链接: https://pan.baidu.com/s/1vEu6L27XAzdgkUOuOE-38g
提取码: 1ksf
链接: https://pan.baidu.com/s/1vEu6L27XAzdgkUOuOE-38g
提取码: 1ksf
#include <stdio.h>
int main()
{
int e[10][10],dis[10],book[10],i,j,n,m,t1,t2,t3,u,v,min;
int inf=-99999999; //用inf(infinity的缩写)存储一个我们认为的负无穷值
//读入n和m,n表示顶点个数,m表示边的条数
scanf("%d %d",&n,&m);
//初始化
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
if(i==j) e[i][j]=0;
else e[i][j]=inf;
//读入边
for(i=1;i<=m;i++)
{
scanf("%d %d %d",&t1,&t2,&t3);
e[t1][t2]=t3;
}
//初始化dis数组,这里是1号顶点到其余各个顶点的初始路程
for(i=1;i<=n;i++)
dis[i]=e[1][i];
//book数组初始化
for(i=1;i<=n;i++)
book[i]=0;
book[1]=1;
//Dijkstra算法核心语句
for(i=1;i<=n-1;i++)
{
//找到离1号顶点最近的顶点
min=inf;
for(j=1;j<=n;j++)
{
if(book[j]==0 && dis[j]>min)
{
min=dis[j];
u=j;
}
}
book[u]=1;
for(v=1;v<=n;v++)
{
if(e[u][v]>inf)
{
if(dis[v]<dis[u]*e[u][v])
dis[v]=dis[u]*e[u][v];
}
}
}
//输出最终的结果
for(i=1;i<=n;i++)
printf("%d ",dis[i]);
getchar();
getchar();
return 0;
}