第七号咸鱼 2021-08-20 21:51 采纳率: 100%
浏览 66
已结题

使用Unet语义分割结果有虚影

大概是这个样子,看起来很脏,分割的是遥感图像。
模型:UNet
语言:python
img
代码:

import os

from os import path, makedirs, listdir
import sys
import numpy as np
np.random.seed(1)
import random
random.seed(1)

import torch
from torch import nn
from torch.backends import cudnn
from torch.autograd import Variable

import pandas as pd
from tqdm import tqdm
import timeit
import cv2

from zoo.models import SeNet154_Unet_Loc

from utils import *

cv2.setNumThreads(0)
cv2.ocl.setUseOpenCL(False)

test_dir = 'test/images'
pred_folder = 'pred154_loc'
models_folder = 'weights'

if __name__ == '__main__':
    t0 = timeit.default_timer()

    makedirs(pred_folder, exist_ok=True)
    
    os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
    models = []
    for seed in [0]:
        snap_to_load = 'se154_loc_{}_1_best'.format(seed)
        model = SeNet154_Unet_Loc().cuda()
        model = nn.DataParallel(model).cuda()
        print("=> loading checkpoint '{}'".format(snap_to_load))
        checkpoint = torch.load(path.join(models_folder, snap_to_load), map_location='cpu')
        loaded_dict = checkpoint['state_dict']
        sd = model.state_dict()
        for k in model.state_dict():
            if k in loaded_dict and sd[k].size() == loaded_dict[k].size():
                sd[k] = loaded_dict[k]
        loaded_dict = sd
        model.load_state_dict(loaded_dict)
        print("loaded checkpoint '{}' (epoch {}, best_score {})"
                .format(snap_to_load, checkpoint['epoch'], checkpoint['best_score']))
        model.eval()
        models.append(model)
    with torch.no_grad():
        for f in tqdm(sorted(listdir(test_dir))):
            if '_pre_' in f:
                fn = path.join(test_dir, f)

                img = cv2.imread(fn, cv2.IMREAD_COLOR)
                img = preprocess_inputs(img)

                inp = []
                inp.append(img)
                inp.append(img[::-1, ...])
                inp.append(img[:, ::-1, ...])
                inp.append(img[::-1, ::-1, ...])
                inp = np.asarray(inp, dtype='float')
                inp = torch.from_numpy(inp.transpose((0, 3, 1, 2))).float()
                inp = Variable(inp).cuda()

                pred = []
                for model in models:               
                    msk = model(inp)
                    msk = torch.sigmoid(msk)
                    msk = msk.cpu().numpy()
                    
                    pred.append(msk[0, ...])
                    pred.append(msk[1, :, ::-1, :])
                    pred.append(msk[2, :, :, ::-1])
                    pred.append(msk[3, :, ::-1, ::-1])

                pred_full = np.asarray(pred).mean(axis=0)
                
                msk = pred_full * 255
                msk = msk.astype('uint8').transpose(1, 2, 0)
                cv2.imwrite(path.join(pred_folder, '{0}.png'.format(f.replace('.png', '_part1.png'))), msk[..., 0], [cv2.IMWRITE_PNG_COMPRESSION, 9])

    elapsed = timeit.default_timer() - t0
    print('Time: {:.3f} min'.format(elapsed / 60))
  • 写回答

1条回答 默认 最新

报告相同问题?

问题事件

  • 系统已结题 8月29日
  • 已采纳回答 8月21日
  • 修改了问题 8月20日
  • 创建了问题 8月20日