cc1310不带系统的定时器捕获例程. 20C

我想在cc1310上裸机实现一个对PMW波的捕获,TI官网上没有定时器捕获的例程,CC1310的资料比较少,各位大神有例子吗?

1个回答

Csdn user default icon
上传中...
上传图片
插入图片
抄袭、复制答案,以达到刷声望分或其他目的的行为,在CSDN问答是严格禁止的,一经发现立刻封号。是时候展现真正的技术了!
其他相关推荐
STM32定时器1控制电机输出两路PWM波形问题

本人刚学stm32,用定时器1的CH1和CH2输出pwm波形是不知道为什么没有高电平输出,电机根本不转求大家看看 #include "include.h" /* 硬件连接: (PE9->EN1---TIME1_CH1 右) (PE11->EN2---TIME1_CH2 左) PA4->INT4 PA5->INT3 PA6->INT2 PA7->INT1 */ /*0011 1010--->_,_,EN1,EN2,INT4,INT3... */ void PWM_Foward(void) { GPIO_SetBits(GPIOA , GPIO_Pin_4|GPIO_Pin_6); GPIO_ResetBits(GPIOA , GPIO_Pin_5|GPIO_Pin_7); } /*0011 0101--->_,_,EN1,EN2,INT4,INT3... */ void PWM_Back(void) { GPIO_SetBits(GPIOA , GPIO_Pin_5|GPIO_Pin_7); GPIO_ResetBits(GPIOA , GPIO_Pin_4|GPIO_Pin_6); } /*0011 0110--->_,_,EN1,EN2,INT4,INT3... */ void PWM_Left(void) { GPIO_SetBits(GPIOA , GPIO_Pin_5|GPIO_Pin_6); GPIO_ResetBits(GPIOA , GPIO_Pin_4|GPIO_Pin_7); } /*0011 1001--->_,_,EN1,EN2,INT4,INT3... */ void PWM_Right(void) { GPIO_SetBits(GPIOA , GPIO_Pin_4|GPIO_Pin_7); GPIO_ResetBits(GPIOA , GPIO_Pin_5|GPIO_Pin_6); } /*参考固件库使用手册247*/ void Timer1_Config(void) { TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_OCInitTypeDef TIM_OCInitStructure; /*Time1_Init*/ /*将寄存器重新设为缺省值*/ TIM_DeInit(TIM1); /*预分频为72M/3600=20KHZ*/ TIM_TimeBaseStructure.TIM_Prescaler=3600-1; /*时钟分割,采样频率设置,滤掉外界高频抖动,无外部设备介入设为0*/ TIM_TimeBaseStructure.TIM_ClockDivision=TIM_CKD_DIV1; /*装载值:20 , 20KHZ/20=1Khz,计数值为1ms*/ TIM_TimeBaseStructure.TIM_Period=200; /*向上计数*/ TIM_TimeBaseStructure.TIM_CounterMode=TIM_CounterMode_Up; /*重复计数器,只限制在0X00--0XFF,stm32中文手册209*/ TIM_TimeBaseStructure.TIM_RepetitionCounter=0; TIM_TimeBaseInit(TIM1 , &TIM_TimeBaseStructure); /*设置通道*/ /*PWM输出通道选择,向上计数时,1:若计数值<装载值,为有效电平,否则无效,通道2相反*/ TIM_OCInitStructure.TIM_OCMode=TIM_OCMode_PWM2; /*正向通道有效,反向通道无效*/ TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable; /*占空比预设为10,为0.5ms,占空比不能超过装载值即周期*/ TIM_OCInitStructure.TIM_Pulse=100; /*输出极性,及在计数阶段IO口的电平*/ TIM_OCInitStructure.TIM_OCPolarity=TIM_OCPolarity_High; TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_Low; TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Set; TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCIdleState_Reset; TIM_OC1Init(TIM1 , &TIM_OCInitStructure); TIM_OC2Init(TIM1 , &TIM_OCInitStructure); TIM_Cmd(TIM1 , ENABLE); /*定时器1作为主输出*/ TIM_CtrlPWMOutputs(TIM1 , ENABLE); } void PWM_Init(void) { GPIO_InitTypeDef GPIO_InitStructure; /* (PE9->EN1---TIME1_CH1 右) (PE11->EN2---TIME1_CH2 左)*/ /*GPIO_Init*/ RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA , ENABLE); /*IO口的复用:作为输入输出是打开IO口模式复用,作为第二功能比如I2C时打开时钟复用*/ RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOE|RCC_APB2Periph_AFIO , ENABLE); RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1 , ENABLE); /*INT1----INT4*/ GPIO_InitStructure.GPIO_Pin=GPIO_Pin_4|GPIO_Pin_5|GPIO_Pin_6|GPIO_Pin_7; GPIO_InitStructure.GPIO_Mode=GPIO_Mode_Out_PP; GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz; GPIO_Init(GPIOA , &GPIO_InitStructure); /*将TIM1完全重映射到GPIOE*/ GPIO_PinRemapConfig(GPIO_FullRemap_TIM1 ,ENABLE); GPIO_InitStructure.GPIO_Pin=GPIO_Pin_9|GPIO_Pin_11; GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AF_PP; GPIO_Init(GPIOE , &GPIO_InitStructure); Timer1_Config(); }

DLL文件初始化例程失败问题

工作原因,需要在windows系统上手动加载dll文件 windows提供了一个 rundll32.exe可以调用dll文件 我的启动方式是: rundll32.exe+dll文件+dllmain ![图片说明](https://img-ask.csdn.net/upload/201909/19/1568875913_207172.jpg) 但是会出现初始化例程失败的问题 ![图片说明](https://img-ask.csdn.net/upload/201909/19/1568876022_486795.jpg) 该dll经查询是使用Delphi编写的文件,用depends查询也补齐了所需的依赖项 好久都没解决这问题,难受。 前来请教各位大佬们 无尽感谢!

如何将opencv自带例程blobtrack_sample.cpp与手写体字母识别程序串起来?

# 手写体字母程序见以下链接[手写体字母识别](http://blog.csdn.net/wangyaninglm/article/details/41848019 "")

为什么我使用别人的例程SmartTable 但是table.setData(list);报错 ?

为什么我使用别人的例程SmartTable 但是table.setData(list);报错 ? 为什么我使用别人的例程SmartTable 但是table.getConfig(list);报错 ? ![图片说明](https://img-ask.csdn.net/upload/201904/16/1555349949_534155.jpg) 例程参考 https://www.jianshu.com/p/bcfe030b77db 不同于例程,我是写在fragment里的 怎么就不行了呢 求大神讲解

0xC00001A5: 检测到无效的异常处理程序例程。

Debug版本可以正常跑通,在Release版本里就出现了 ![图片说明](https://img-ask.csdn.net/upload/201906/20/1561028036_707833.png) 先记录一下现象,等到解决问题的时候,再回来说明解决方法。

未经处理的异常: System.DllNotFoundException: 无法加载 DLL“*****.dll”: 动态链接库(DLL)初始化例程失败。

软件运行时弹框提示 未经处理的异常: System.DllNotFoundException: 无法加载 DLL“pjsipDll.dll”: 动态链接库(DLL)初始化例程失败。 (异常来自 HRESULT:0x8007045A)。 部分电脑运行正常,部分会出现此错误 有没有懂的大佬解答下 该如何处理

添加odbc数据源:找不到 *odbc驱动程序的安装例程。请重新安装驱动程序

系统: Windows7 64位 想要配odbc数据源的时候发现odbc源除了问题: 以前配的数据源不能用了,现在要添加新的数据源也不成功,网上查了说可能是某些应用卸载的时候把数据源删了造成的。也尝试了在命令行里运行SysWOW64中的odbcad32.exe发现也没啥也用,希望各路大神指教。报错如下:![![图片说明](https://img-ask.csdn.net/upload/201511/13/1447379349_615388.png)图片说明](https://img-ask.csdn.net/upload/201511/13/1447379335_766295.png)

CC2541关于PM2低功耗模式

用3.2V,5mA的电源驱动CC2541能否进入正常工作?是否是直接进入PM2低功耗模式了,那此时ADC转换以及定时器Timer3以及中断是否都不可以用了 求大神解答

在Windows上使用JNI从Java调用Golang会导致“动态链接库(DLL)初始化例程失败”

<div class="post-text" itemprop="text"> <p>I created the following example project to test out calling Golang code from Java using JNI: <a href="https://github.com/blaubaer/golang-jni" rel="nofollow noreferrer">https://github.com/blaubaer/golang-jni</a></p> <p>When I call <code>build.cmd</code> I receive an error message like this:</p> <pre><code>Exception in thread "main" java.lang.UnsatisfiedLinkError: [...]\out\hello.dll: A dynamic link library (DLL) initialization routine failed at java.base/java.lang.ClassLoader$NativeLibrary.load0(Native Method) at java.base/java.lang.ClassLoader$NativeLibrary.load(ClassLoader.java:2430) at java.base/java.lang.ClassLoader$NativeLibrary.loadLibrary(ClassLoader.java:2487) at java.base/java.lang.ClassLoader.loadLibrary0(ClassLoader.java:2684) at java.base/java.lang.ClassLoader.loadLibrary(ClassLoader.java:2649) at java.base/java.lang.Runtime.loadLibrary0(Runtime.java:829) at java.base/java.lang.System.loadLibrary(System.java:1867) at Hello.&lt;clinit&gt;(Hello.java:3) </code></pre> <p>Used environment:</p> <ul> <li>Windows: 10.0.17763, Build 17763, 64bit</li> <li>Golang: 1.11.5, windows/amd64</li> <li>Java: 11.0.2 2019-01-15 LTS, 64-Bit</li> <li>MinGW-w64: x86_64-8.1.0-win32-sjlj-rt_v6-rev0</li> </ul> <p>Thanks!</p> </div>

初学PIC18单片机,定时器1程序问题

参考了一些网上的例程写的,目的是主函数中LCD1602显示一个字符H,然后定时器1中断改变这个H,但是仿真好像并没有开启中断 软件是protues8.9,芯片是PIC18F4620 ``` #include<pic18.h> #include "LCD1602.h" /************配置位设置************/ __CONFIG(1,HS & FCMDIS & IESODIS); __CONFIG(2,WDTDIS); __CONFIG(3,PBDIGITAL); __CONFIG(4,LVPDIS); unsigned char secs,mins,hours; unsigned char L,H=0; //*************************************************************** //函数名:void Delay(unsigned int n) //入口参数:n //出口参数:无 //功能:延时n个指令周期。 //*************************************************************** void Delay(unsigned int n) { while(--n){;} } //*************************************************************** //函数名:初始化程序 Timer_Init(void) //入口参数:无 //出口参数:无 //功能:初始化定时器1 //*************************************************************** void Timer_Init(void) { secs = 0; mins = 59; hours = 23; // Initialize for Timer1 time base //ADCON1=0X06; IPEN = 0; PEIE=1; //允许所有未被关闭的外设中断 T1CON = 0b00001111;// Timer1 init ( Prescaler:TMR1, 1:64) TMR1IF = 0; // enable tmr1 intpt TMR1IE = 1; TMR1L=(65536-50000)%256; TMR1H=(65536-50000)/256; GIE = 1; } //*************************************************************** //函数名:主程序 void main(void) //入口参数:无 //出口参数:无 //功能:调用LCD初始化程序和进行TIME1初始化,并执行LCD显示时间的操作。 //*************************************************************** void main(void) { LCDInit(); Timer_Init(); while(1) { SetYX(0,2); LCDWrite(1, H); //H++; Delay(3000); } } //*************************************************************** //函数名:中断服务程序 void interrupt isr(void) //入口参数:无 //出口参数:无 //功能:24小时计时 //*************************************************************** void interrupt time1(void) { //----- TMR1 Interrupt -----// if(TMR1IF==1) //判断是否产生中断 { TMR1IF = 0; TMR1L=(65536-50000)%256; TMR1H=(65536-50000)/256; secs++; if(secs >= 60) { secs = 0; mins++; if(mins >= 60) { mins = 0; hours++; if(hours >= 24)hours = 0; } } SetYX(0,2); //LCDWrite(1, H); H++; } } ``` 下面是仿真图,

EF for DB2 DATETIME.NOW

IBM.Data.DB2.Core.DB2Exception:“ERROR [42884] [IBM][DB2/NT] 找不到具有兼容自变量的类型为 "FUNCTION" 的名为 "GETDATE" 的已授权例程。[IBM][DB2/NT] 找不到具有兼容自变量的类型为 "FUNCTION" 的名为 "GETDATE" 的已授权例程。” ``` var bb = (_context.A.Where(a => a.State == 5 && a.EffectDate > DateTime.Now)).ToList(); ```

oracle已连接到空闲例程

执行shutdown normal命令,等了会儿无提示从新登录,当执行 conn /as sysdba出现"已连接到空闲例程"怎么解决? 环境变量: ORACLE_HOME=E:\oracle\product\10.2.0\db_1 ORACLE_SID=orcl 还是报错: SQL> conn sys/test as sysdba 已连接到空闲例程。 SQL> show parameters audit_trail; ORA-01034: ORACLE not available SQL> startup; ORA-01078: failure in processing system parameters

WinDriver生成的代码例程在VS2010中链接出错

现在用WinDriver自动生成的工程在VS2010里面编译链接,在网上查了很多资料进行各种配置后还是会出错,都是这样的错误:错误 1 error LNK2019: 无法解析的外部符号 _WDC_WriteAddr64@20,该符号在函数 _WDC_DIAG_ReadWriteAddr 中被引用 C:\WinDriver\wizard\my_projects\x86\msdev_2008\wdc_diag_lib.obj realtek_practice_diag...... 这个例程是我对计算机的PCI接口声卡用WinDriver自动生成的工程,把要链接的库都在链接-输入里面写上了,不知道为什么还出现这样的错,请各位大神指教,在线急求指点。![![![![图片说明](https://img-ask.csdn.net/upload/201703/18/1489801458_657200.png)图片说明](https://img-ask.csdn.net/upload/201703/18/1489801451_180308.png)图片说明](https://img-ask.csdn.net/upload/201703/18/1489801440_702171.png)图片说明](https://img-ask.csdn.net/upload/201703/18/1489801427_77343.png)![图片说明](https://img-ask.csdn.net/upload/201703/18/1489801565_529709.png)

使用TMDSEVM6678L调试MCSDK中的helloworld例程DSP只能收不能发

有个问题希望大神们能帮忙解答一下,我用的是c6678EVM,调试MCSDK下的helloWorld例程的时候,程序没做任何改动,我是设置静态IP,DSP IP:192.168.2.100,PC IP:192.168.2.102,程序能正常运行,PC端使用winapps的helloworld.exe触发网络事件,DSP端只能收不能发,一直找不出原因,防火墙关掉了,能ping通,recvncfrom接受的内容也都是正确的,而打印DSP端sendto函数返回值一直是-1,如果正常的话返回值应该是发送的字节数,也即DSP已经接收到的字节数,运行后PC端显示如下: ![图片说明](https://img-ask.csdn.net/upload/201508/04/1438656961_891748.jpg) 我看了下helloworld.exe的源程序,“timed out waiting for reply”是在select()函数返回值错误时输出的,我对网络通信还不太了解,不知道到底是什么原因引起的,感觉DSP接收完通信就断开了,我现在唯一能想到的是不是因为DSP和PC支持的以太网速率不匹配,我的PC的网卡最多只支持100M,选择的模式是自协商,不知道此例程是不是默认以太网速率是1000M,所以导致单向兼容。所以有下面两个问题: 1、以上情况是DSP端还是PC端的问题,sendto发送失败可能是什么原因引起的? 2、在使用NDK实现网络通信,要怎么设置以太网速率模式为指定的模式? 可能表述的不是很好,期待你的解答,谢谢!

ORA-12523: TNS: 监听程序无法找到适用于客户机连接的例程

ORA-12523: TNS: 监听程序无法找到适用于客户机连接的例程

在每个循环中使用go例程时,func文字捕获的go vet范围变量

<div class="post-text" itemprop="text"> <p>I'm not really sure what a 'func literal' is thus this error is confusing me a bit. I think I see the issue - I'm referencing a range value variable from inside a new go routine thus the value might change at anytime and not be what we expect. What's the best way to solve the issue?</p> <p>The code in question:</p> <pre><code>func (l *Loader) StartAsynchronous() []LoaderProcess { for _, currentProcess := range l.processes { cmd := exec.Command(currentProcess.Command, currentProcess.Arguments...) log.LogMessage("Asynchronously executing LoaderProcess: %+v", currentProcess) go func() { output, err := cmd.CombinedOutput() if err != nil { log.LogMessage("LoaderProcess exited with error status: %+v %v", currentProcess, err.Error()) } else { log.LogMessage("LoaderProcess exited successfully: %+v", currentProcess) currentProcess.Log.LogMessage(string(output)) } time.Sleep(time.Second * TIME_BETWEEN_SUCCESSIVE_ITERATIONS) }() } return l.processes } </code></pre> <p>My proposed fix:</p> <pre><code>func (l *Loader) StartAsynchronous() []LoaderProcess { for _, currentProcess := range l.processes { cmd := exec.Command(currentProcess.Command, currentProcess.Arguments...) log.LogMessage("Asynchronously executing LoaderProcess: %+v", currentProcess) localProcess := currentProcess go func() { output, err := cmd.CombinedOutput() if err != nil { log.LogMessage("LoaderProcess exited with error status: %+v %v", localProcess, err.Error()) } else { log.LogMessage("LoaderProcess exited successfully: %+v", localProcess) localProcess.Log.LogMessage(string(output)) } time.Sleep(time.Second * TIME_BETWEEN_SUCCESSIVE_ITERATIONS) }() } return l.processes } </code></pre> <p>But does that really solve the problem? I've just moved the reference from the range variable to a different local variable whose value is based off of the iteration of the for each loop that I'm in.</p> </div>

初学求讲解例程STM32寄存器版LED闪烁

本人对下图中的代码理解:如果头文件SYSTEM.H没有在关联的文件中定义,那么就定义头文件SYSTEM.H ,画红圈的内容就是写一个头文件SYSTEM.H。 请问我的理解对吗?如不对请讲解,谢谢:) SYSTEM.H是固件库还是作者自己写的? ![图片说明](https://img-ask.csdn.net/upload/201510/09/1444400813_167350.png) 把下图中的例程编译后出现错误:C:\Keil\ARM\Inc\ST\STM32F10x\stm32f10x.h(96): error: #35: #error directive: "Please select first the target STM32F10x device used in your application (in stm32f10x.h file)" #error "Please select first the target STM32F10x device used in your application (in stm32f10x.h file)" 这个错误是怎么产生的?如何决呢?谢谢:) ![图片说明](https://img-ask.csdn.net/upload/201510/09/1444402251_596673.jpg)

minst深度学习例程不收敛,成功率始终在十几

minst深度学习程序不收敛 是关于tensorflow的问题。我是tensorflow的初学者。从书上抄了minst的学习程序。但是运行之后,无论学习了多少批次,成功率基本不变。 我做了许多尝试,去掉了正则化,去掉了滑动平均,还是不行。把batch_size改成了2,观察变量运算情况,输入x是正确的,但神经网络的输出y很多情况下在x不一样的情况下y的两个结果是完全一样的。进而softmax的结果也是一样的。百思不得其解,找不到造成这种情况的原因。这里把代码和运行情况都贴出来,请大神帮我找找原因。大过年的,祝大家春节快乐万事如意。 补充一下,进一步的测试表明,不是不能完成训练,而是要到700000轮以上,且最高达到65%左右就不能提高了。仔细看每一步的参数,是regularization值过大10e15以上,一点点减少,前面的训练都在训练它了。这东西我不是很明白。 ``` import struct import numpy as np import matplotlib.pyplot as plt from matplotlib.widgets import Slider, Button import tensorflow as tf import time #把MNIST的操作封装在一个类中,以后用起来方便。 class MyMinst(): def decode_idx3_ubyte(self,idx3_ubyte_file): with open(idx3_ubyte_file, 'rb') as f: print('解析文件:', idx3_ubyte_file) fb_data = f.read() offset = 0 fmt_header = '>iiii' # 以大端法读取4个 unsinged int32 magic_number, num_images, num_rows, num_cols = struct.unpack_from(fmt_header, fb_data, offset) print('idex3 魔数:{},图片数:{}'.format(magic_number, num_images)) offset += struct.calcsize(fmt_header) fmt_image = '>' + str(num_rows * num_cols) + 'B' images = np.empty((num_images, num_rows*num_cols)) #做了修改 for i in range(num_images): im = struct.unpack_from(fmt_image, fb_data, offset) images[i] = np.array(im)#这里用一维数组表示图片,np.array(im).reshape((num_rows, num_cols)) offset += struct.calcsize(fmt_image) return images def decode_idx1_ubyte(self,idx1_ubyte_file): with open(idx1_ubyte_file, 'rb') as f: print('解析文件:', idx1_ubyte_file) fb_data = f.read() offset = 0 fmt_header = '>ii' # 以大端法读取两个 unsinged int32 magic_number, label_num = struct.unpack_from(fmt_header, fb_data, offset) print('idex1 魔数:{},标签数:{}'.format(magic_number, label_num)) offset += struct.calcsize(fmt_header) labels = np.empty(shape=[0,10],dtype=float) #神经网络需要把label变成10位float的数组 fmt_label = '>B' # 每次读取一个 byte for i in range(label_num): n=struct.unpack_from(fmt_label, fb_data, offset) labels=np.append(labels,[[0,0,0,0,0,0,0,0,0,0]],axis=0) labels[i][n]=1 offset += struct.calcsize(fmt_label) return labels def __init__(self): #固定的训练文件位置 self.img=self.decode_idx3_ubyte("/home/zhangyl/Downloads/mnist/train-images.idx3-ubyte") self.result=self.decode_idx1_ubyte("/home/zhangyl/Downloads/mnist/train-labels.idx1-ubyte") print(self.result[0]) print(self.result[1000]) print(self.result[25000]) #固定的验证文件位置 self.validate_img=self.decode_idx3_ubyte("/home/zhangyl/Downloads/mnist/t10k-images.idx3-ubyte") self.validate_result=self.decode_idx1_ubyte("/home/zhangyl/Downloads/mnist/t10k-labels.idx1-ubyte") #每一批读训练数据的起始位置 self.train_read_addr=0 #每一批读训练数据的batchsize self.train_batchsize=100 #每一批读验证数据的起始位置 self.validate_read_addr=0 #每一批读验证数据的batchsize self.validate_batchsize=100 #定义用于返回batch数据的变量 self.train_img_batch=self.img self.train_result_batch=self.result self.validate_img_batch=self.validate_img self.validate_result_batch=self.validate_result def get_next_batch_traindata(self): n=len(self.img) #对参数范围适当约束 if self.train_read_addr+self.train_batchsize<=n : self.train_img_batch=self.img[self.train_read_addr:self.train_read_addr+self.train_batchsize] self.train_result_batch=self.result[self.train_read_addr:self.train_read_addr+self.train_batchsize] self.train_read_addr+=self.train_batchsize #改变起始位置 if self.train_read_addr==n : self.train_read_addr=0 else: self.train_img_batch=self.img[self.train_read_addr:n] self.train_img_batch.append(self.img[0:self.train_read_addr+self.train_batchsize-n]) self.train_result_batch=self.result[self.train_read_addr:n] self.train_result_batch.append(self.result[0:self.train_read_addr+self.train_batchsize-n]) self.train_read_addr=self.train_read_addr+self.train_batchsize-n #改变起始位置,这里没考虑batchsize大于n的情形 return self.train_img_batch,self.train_result_batch #测试一下用临时变量返回是否可行 def set_train_read_addr(self,addr): self.train_read_addr=addr def set_train_batchsize(self,batchsize): self.train_batchsize=batchsize if batchsize <1 : self.train_batchsize=1 def set_validate_read_addr(self,addr): self.validate_read_addr=addr def set_validate_batchsize(self,batchsize): self.validate_batchsize=batchsize if batchsize<1 : self.validate_batchsize=1 myminst=MyMinst() #minst类的实例 batch_size=2 #设置每一轮训练的Batch大小 learning_rate=0.8 #初始学习率 learning_rate_decay=0.999 #学习率的衰减 max_steps=300000 #最大训练步数 #定义存储训练轮数的变量,在使用tensorflow训练神经网络时, #一般会将代表训练轮数的变量通过trainable参数设置为不可训练的 training_step = tf.Variable(0,trainable=False) #定义得到隐藏层和输出层的前向传播计算方式,激活函数使用relu() def hidden_layer(input_tensor,weights1,biases1,weights2,biases2,layer_name): layer1=tf.nn.relu(tf.matmul(input_tensor,weights1)+biases1) return tf.matmul(layer1,weights2)+biases2 x=tf.placeholder(tf.float32,[None,784],name="x-input") y_=tf.placeholder(tf.float32,[None,10],name="y-output") #生成隐藏层参数,其中weights包含784*500=39200个参数 weights1=tf.Variable(tf.truncated_normal([784,500],stddev=0.1)) biases1=tf.Variable(tf.constant(0.1,shape=[500])) #生成输出层参数,其中weights2包含500*10=5000个参数 weights2=tf.Variable(tf.truncated_normal([500,10],stddev=0.1)) biases2=tf.Variable(tf.constant(0.1,shape=[10])) #计算经过神经网络前后向传播后得到的y值 y=hidden_layer(x,weights1,biases1,weights2,biases2,'y') #初始化一个滑动平均类,衰减率为0.99 #为了使模型在训练前期可以更新的更快,这里提供了num_updates参数,并设置为当前网络的训练轮数 #averages_class=tf.train.ExponentialMovingAverage(0.99,training_step) #定义一个更新变量滑动平均值的操作需要向滑动平均类的apply()函数提供一个参数列表 #train_variables()函数返回集合图上Graph.TRAINABLE_VARIABLES中的元素。 #这个集合的元素就是所有没有指定trainable_variables=False的参数 #averages_op=averages_class.apply(tf.trainable_variables()) #再次计算经过神经网络前向传播后得到的y值,这里使用了滑动平均,但要牢记滑动平均值只是一个影子变量 #average_y=hidden_layer(x,averages_class.average(weights1), # averages_class.average(biases1), # averages_class.average(weights2), # averages_class.average(biases2), # 'average_y') #softmax,计算交叉熵损失,L2正则,随机梯度优化器,学习率采用指数衰减 #函数原型为sparse_softmax_cross_entropy_with_logits(_sential,labels,logdits,name) #与softmax_cross_entropy_with_logits()函数的计算方式相同,更适用于每个类别相互独立且排斥 #的情况,即每一幅图只能属于一类 #在1.0.0版本的TensorFlow中,这个函数只能通过命名参数的方式来使用,在这里logits参数是神经网 #络不包括softmax层的前向传播结果,lables参数给出了训练数据的正确答案 softmax=tf.nn.softmax(y) cross_entropy=tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y+1e-10,labels=tf.argmax(y_,1)) #argmax()函数原型为argmax(input,axis,name,dimension)用于计算每一个样例的预测答案,其中 # input参数y是一个batch_size*10(batch_size行,10列)的二维数组。每一行表示一个样例前向传 # 播的结果,axis参数“1”表示选取最大值的操作只在第一个维度进行。即只在每一行选取最大值对应的下标 # 于是得到的结果是一个长度为batch_size的一维数组,这个一维数组的值就表示了每一个样例的数字识别 # 结果。 regularizer=tf.contrib.layers.l2_regularizer(0.0001) #计算L2正则化损失函数 regularization=regularizer(weights1)+regularizer(weights2) #计算模型的正则化损失 loss=tf.reduce_mean(cross_entropy)#+regularization #总损失 #用指数衰减法设置学习率,这里staircase参数采用默认的False,即学习率连续衰减 learning_rate=tf.train.exponential_decay(learning_rate,training_step, batch_size,learning_rate_decay) #使用GradientDescentOptimizer优化算法来优化交叉熵损失和正则化损失 train_op=tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=training_step) #在训练这个模型时,每过一遍数据既需要通过反向传播来更新神经网络中的参数,又需要 # 更新每一个参数的滑动平均值。control_dependencies()用于这样的一次性多次操作 #同样的操作也可以使用下面这行代码完成: #train_op=tf.group(train_step,average_op) #with tf.control_dependencies([train_step,averages_op]): # train_op=tf.no_op(name="train") #检查使用了滑动平均模型的神经网络前向传播结果是否正确 #equal()函数原型为equal(x,y,name),用于判断两个张量的每一维是否相等。 #如果相等返回True,否则返回False crorent_predicition=tf.equal(tf.argmax(y,1),tf.argmax(y_,1)) #cast()函数的原型为cast(x,DstT,name),在这里用于将一个布尔型的数据转换为float32类型 #之后对得到的float32型数据求平均值,这个平均值就是模型在这一组数据上的正确率 accuracy=tf.reduce_mean(tf.cast(crorent_predicition,tf.float32)) #创建会话和开始训练过程 with tf.Session() as sess: #在稍早的版本中一般使用initialize_all_variables()函数初始化全部变量 tf.global_variables_initializer().run() #准备验证数据 validate_feed={x:myminst.validate_img,y_:myminst.validate_result} #准备测试数据 test_feed= {x:myminst.img,y_:myminst.result} for i in range(max_steps): if i%1000==0: #计算滑动平均模型在验证数据上的结果 #为了能得到百分数输出,需要将得到的validate_accuracy扩大100倍 validate_accuracy= sess.run(accuracy,feed_dict=validate_feed) print("After %d trainning steps,validation accuracy using average model is %g%%" %(i,validate_accuracy*100)) #产生这一轮使用一个batch的训练数据,并进行训练 #input_data.read_data_sets()函数生成的类提供了train.next_batch()函数 #通过设置函数的batch_size参数就可以从所有的训练数据中读取一个小部分作为一个训练batch myminst.set_train_batchsize(batch_size) xs,ys=myminst.get_next_batch_traindata() var_print=sess.run([x,y,y_,loss,train_op,softmax,cross_entropy,regularization,weights1],feed_dict={x:xs,y_:ys}) print("after ",i," trainning steps:") print("x=",var_print[0][0],var_print[0][1],"y=",var_print[1],"y_=",var_print[2],"loss=",var_print[3], "softmax=",var_print[5],"cross_entropy=",var_print[6],"regularization=",var_print[7],var_print[7]) time.sleep(0.5) #使用测试数据集检验神经网络训练之后的正确率 #为了能得到百分数输出,需要将得到的test_accuracy扩大100倍 test_accuracy=sess.run(accuracy,feed_dict=test_feed) print("After %d training steps,test accuracy using average model is %g%%"%(max_steps,test_accuracy*100)) 下面是运行情况的一部分: x= [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 8. 76. 202. 254. 255. 163. 37. 2. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 13. 182. 253. 253. 253. 253. 253. 253. 23. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 15. 179. 253. 253. 212. 91. 218. 253. 253. 179. 109. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 105. 253. 253. 160. 35. 156. 253. 253. 253. 253. 250. 113. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 19. 212. 253. 253. 88. 121. 253. 233. 128. 91. 245. 253. 248. 114. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 104. 253. 253. 110. 2. 142. 253. 90. 0. 0. 26. 199. 253. 248. 63. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 173. 253. 253. 29. 0. 84. 228. 39. 0. 0. 0. 72. 251. 253. 215. 29. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 36. 253. 253. 203. 13. 0. 0. 0. 0. 0. 0. 0. 0. 82. 253. 253. 170. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 36. 253. 253. 164. 0. 0. 0. 0. 0. 0. 0. 0. 0. 11. 198. 253. 184. 6. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 36. 253. 253. 82. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 138. 253. 253. 35. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 128. 253. 253. 47. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 48. 253. 253. 35. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 154. 253. 253. 47. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 48. 253. 253. 35. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 102. 253. 253. 99. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 48. 253. 253. 35. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 36. 253. 253. 164. 0. 0. 0. 0. 0. 0. 0. 0. 0. 16. 208. 253. 211. 17. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 32. 244. 253. 175. 4. 0. 0. 0. 0. 0. 0. 0. 0. 44. 253. 253. 156. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 171. 253. 253. 29. 0. 0. 0. 0. 0. 0. 0. 30. 217. 253. 188. 19. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 171. 253. 253. 59. 0. 0. 0. 0. 0. 0. 60. 217. 253. 253. 70. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 78. 253. 253. 231. 48. 0. 0. 0. 26. 128. 249. 253. 244. 94. 15. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 8. 151. 253. 253. 234. 101. 121. 219. 229. 253. 253. 201. 80. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 38. 232. 253. 253. 253. 253. 253. 253. 253. 201. 66. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 232. 253. 253. 95. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3. 86. 46. 0. 0. 0. 0. 0. 0. 91. 246. 252. 232. 57. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 103. 252. 187. 13. 0. 0. 0. 0. 22. 219. 252. 252. 175. 0. 0. 0. 0. 0. 0. 0. 0. 0. 10. 0. 0. 0. 0. 8. 181. 252. 246. 30. 0. 0. 0. 0. 65. 252. 237. 197. 64. 0. 0. 0. 0. 0. 0. 0. 0. 0. 87. 0. 0. 0. 13. 172. 252. 252. 104. 0. 0. 0. 0. 5. 184. 252. 67. 103. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 8. 172. 252. 248. 145. 14. 0. 0. 0. 0. 109. 252. 183. 137. 64. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 5. 224. 252. 248. 134. 0. 0. 0. 0. 0. 53. 238. 252. 245. 86. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 12. 174. 252. 223. 88. 0. 0. 0. 0. 0. 0. 209. 252. 252. 179. 9. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 11. 171. 252. 246. 61. 0. 0. 0. 0. 0. 0. 83. 241. 252. 211. 14. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 129. 252. 252. 249. 220. 220. 215. 111. 192. 220. 221. 243. 252. 252. 149. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 144. 253. 253. 253. 253. 253. 253. 253. 253. 253. 255. 253. 226. 153. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 44. 77. 77. 77. 77. 77. 77. 77. 77. 153. 253. 235. 32. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 74. 214. 240. 114. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 24. 221. 243. 57. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 8. 180. 252. 119. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 136. 252. 153. 7. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3. 136. 251. 226. 34. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 123. 252. 246. 39. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 165. 252. 127. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 165. 175. 3. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] y= [[ 0.58273095 0.50121385 -0.74845004 0.35842288 -0.13741069 -0.5839622 0.2642774 0.5101677 -0.29416046 0.5471707 ] [ 0.58273095 0.50121385 -0.74845004 0.35842288 -0.13741069 -0.5839622 0.2642774 0.5101677 -0.29416046 0.5471707 ]] y_= [[1. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 1. 0. 0. 0. 0. 0.]] loss= 2.2801425 softmax= [[0.14659645 0.13512042 0.03872566 0.11714067 0.07134604 0.04564939 0.10661562 0.13633572 0.06099501 0.14147504] [0.14659645 0.13512042 0.03872566 0.11714067 0.07134604 0.04564939 0.10661562 0.13633572 0.06099501 0.14147504]] cross_entropy= [1.9200717 2.6402135] regularization= 50459690000000.0 50459690000000.0 after 45 trainning steps: x= [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 25. 214. 225. 90. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 7. 145. 212. 253. 253. 60. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 106. 253. 253. 246. 188. 23. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 45. 164. 254. 253. 223. 108. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 24. 236. 253. 252. 124. 28. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 100. 217. 253. 218. 116. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 158. 175. 225. 253. 92. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 24. 217. 241. 248. 114. 2. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 21. 201. 253. 253. 114. 3. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 107. 253. 253. 213. 19. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 170. 254. 254. 169. 0. 0. 0. 0. 0. 2. 13. 100. 133. 89. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 18. 210. 253. 253. 100. 0. 0. 0. 19. 76. 116. 253. 253. 253. 176. 4. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 41. 222. 253. 208. 18. 0. 0. 93. 209. 232. 217. 224. 253. 253. 241. 31. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 157. 253. 253. 229. 32. 0. 154. 250. 246. 36. 0. 49. 253. 253. 168. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 128. 253. 253. 253. 195. 125. 247. 166. 69. 0. 0. 37. 236. 253. 168. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 37. 253. 253. 253. 253. 253. 135. 32. 0. 7. 130. 73. 202. 253. 133. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 7. 185. 253. 253. 253. 253. 64. 0. 10. 210. 253. 253. 253. 153. 9. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 66. 253. 253. 253. 253. 238. 218. 221. 253. 253. 235. 156. 37. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 5. 111. 228. 253. 253. 253. 253. 254. 253. 168. 19. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 9. 110. 178. 253. 253. 249. 63. 5. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 121. 121. 240. 253. 218. 121. 121. 44. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 17. 107. 184. 240. 253. 252. 252. 252. 252. 252. 252. 219. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 75. 122. 230. 252. 252. 252. 253. 252. 252. 252. 252. 252. 252. 239. 56. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 77. 129. 213. 244. 252. 252. 252. 252. 252. 253. 252. 252. 209. 252. 252. 252. 225. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 240. 252. 252. 252. 252. 252. 252. 213. 185. 53. 53. 53. 89. 252. 252. 252. 120. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 240. 232. 198. 93. 164. 108. 66. 28. 0. 0. 0. 0. 81. 252. 252. 222. 24. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 76. 50. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 171. 252. 243. 108. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 144. 238. 252. 115. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 7. 70. 241. 248. 133. 28. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 121. 252. 252. 172. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 64. 255. 253. 209. 21. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 13. 246. 253. 207. 21. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 10. 172. 252. 209. 92. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 13. 168. 252. 252. 92. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 43. 208. 252. 241. 53. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 15. 166. 252. 204. 62. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 13. 166. 243. 191. 29. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 10. 168. 231. 177. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 6. 172. 241. 50. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 177. 202. 19. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] y= [[ 0.8592988 0.3954708 -0.77875614 0.26675048 0.19804694 -0.61968666 0.18084174 0.4034736 -0.34189415 0.43645462] [ 0.8592988 0.3954708 -0.77875614 0.26675048 0.19804694 -0.61968666 0.18084174 0.4034736 -0.34189415 0.43645462]] y_= [[0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 1. 0. 0.]] loss= 2.2191708 softmax= [[0.19166051 0.12052987 0.0372507 0.10597225 0.09893605 0.04367344 0.09724841 0.12149832 0.05765821 0.12557226] [0.19166051 0.12052987 0.0372507 0.10597225 0.09893605 0.04367344 0.09724841 0.12149832 0.05765821 0.12557226]] cross_entropy= [2.3304868 2.1078548] regularization= 50459690000000.0 50459690000000.0 after 46 trainning steps: x= [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 196. 99. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 5. 49. 0. 0. 0. 0. 0. 0. 34. 244. 98. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 89. 135. 0. 0. 0. 0. 0. 0. 40. 253. 98. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 171. 150. 0. 0. 0. 0. 0. 0. 40. 253. 98. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 254. 233. 0. 0. 0. 0. 0. 0. 77. 253. 98. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 255. 136. 0. 0. 0. 0. 0. 0. 77. 254. 99. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 254. 135. 0. 0. 0. 0. 0. 0. 123. 253. 98. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 254. 135. 0. 0. 0. 0. 0. 0. 136. 253. 98. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 16. 254. 135. 0. 0. 0. 0. 0. 0. 136. 237. 8. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 98. 254. 135. 0. 0. 38. 99. 98. 98. 219. 155. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 196. 255. 208. 186. 254. 254. 255. 254. 254. 254. 254. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 105. 254. 253. 239. 180. 135. 39. 39. 39. 237. 170. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 137. 92. 24. 0. 0. 0. 0. 0. 234. 155. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 13. 237. 155. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 79. 253. 155. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 31. 242. 155. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 61. 248. 155. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 234. 155. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 234. 155. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 196. 155. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 50. 236. 255. 124. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 53. 231. 253. 253. 107. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 9. 193. 253. 253. 230. 4. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 7. 156. 253. 253. 149. 36. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 24. 253. 253. 190. 8. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3. 175. 253. 253. 72. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 123. 253. 253. 138. 3. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 10. 244. 253. 230. 34. 0. 9. 24. 23. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 181. 253. 249. 123. 0. 69. 195. 253. 249. 146. 15. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 21. 231. 253. 202. 0. 70. 236. 253. 253. 253. 253. 170. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 22. 139. 253. 213. 26. 13. 200. 253. 253. 183. 252. 253. 220. 22. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 72. 253. 253. 129. 0. 86. 253. 253. 129. 4. 105. 253. 253. 70. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 72. 253. 253. 77. 22. 245. 253. 183. 4. 0. 2. 105. 253. 70. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 132. 253. 253. 11. 24. 253. 253. 116. 0. 0. 1. 150. 253. 70. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 189. 253. 241. 10. 24. 253. 253. 59. 0. 0. 82. 253. 212. 30. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 189. 253. 147. 0. 24. 253. 253. 150. 30. 44. 208. 212. 31. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 189. 253. 174. 3. 7. 185. 253. 253. 227. 247. 184. 30. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 150. 253. 253. 145. 95. 234. 253. 253. 253. 126. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 72. 253. 253. 253. 253. 253. 253. 253. 169. 14. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 5. 114. 240. 253. 253. 234. 135. 44. 3. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] y= [[ 0.7093834 0.30119324 -0.80789334 0.1838598 0.12065991 -0.6538477 0.49587095 0.6995347 -0.38699397 0.33823296] [ 0.7093834 0.30119324 -0.80789334 0.1838598 0.12065991 -0.6538477 0.49587095 0.6995347 -0.38699397 0.33823296]] y_= [[0. 0. 0. 0. 1. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.]] loss= 2.2107558 softmax= [[0.16371341 0.10884525 0.03590371 0.09679484 0.09086671 0.04188326 0.1322382 0.16210894 0.05469323 0.11295244] [0.16371341 0.10884525 0.03590371 0.09679484 0.09086671 0.04188326 0.1322382 0.16210894 0.05469323 0.11295244]] cross_entropy= [2.3983614 2.0231504] regularization= 50459690000000.0 50459690000000.0 after 47 trainning steps: x= [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 11. 139. 212. 253. 159. 86. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 34. 89. 203. 253. 252. 252. 252. 252. 74. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 49. 184. 234. 252. 252. 184. 110. 100. 208. 252. 199. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 95. 233. 252. 252. 176. 56. 0. 0. 0. 17. 234. 249. 75. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 220. 253. 178. 54. 4. 0. 0. 0. 0. 43. 240. 243. 50. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 221. 255. 180. 55. 5. 0. 0. 0. 7. 160. 253. 168. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 116. 253. 252. 252. 67. 0. 0. 0. 91. 252. 231. 42. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 32. 190. 252. 252. 185. 38. 0. 119. 234. 252. 54. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 15. 177. 252. 252. 179. 155. 236. 227. 119. 4. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 26. 221. 252. 252. 253. 252. 130. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 32. 229. 253. 255. 144. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 66. 236. 252. 253. 92. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 66. 234. 252. 252. 253. 92. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 19. 236. 252. 252. 252. 253. 92. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 53. 181. 252. 168. 43. 232. 253. 92. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 179. 255. 218. 32. 93. 253. 252. 84. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 81. 244. 239. 33. 0. 114. 252. 209. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 207. 252. 237. 70. 153. 240. 252. 32. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 207. 252. 253. 252. 252. 252. 210. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 61. 242. 253. 252. 168. 96. 12. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 68. 254. 255. 254. 107. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 11. 176. 230. 253. 253. 253. 212. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 28. 197. 253. 253. 253. 253. 253. 229. 107. 14. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 194. 253. 253. 253. 253. 253. 253. 253. 253. 53. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 69. 241. 253. 253. 253. 253. 241. 186. 253. 253. 195. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 10. 161. 253. 253. 253. 246. 40. 57. 231. 253. 253. 195. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 140. 253. 253. 253. 253. 154. 0. 25. 253. 253. 253. 195. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 213. 253. 253. 253. 135. 8. 0. 3. 128. 253. 253. 195. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 77. 238. 253. 253. 253. 7. 0. 0. 0. 116. 253. 253. 195. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 11. 165. 253. 253. 231. 70. 1. 0. 0. 0. 78. 237. 253. 195. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 33. 253. 253. 253. 182. 0. 0. 0. 0. 0. 0. 200. 253. 195. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 98. 253. 253. 253. 24. 0. 0. 0. 0. 0. 0. 42. 253. 195. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 197. 253. 253. 253. 24. 0. 0. 0. 0. 0. 0. 163. 253. 195. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 197. 253. 253. 189. 13. 0. 0. 0. 0. 0. 53. 227. 253. 121. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 197. 253. 253. 114. 0. 0. 0. 0. 0. 21. 227. 253. 231. 27. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 197. 253. 253. 114. 0. 0. 0. 5. 131. 143. 253. 231. 59. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 197. 253. 253. 236. 73. 58. 217. 223. 253. 253. 253. 174. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 197. 253. 253. 253. 253. 253. 253. 253. 253. 253. 253. 48. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 149. 253. 253. 253. 253. 253. 253. 253. 253. 182. 15. 3. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 12. 168. 253. 253. 253. 253. 253. 248. 89. 23. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] y= [[ 0.5813921 0.21609789 -0.8359629 0.10818548 0.44052082 -0.6865921 0.78338754 0.5727978 -0.4297532 0.24992661] [ 0.5813921 0.21609789 -0.8359629 0.10818548 0.44052082 -0.6865921 0.78338754 0.5727978 -0.4297532 0.24992661]] y_= [[0. 0. 0. 0. 0. 0. 0. 0. 1. 0.] [1. 0. 0. 0. 0. 0. 0. 0. 0. 0.]] loss= 2.452383 softmax= [[0.14272858 0.09905256 0.03459087 0.08892009 0.1239742 0.04016358 0.1746773 0.14150718 0.05192496 0.10246069] [0.14272858 0.09905256 0.03459087 0.08892009 0.1239742 0.04016358 0.1746773 0.14150718 0.05192496 0.10246069]] cross_entropy= [2.9579558 1.9468105] regularization= 50459690000000.0 50459690000000.0 已终止 ```

PowerDesigner 连接数据库问题?

找不到 orcle in OraDB11g_home1 ODBC 驱动程序的安装例程.

在中国程序员是青春饭吗?

今年,我也32了 ,为了不给大家误导,咨询了猎头、圈内好友,以及年过35岁的几位老程序员……舍了老脸去揭人家伤疤……希望能给大家以帮助,记得帮我点赞哦。 目录: 你以为的人生 一次又一次的伤害 猎头界的真相 如何应对互联网行业的「中年危机」 一、你以为的人生 刚入行时,拿着傲人的工资,想着好好干,以为我们的人生是这样的: 等真到了那一天,你会发现,你的人生很可能是这样的: ...

程序员请照顾好自己,周末病魔差点一套带走我。

程序员在一个周末的时间,得了重病,差点当场去世,还好及时挽救回来了。

我以为我学懂了数据结构,直到看了这个导图才发现,我错了

数据结构与算法思维导图

String s = new String(" a ") 到底产生几个对象?

老生常谈的一个梗,到2020了还在争论,你们一天天的,哎哎哎,我不是针对你一个,我是说在座的各位都是人才! 上图红色的这3个箭头,对于通过new产生一个字符串(”宜春”)时,会先去常量池中查找是否已经有了”宜春”对象,如果没有则在常量池中创建一个此字符串对象,然后堆中再创建一个常量池中此”宜春”对象的拷贝对象。 也就是说准确答案是产生了一个或两个对象,如果常量池中原来没有 ”宜春” ,就是两个。...

技术大佬:我去,你写的 switch 语句也太老土了吧

昨天早上通过远程的方式 review 了两名新来同事的代码,大部分代码都写得很漂亮,严谨的同时注释也很到位,这令我非常满意。但当我看到他们当中有一个人写的 switch 语句时,还是忍不住破口大骂:“我擦,小王,你丫写的 switch 语句也太老土了吧!” 来看看小王写的代码吧,看完不要骂我装逼啊。 private static String createPlayer(PlayerTypes p...

Linux面试题(2020最新版)

文章目录Linux 概述什么是LinuxUnix和Linux有什么区别?什么是 Linux 内核?Linux的基本组件是什么?Linux 的体系结构BASH和DOS之间的基本区别是什么?Linux 开机启动过程?Linux系统缺省的运行级别?Linux 使用的进程间通信方式?Linux 有哪些系统日志文件?Linux系统安装多个桌面环境有帮助吗?什么是交换空间?什么是root帐户什么是LILO?什...

将一个接口响应时间从2s优化到 200ms以内的一个案例

一、背景 在开发联调阶段发现一个接口的响应时间特别长,经常超时,囧… 本文讲讲是如何定位到性能瓶颈以及修改的思路,将该接口从 2 s 左右优化到 200ms 以内 。 二、步骤 2.1 定位 定位性能瓶颈有两个思路,一个是通过工具去监控,一个是通过经验去猜想。 2.1.1 工具监控 就工具而言,推荐使用 arthas ,用到的是 trace 命令 具体安装步骤很简单,大家自行研究。 我的使用步骤是...

学历低,无法胜任工作,大佬告诉你应该怎么做

微信上收到一位读者小涛的留言,大致的意思是自己只有高中学历,经过培训后找到了一份工作,但很难胜任,考虑要不要辞职找一份他能力可以胜任的实习工作。下面是他留言的一部分内容: 二哥,我是 2016 年高中毕业的,考上了大学但没去成,主要是因为当时家里经济条件不太允许。 打工了三年后想学一门技术,就去培训了。培训的学校比较垃圾,现在非常后悔没去正规一点的机构培训。 去年 11 月份来北京找到了一份工...

JVM内存结构和Java内存模型别再傻傻分不清了

JVM内存结构和Java内存模型都是面试的热点问题,名字看感觉都差不多,网上有些博客也都把这两个概念混着用,实际上他们之间差别还是挺大的。 通俗点说,JVM内存结构是与JVM的内部存储结构相关,而Java内存模型是与多线程编程相关,本文针对这两个总是被混用的概念展开讲解。 JVM内存结构 JVM构成 说到JVM内存结构,就不会只是说内存结构的5个分区,而是会延展到整个JVM相关的问题,所以先了解下

和黑客斗争的 6 天!

互联网公司工作,很难避免不和黑客们打交道,我呆过的两家互联网公司,几乎每月每天每分钟都有黑客在公司网站上扫描。有的是寻找 Sql 注入的缺口,有的是寻找线上服务器可能存在的漏洞,大部分都...

Google 与微软的浏览器之争

浏览器再现“神仙打架”。整理 | 屠敏头图 | CSDN 下载自东方 IC出品 | CSDN(ID:CSDNnews)从 IE 到 Chrome,再从 Chrome 到 Edge,微软与...

讲一个程序员如何副业月赚三万的真实故事

loonggg读完需要3分钟速读仅需 1 分钟大家好,我是你们的校长。我之前讲过,这年头,只要肯动脑,肯行动,程序员凭借自己的技术,赚钱的方式还是有很多种的。仅仅靠在公司出卖自己的劳动时...

上班一个月,后悔当初着急入职的选择了

最近有个老铁,告诉我说,上班一个月,后悔当初着急入职现在公司了。他之前在美图做手机研发,今年美图那边今年也有一波组织优化调整,他是其中一个,在协商离职后,当时捉急找工作上班,因为有房贷供着,不能没有收入来源。所以匆忙选了一家公司,实际上是一个大型外包公司,主要派遣给其他手机厂商做外包项目。**当时承诺待遇还不错,所以就立马入职去上班了。但是后面入职后,发现薪酬待遇这块并不是HR所说那样,那个HR自...

女程序员,为什么比男程序员少???

昨天看到一档综艺节目,讨论了两个话题:(1)中国学生的数学成绩,平均下来看,会比国外好?为什么?(2)男生的数学成绩,平均下来看,会比女生好?为什么?同时,我又联想到了一个技术圈经常讨...

搜狗输入法也在挑战国人的智商!

故事总是一个接着一个到来...上周写完《鲁大师已经彻底沦为一款垃圾流氓软件!》这篇文章之后,鲁大师的市场工作人员就找到了我,希望把这篇文章删除掉。经过一番沟通我先把这篇文章从公号中删除了...

85后蒋凡:28岁实现财务自由、34岁成为阿里万亿电商帝国双掌门,他的人生底层逻辑是什么?...

蒋凡是何许人也? 2017年12月27日,在入职4年时间里,蒋凡开挂般坐上了淘宝总裁位置。 为此,时任阿里CEO张勇在任命书中力赞: 蒋凡加入阿里,始终保持创业者的冲劲,有敏锐的...

总结了 150 余个神奇网站,你不来瞅瞅吗?

原博客再更新,可能就没了,之后将持续更新本篇博客。

副业收入是我做程序媛的3倍,工作外的B面人生是怎样的?

提到“程序员”,多数人脑海里首先想到的大约是:为人木讷、薪水超高、工作枯燥…… 然而,当离开工作岗位,撕去层层标签,脱下“程序员”这身外套,有的人生动又有趣,马上展现出了完全不同的A/B面人生! 不论是简单的爱好,还是正经的副业,他们都干得同样出色。偶尔,还能和程序员的特质结合,产生奇妙的“化学反应”。 @Charlotte:平日素颜示人,周末美妆博主 大家都以为程序媛也个个不修边幅,但我们也许...

MySQL数据库面试题(2020最新版)

文章目录数据库基础知识为什么要使用数据库什么是SQL?什么是MySQL?数据库三大范式是什么mysql有关权限的表都有哪几个MySQL的binlog有有几种录入格式?分别有什么区别?数据类型mysql有哪些数据类型引擎MySQL存储引擎MyISAM与InnoDB区别MyISAM索引与InnoDB索引的区别?InnoDB引擎的4大特性存储引擎选择索引什么是索引?索引有哪些优缺点?索引使用场景(重点)...

如果你是老板,你会不会踢了这样的员工?

有个好朋友ZS,是技术总监,昨天问我:“有一个老下属,跟了我很多年,做事勤勤恳恳,主动性也很好。但随着公司的发展,他的进步速度,跟不上团队的步伐了,有点...

我入职阿里后,才知道原来简历这么写

私下里,有不少读者问我:“二哥,如何才能写出一份专业的技术简历呢?我总感觉自己写的简历太烂了,所以投了无数份,都石沉大海了。”说实话,我自己好多年没有写过简历了,但我认识的一个同行,他在阿里,给我说了一些他当年写简历的方法论,我感觉太牛逼了,实在是忍不住,就分享了出来,希望能够帮助到你。 01、简历的本质 作为简历的撰写者,你必须要搞清楚一点,简历的本质是什么,它就是为了来销售你的价值主张的。往深...

离职半年了,老东家又发 offer,回不回?

有小伙伴问松哥这个问题,他在上海某公司,在离职了几个月后,前公司的领导联系到他,希望他能够返聘回去,他很纠结要不要回去? 俗话说好马不吃回头草,但是这个小伙伴既然感到纠结了,我觉得至少说明了两个问题:1.曾经的公司还不错;2.现在的日子也不是很如意。否则应该就不会纠结了。 老实说,松哥之前也有过类似的经历,今天就来和小伙伴们聊聊回头草到底吃不吃。 首先一个基本观点,就是离职了也没必要和老东家弄的苦...

男生更看重女生的身材脸蛋,还是思想?

往往,我们看不进去大段大段的逻辑。深刻的哲理,往往短而精悍,一阵见血。问:产品经理挺漂亮的,有点心动,但不知道合不合得来。男生更看重女生的身材脸蛋,还是...

什么时候跳槽,为什么离职,你想好了么?

都是出来打工的,多为自己着想

程序员为什么千万不要瞎努力?

本文作者用对比非常鲜明的两个开发团队的故事,讲解了敏捷开发之道 —— 如果你的团队缺乏统一标准的环境,那么即使勤劳努力,不仅会极其耗时而且成果甚微,使用...

为什么程序员做外包会被瞧不起?

二哥,有个事想询问下您的意见,您觉得应届生值得去外包吗?公司虽然挺大的,中xx,但待遇感觉挺低,马上要报到,挺纠结的。

当HR压你价,说你只值7K,你该怎么回答?

当HR压你价,说你只值7K时,你可以流畅地回答,记住,是流畅,不能犹豫。 礼貌地说:“7K是吗?了解了。嗯~其实我对贵司的面试官印象很好。只不过,现在我的手头上已经有一份11K的offer。来面试,主要也是自己对贵司挺有兴趣的,所以过来看看……”(未完) 这段话主要是陪HR互诈的同时,从公司兴趣,公司职员印象上,都给予对方正面的肯定,既能提升HR的好感度,又能让谈判气氛融洽,为后面的发挥留足空间。...

面试:第十六章:Java中级开发(16k)

HashMap底层实现原理,红黑树,B+树,B树的结构原理 Spring的AOP和IOC是什么?它们常见的使用场景有哪些?Spring事务,事务的属性,传播行为,数据库隔离级别 Spring和SpringMVC,MyBatis以及SpringBoot的注解分别有哪些?SpringMVC的工作原理,SpringBoot框架的优点,MyBatis框架的优点 SpringCould组件有哪些,他们...

面试阿里p7,被按在地上摩擦,鬼知道我经历了什么?

面试阿里p7被问到的问题(当时我只知道第一个):@Conditional是做什么的?@Conditional多个条件是什么逻辑关系?条件判断在什么时候执...

终于懂了TCP和UDP协议区别

终于懂了TCP和UDP协议区别

立即提问
相关内容推荐