试用过ngram大小为1,速度不理想
或有其他方式实现都可
关注让阿豪来帮你解答,本回答参考chatgpt3.5编写提供,如果还有疑问可以评论或留言问题:如何优化ngram大小为1的方法以提高执行速度? 回答:有几种方法可以优化ngram大小为1的方法以提高执行速度:
from collections import defaultdict
def create_ngram(text, n):
ngram_dict = defaultdict(int)
for i in range(len(text) - n + 1):
ngram = text[i:i+n]
ngram_dict[ngram] += 1
return ngram_dict
text = "hello world"
ngram_dict = create_ngram(text, 1)
print(ngram_dict)
from collections import defaultdict
def create_ngram(text, n):
ngram_dict = defaultdict(int)
for i in range(len(text) - n + 1):
ngram = text[i:i+n]
ngram_dict[ngram] += 1
return ngram_dict
text = "hello world"
ngram_dict = create_ngram(text, 1)
print(ngram_dict)
from concurrent.futures import ThreadPoolExecutor
def create_ngram(text, n):
ngram_dict = defaultdict(int)
for i in range(len(text) - n + 1):
ngram = text[i:i+n]
ngram_dict[ngram] += 1
return ngram_dict
text = "hello world"
n = 1
ngram_dict = defaultdict(int)
with ThreadPoolExecutor(max_workers=4) as executor:
for i in range(len(text) - n + 1):
ngram = text[i:i+n]
future = executor.submit(create_ngram, ngram, n)
ngram_dict += future.result()
print(ngram_dict)
以上是三种优化ngram大小为1的方法以提高执行速度的建议。根据实际情况选择合适的方法来进行优化。