从一棵空树开始创建,在创建过程中,保证树的有序性,同时还要针对树的平衡性做些调整。最终要创建一棵二叉平衡排序树。包括:(1)创建(插入、调整、改组); (2)中序遍历输出。
2条回答 默认 最新
- CSDN专家-黄老师 2021-06-28 10:24关注
#include <stdio.h> #include <stdlib.h> //分别定义平衡因子数 #define LH +1 #define EH 0 #define RH -1 typedef int ElemType; typedef enum {false,true} bool; //定义二叉排序树 typedef struct BSTNode{ ElemType data; int bf;//balance flag struct BSTNode *lchild,*rchild; }*BSTree,BSTNode; //对以 p 为根结点的二叉树做右旋处理,令 p 指针指向新的树根结点 void R_Rotate(BSTree* p) { //借助文章中的图 5 所示加以理解,其中结点 A 为 p 指针指向的根结点 BSTree lc = (*p)->lchild; (*p)->lchild = lc->rchild; lc->rchild = *p; *p = lc; } ////对以 p 为根结点的二叉树做左旋处理,令 p 指针指向新的树根结点 void L_Rotate(BSTree* p) { //借助文章中的图 6 所示加以理解,其中结点 A 为 p 指针指向的根结点 BSTree rc = (*p)->rchild; (*p)->rchild = rc->lchild; rc->lchild = *p; *p = rc; } //对以指针 T 所指向结点为根结点的二叉树作左子树的平衡处理,令指针 T 指向新的根结点 void LeftBalance(BSTree* T) { BSTree lc,rd; lc = (*T)->lchild; //查看以 T 的左子树为根结点的子树,失去平衡的原因,如果 bf 值为 1 ,则说明添加在左子树为根结点的左子树中,需要对其进行右旋处理;反之,如果 bf 值为 -1,说明添加在以左子树为根结点的右子树中,需要进行双向先左旋后右旋的处理 switch (lc->bf) { case LH: (*T)->bf = lc->bf = EH; R_Rotate(T); break; case RH: rd = lc->rchild; switch(rd->bf) { case LH: (*T)->bf = RH; lc->bf = EH; break; case EH: (*T)->bf = lc->bf = EH; break; case RH: (*T)->bf = EH; lc->bf = LH; break; } rd->bf = EH; L_Rotate(&(*T)->lchild); R_Rotate(T); break; } } //右子树的平衡处理同左子树的平衡处理完全类似 void RightBalance(BSTree* T) { BSTree lc,rd; lc= (*T)->rchild; switch (lc->bf) { case RH: (*T)->bf = lc->bf = EH; L_Rotate(T); break; case LH: rd = lc->lchild; switch(rd->bf) { case LH: (*T)->bf = EH; lc->bf = RH; break; case EH: (*T)->bf = lc->bf = EH; break; case RH: (*T)->bf = EH; lc->bf = LH; break; } rd->bf = EH; R_Rotate(&(*T)->rchild); L_Rotate(T); break; } } int InsertAVL(BSTree* T,ElemType e,bool* taller) { //如果本身为空树,则直接添加 e 为根结点 if ((*T)==NULL) { (*T)=(BSTree)malloc(sizeof(BSTNode)); (*T)->bf = EH; (*T)->data = e; (*T)->lchild = NULL; (*T)->rchild = NULL; *taller=true; } //如果二叉排序树中已经存在 e ,则不做任何处理 else if (e == (*T)->data) { *taller = false; return 0; } //如果 e 小于结点 T 的数据域,则插入到 T 的左子树中 else if (e < (*T)->data) { //如果插入过程,不会影响树本身的平衡,则直接结束 if(!InsertAVL(&(*T)->lchild,e,taller)) return 0; //判断插入过程是否会导致整棵树的深度 +1 if(*taller) { //判断根结点 T 的平衡因子是多少,由于是在其左子树添加新结点的过程中导致失去平衡,所以当 T 结点的平衡因子本身为 1 时,需要进行左子树的平衡处理,否则更新树中各结点的平衡因子数 switch ((*T)->bf) { case LH: LeftBalance(T); *taller = false; break; case EH: (*T)->bf = LH; *taller = true; break; case RH: (*T)->bf = EH; *taller = false; break; } } } //同样,当 e>T->data 时,需要插入到以 T 为根结点的树的右子树中,同样需要做和以上同样的操作 else { if(!InsertAVL(&(*T)->rchild,e,taller)) return 0; if (*taller) { switch ((*T)->bf) { case LH: (*T)->bf = EH; *taller = false; break; case EH: (*T)->bf = RH; *taller = true; break; case RH: RightBalance(T); *taller = false; break; } } } return 1; } //判断现有平衡二叉树中是否已经具有数据域为 e 的结点 bool FindNode(BSTree root,ElemType e,BSTree* pos) { BSTree pt = root; (*pos) = NULL; while(pt) { if (pt->data == e) { //找到节点,pos指向该节点并返回true (*pos) = pt; return true; } else if (pt->data>e) { pt = pt->lchild; } else pt = pt->rchild; } return false; } //中序遍历平衡二叉树 void InorderTra(BSTree root) { if(root->lchild) InorderTra(root->lchild); printf("%d ",root->data); if(root->rchild) InorderTra(root->rchild); } int main() { int i,nArr[] = {1,23,45,34,98,9,4,35,23}; BSTree root=NULL,pos; bool taller; //用 nArr查找表构建平衡二叉树(不断插入数据的过程) for (i=0;i<9;i++) { InsertAVL(&root,nArr[i],&taller); } //中序遍历输出 InorderTra(root); //判断平衡二叉树中是否含有数据域为 103 的数据 if(FindNode(root,103,&pos)) printf("\n%d\n",pos->data); else printf("\nNot find this Node\n"); return 0; }
如果对你有帮助,可以点击我这个回答右上方的【采纳】按钮,给我个采纳吗,谢谢
本回答被题主选为最佳回答 , 对您是否有帮助呢?解决 2无用
悬赏问题
- ¥15 slaris 系统断电后,重新开机后一直自动重启
- ¥15 QTableWidget重绘程序崩溃
- ¥15 51寻迹小车定点寻迹
- ¥15 谁能帮我看看这拒稿理由啥意思啊阿啊
- ¥15 关于vue2中methods使用call修改this指向的问题
- ¥15 idea自动补全键位冲突
- ¥15 请教一下写代码,代码好难
- ¥15 iis10中如何阻止别人网站重定向到我的网站
- ¥15 滑块验证码移动速度不一致问题
- ¥15 Utunbu中vscode下cern root工作台中写的程序root的头文件无法包含