设计一个复数类,要求:
(1)在复数内部用双精度浮点数定义其实部和虚部;
(2)实现3个构造函数:无参(实部,虚部均为0)、1 个参数(参数赋值给实部,虚部为0)、2个参数(参数分别给实部虚部赋值);
(3)编写获取和修改复数的实部和虚部的成员方法;
(4)编写实现复数减法、乘法运算的成员方法;
(5)设计主方法,验证各成员方法的正确性;

编写一个Java程序,实现以下功能
- 写回答
- 好问题 0 提建议
- 关注问题
- 邀请回答
-
1条回答 默认 最新
- 偷窃月亮的贼 2021-09-12 01:14关注
ok,写好了:
public class Demo { public static void main(String[] args) { Complex complex1 = new Complex(20, 21); Complex complex2 = new Complex(19, 99); System.out.println("复数1为:" + complex1); System.out.println("复数2为:" + complex2); System.out.println("复数相减为:" + complex1.subtraction(complex2).toString()); System.out.println("复数相乘为:" + complex1.multiplication(complex2).toString()); } } /** * 复数类 */ class Complex { private double real, imaginary; public Complex() { this(0, 0); } public Complex(double real) { this(real, 0); } public Complex(double real, double imaginary) { this.real = real; this.imaginary = imaginary; } public double getReal() { return real; } public void setReal(double real) { this.real = real; } public double getImaginary() { return imaginary; } public void setImaginary(double imaginary) { this.imaginary = imaginary; } /** * 复数的减法 * * @param complex 减数 * @return 相减以后的复数对象 */ public Complex subtraction(Complex complex) { return new Complex(this.getReal() - complex.getReal(), this.getImaginary() - complex.getImaginary()); } /** * 复数的乘法 * * @param complex 乘数 * @return 相乘以后的复数对象 计算方法:(a+bi)(c+di)=(ac-bd)+(bc+ad)i。 */ public Complex multiplication(Complex complex) { double a = this.getReal(), b = this.getImaginary(), c = complex.getReal(), d = complex.getImaginary(); return new Complex(a * c - b * d, b * c + a * d); } @Override public String toString() { return real + "+" + imaginary + "i"; } }
本回答被题主选为最佳回答 , 对您是否有帮助呢?解决 无用评论 打赏 举报