SQL入手,带你一步一步走上SQL优化之路!
2019年11月中国大陆编程语言排行榜
2019年11月2日,我统计了某招聘网站,获得有效程序员招聘数据9万条。针对招聘信息,提取编程语言关键字,并统计如下: 编程语言比例 rank pl_ percentage 1 java 33.62% 2 cpp 16.42% 3 c_sharp 12.82% 4 javascript 12.31% 5 python 7.93% 6 go 7.25% 7 p...
通俗易懂地给女朋友讲:线程池的内部原理
餐盘在灯光的照耀下格外晶莹洁白,女朋友拿起红酒杯轻轻地抿了一小口,对我说:“经常听你说线程池,到底线程池到底是个什么原理?”
《奇巧淫技》系列-python!!每天早上八点自动发送天气预报邮件到QQ邮箱
将代码部署服务器,每日早上定时获取到天气数据,并发送到邮箱。 也可以说是一个小型人工智障。 知识可以运用在不同地方,不一定非是天气预报。
经典算法(5)杨辉三角
杨辉三角 是经典算法,这篇博客对它的算法思想进行了讲解,并有完整的代码实现。
英特尔不为人知的 B 面
从 PC 时代至今,众人只知在 CPU、GPU、XPU、制程、工艺等战场中,英特尔在与同行硬件芯片制造商们的竞争中杀出重围,且在不断的成长进化中,成为全球知名的半导体公司。殊不知,在「刚硬」的背后,英特尔「柔性」的软件早已经做到了全方位的支持与支撑,并持续发挥独特的生态价值,推动产业合作共赢。 而对于这一不知人知的 B 面,很多人将其称之为英特尔隐形的翅膀,虽低调,但是影响力却不容小觑。 那么,在...
腾讯算法面试题:64匹马8个跑道需要多少轮才能选出最快的四匹?
昨天,有网友私信我,说去阿里面试,彻底的被打击到了。问了为什么网上大量使用ThreadLocal的源码都会加上private static?他被难住了,因为他从来都没有考虑过这个问题。无独有偶,今天笔者又发现有网友吐槽了一道腾讯的面试题,我们一起来看看。 腾讯算法面试题:64匹马8个跑道需要多少轮才能选出最快的四匹? 在互联网职场论坛,一名程序员发帖求助到。二面腾讯,其中一个算法题:64匹...
面试官:你连RESTful都不知道我怎么敢要你?
干货,2019 RESTful最贱实践
刷了几千道算法题,这些我私藏的刷题网站都在这里了!
遥想当年,机缘巧合入了 ACM 的坑,周边巨擘林立,从此过上了"天天被虐似死狗"的生活… 然而我是谁,我可是死狗中的战斗鸡,智力不够那刷题来凑,开始了夜以继日哼哧哼哧刷题的日子,从此"读题与提交齐飞, AC 与 WA 一色 ",我惊喜的发现被题虐既刺激又有快感,那一刻我泪流满面。这么好的事儿作为一个正直的人绝不能自己独享,经过激烈的颅内斗争,我决定把我私藏的十几个 T 的,阿不,十几个刷题网...
为啥国人偏爱Mybatis,而老外喜欢Hibernate/JPA呢?
关于SQL和ORM的争论,永远都不会终止,我也一直在思考这个问题。昨天又跟群里的小伙伴进行了一番讨论,感触还是有一些,于是就有了今天这篇文。 声明:本文不会下关于Mybatis和JPA两个持久层框架哪个更好这样的结论。只是摆事实,讲道理,所以,请各位看官勿喷。 一、事件起因 关于Mybatis和JPA孰优孰劣的问题,争论已经很多年了。一直也没有结论,毕竟每个人的喜好和习惯是大不相同的。我也看...
白话阿里巴巴Java开发手册高级篇
不久前,阿里巴巴发布了《阿里巴巴Java开发手册》,总结了阿里巴巴内部实际项目开发过程中开发人员应该遵守的研发流程规范,这些流程规范在一定程度上能够保证最终的项目交付质量,通过在时间中总结模式,并推广给广大开发人员,来避免研发人员在实践中容易犯的错误,确保最终在大规模协作的项目中达成既定目标。 无独有偶,笔者去年在公司里负责升级和制定研发流程、设计模板、设计标准、代码标准等规范,并在实际工作中进行...
SQL-小白最佳入门sql查询一
不要偷偷的查询我的个人资料,即使你再喜欢我,也不要这样,真的不好;
项目中的if else太多了,该怎么重构?
介绍 最近跟着公司的大佬开发了一款IM系统,类似QQ和微信哈,就是聊天软件。我们有一部分业务逻辑是这样的 if (msgType = "文本") { // dosomething } else if(msgType = "图片") { // doshomething } else if(msgType = "视频") { // doshomething } else { // doshom...
Nginx 原理和架构
Nginx 是一个免费的,开源的,高性能的 HTTP 服务器和反向代理,以及 IMAP / POP3 代理服务器。Nginx 以其高性能,稳定性,丰富的功能,简单的配置和低资源消耗而闻名。 Nginx 的整体架构 Nginx 里有一个 master 进程和多个 worker 进程。master 进程并不处理网络请求,主要负责调度工作进程:加载配置、启动工作进程及非停升级。worker 进程负责处...
【图解经典算法题】如何用一行代码解决约瑟夫环问题
约瑟夫环问题算是很经典的题了,估计大家都听说过,然后我就在一次笔试中遇到了,下面我就用 3 种方法来详细讲解一下这道题,最后一种方法学了之后保证让你可以让你装逼。 问题描述:编号为 1-N 的 N 个士兵围坐在一起形成一个圆圈,从编号为 1 的士兵开始依次报数(1,2,3…这样依次报),数到 m 的 士兵会被杀死出列,之后的士兵再从 1 开始报数。直到最后剩下一士兵,求这个士兵的编号。 1、方...
吐血推荐珍藏的Visual Studio Code插件
作为一名Java工程师,由于工作需要,最近一个月一直在写NodeJS,这种经历可以说是一部辛酸史了。好在有神器Visual Studio Code陪伴,让我的这段经历没有更加困难。眼看这段经历要告一段落了,今天就来给大家分享一下我常用的一些VSC的插件。 VSC的插件安装方法很简单,只需要点击左侧最下方的插件栏选项,然后就可以搜索你想要的插件了。 下面我们进入正题 Material Theme ...
如何防止抄袭PCB电路板
目录 1、抄板是什么 2、抄板是否属于侵权 3、如何防止抄板 1、抄板是什么 抄板也叫克隆或仿制,是对设计出来的PCB板进行反向技术研究;目前全新的定义:从狭义上来说,抄板仅指对电子产品电路板PCB文件的提取还原和利用文件进行电路板克隆的过程;从广义上来说,抄板不仅包括对电路板文件提取、电路板克隆、电路板仿制等技术过程,而且包括对电路板文件进行修改(即改板)、对电子产品外形模具进行三维...
“狗屁不通文章生成器”登顶GitHub热榜,分分钟写出万字形式主义大作
一、垃圾文字生成器介绍 最近在浏览GitHub的时候,发现了这样一个骨骼清奇的雷人项目,而且热度还特别高。 项目中文名:狗屁不通文章生成器 项目英文名:BullshitGenerator 根据作者的介绍,他是偶尔需要一些中文文字用于GUI开发时测试文本渲染,因此开发了这个废话生成器。但由于生成的废话实在是太过富于哲理,所以最近已经被小伙伴们给玩坏了。 他的文风可能是这样的: 你发现,...
程序员:我终于知道post和get的区别
是一个老生常谈的话题,然而随着不断的学习,对于以前的认识有很多误区,所以还是需要不断地总结的,学而时习之,不亦说乎
《程序人生》系列-这个程序员只用了20行代码就拿了冠军
你知道的越多,你不知道的越多 点赞再看,养成习惯GitHub上已经开源https://github.com/JavaFamily,有一线大厂面试点脑图,欢迎Star和完善 前言 这一期不算《吊打面试官》系列的,所有没前言我直接开始。 絮叨 本来应该是没有这期的,看过我上期的小伙伴应该是知道的嘛,双十一比较忙嘛,要值班又要去帮忙拍摄年会的视频素材,还得搞个程序员一天的Vlog,还要写BU...
加快推动区块链技术和产业创新发展,2019可信区块链峰会在京召开
11月8日,由中国信息通信研究院、中国通信标准化协会、中国互联网协会、可信区块链推进计划联合主办,科技行者协办的2019可信区块链峰会将在北京悠唐皇冠假日酒店开幕。   区块链技术被认为是继蒸汽机、电力、互联网之后,下一代颠覆性的核心技术。如果说蒸汽机释放了人类的生产力,电力解决了人类基本的生活需求,互联网彻底改变了信息传递的方式,区块链作为构造信任的技术有重要的价值。   1...
Python 植物大战僵尸代码实现(2):植物卡片选择和种植
这篇文章要介绍的是: - 上方植物卡片栏的实现。 - 点击植物卡片,鼠标切换为植物图片。 - 鼠标移动时,判断当前在哪个方格中,并显示半透明的植物作为提示。
相关热词 c# 二进制截断字符串 c#实现窗体设计器 c#检测是否为微信 c# plc s1200 c#里氏转换原则 c# 主界面 c# do loop c#存为组套 模板 c# 停掉协程 c# rgb 读取图片
立即提问