python多线程操作实现使用多个CPU

用python写了个小脚本,但是在服务器上只用了1个cpu,希望能够使用多个cpu,请问诸位大大该怎么改脚本才能实现?

1个回答

如果是CPU密集型程序。
将导入模块由threading改为multiprocessing
用法大体相同。

如果是IO密集型程序,threading或者asyncio足够了。

Csdn user default icon
上传中...
上传图片
插入图片
抄袭、复制答案,以达到刷声望分或其他目的的行为,在CSDN问答是严格禁止的,一经发现立刻封号。是时候展现真正的技术了!
其他相关推荐
python多线程最大线程数默认设置为什么与CPU数量有关。

【新手提问】 如题 python多线程最大线程数默认设置为什么与CPU数量有关。按照平时的了解,由于CPython 解释器,python的多线程不是伪多线程吗?实际上并不能使用到多个CPU,那为什么官方的默认设置线程池中最大线程数会与CPU数相关? concurrent.futures的文档: > Changed in version 3.5: If max_workers is None or not given, it will default to **the number of processors on the machine, multiplied by 5**, assuming that ThreadPoolExecutor is often used to overlap I/O instead of CPU work and the number of workers should be higher than the number of workers for ProcessPoolExecutor. > Changed in version 3.8: Default value of max_workers is changed to **min(32, os.cpu_count() + 4)**. This default value preserves at least 5 workers for I/O bound tasks. It utilizes at most 32 CPU cores for CPU bound tasks which release the GIL. And it avoids using very large resources implicitly on many-core machines.

关于python网络爬虫多线程下载图片到本地的问题

小弟最近在做网络爬虫,已经开了三贴了哈哈哈。这次的问题是我想在下载图片到本地时进行多线程下载以提高速度,但是我写的多线程每次都会回到程序最开始处,也就是让输入爬虫网站和深度的那里,有大佬能解答下吗 ``` import time import re import os import requests from multiprocessing.pool import Pool from multiprocessing import cpu_count start_time=time.time() url_website=input('Please type the URL:') deep_number=input("Please specify the deep you want to reach: ") html_name='http://' link_list=[url_website] list=[] def split_website(url_website): re_website=re.findall('//.*',url_website) string_website="".join(re_website) path_website=re.sub('//','',string_website) return path_website host_name=split_website(url_website) host_name_list=host_name.split('/') host_name=host_name_list[0] deep=int(deep_number) def save_image(iter,list_split): iter = "http://" + list_split[0] + iter im_string = ''.join(iter) im_list = im_string.split('/') im_name = im_list[-1] print(im_name) exc = False try: imgs = requests.get(iter) except: exc = True pass if not exc: print('write') image_file = open(im_name, 'wb') image_file.write(imgs.content) image_file.close() while deep>=0: print(deep) print(link_list,'before foor loop') for element in link_list: print(element) res=requests.get(element) html_process=open('html_test.html','wb') html_process.write(res.content) html_process.close() html_read=open('html_test.html','r',encoding='UTF-8') read_content=html_read.read() urls=re.findall("<a.*?href=.*?<\/a>",read_content) print(urls) image = re.findall('img.*?src="(.+?)"',read_content) print(image) path_website = split_website(element) split_list = path_website.split('/') os.chdir(os.path.split(os.path.realpath(__file__))[0]) print(link_list,'before 2 foor loop') for i in range(len(split_list)): dir_name = split_list[i] folder_name = dir_name if not os.path.exists(folder_name): os.mkdir(folder_name) os.chdir(folder_name) if i == (len(split_list) - 1): ## _** for im_iter in image: ## pool=Pool(5) ## pool.map(save_image,[im_iter,split_list]) ## pool.close()_** print(link_list,'before 3 for loop') for url in urls: url_string="".join(url) url_href_list=url_string.split("\"") url_href_list[1]=html_name+host_name+url_href_list[1] nick_name = re.findall('>.*?<', url) if (''.join(nick_name))!='>Back<': list.append(url_href_list[1]) print(list,'this is back up list') print(link_list,'Before removing') print(link_list,'After removing') print(list) link_list=list list=[] print(deep) deep=deep-1 end_time=time.time() print('time used: ',end_time-start_time) ``` 加粗斜体那是小弟写的多线程,但奇怪的是每次它都会回到最开始叫我输入网址的地方并且出现5次。如何避免这个问题只让下图片那多线程呢,求大佬解答 ![执行开始时](https://img-ask.csdn.net/upload/201911/18/1574070381_322798.png) ![执行一段时间后](https://img-ask.csdn.net/upload/201911/18/1574070393_251979.png)

多线程大数量map的插入效率问题

在做项目的时候碰到一个棘手的问题,希望高手能帮忙解决一下: 在处理大数据量的时候大概每秒1000个数据量,我开了两个线程:一个线程用于处理接收数据,另一个用于处理数据:接收数据有一个map<int,int>类型,包在一个vector里大致结构如下 vector<StaticInfo> recv; Struct StaticInfo { map<int,int>key_value; } 处理数据单元:需要将所有接收数据Key,value计算总和,并保存在一个容器里map<int,int>测试结果发现cpu占用高达100%以上!请问高手有没有好的办法...多谢了

python的网络请求线程数量如何根据自己服务器和对方的性能配置(内存,cpu,带宽)来调整

假设我是阿里云CPU:1核,内存:2G,带宽1M 在一个多线程,(每一个线程都是死循环request)中, 我的线程数量应该是多少合适?10?20?50? 如果我是阿里云CPU:1核,内存:2G,带宽5M呢? ``` for i in range(threadCount): list.append(threading.Thread(target=thread,args=(1,))) list[i].start() for i in list: i.join() ```

python threadpool 不能创建新线程的问题

你好 楼主关于threadpool的写法是这样的 ,然后楼主讲这个代码丢到了celery里面每分钟执行一次 每次执行大概4-5s的样子 但是跑一段时间就会报出can't start new thread 求大神告知是为什么 pool_cpu = threadpool.ThreadPool(30) requests = threadpool.makeRequests(do_cpu_usage, cup_usage) [pool_cpu.putRequest(req) for req in requests] pool_disk = threadpool.ThreadPool(30) requests = threadpool.makeRequests(do_disk_usage, disk_usage) [pool_disk.putRequest(req) for req in requests] pool_mem = threadpool.ThreadPool(30) requests = threadpool.makeRequests(do_mem_info, mem_info) [pool_mem.putRequest(req) for req in requests] pool_cpu.wait() pool_disk.wait() pool_mem.wait()

python3多进程爬虫的每个进程停止运行但是程序没有退出?

我写了一个多进程和多线程结合的爬虫(我不知道多进程和多线程怎样结合使用)所以我先说一下**我的思路**: * 首先我爬取的是[某车之家](https://www.autohome.com.cn/)的文章 * 汽车之家有很多种车,比如奥迪,宝马,奔驰,我创建一个进程池pool, 对应每一种车创建一个进程下载它的文章 * 然后,因为每种车下面有很多篇文章,我创建一个线程池,对应每一篇文章,创建一个线程来下载文章 * 创建进程池我使用的是multiprocessing.Pool * 创建线程池使用的是concurrent.futures.ThreadPoolExecutor ## 那么现在问题来了 * 当我刚开始运行我的代码的时候,因为我创建的进程池大小是cpu_count()=8,所以打开任务管理器可以看到8个python进程正在运行 ![图片说明](https://img-ask.csdn.net/upload/201901/26/1548506446_775132.png) * **然后,当代码运行一段时间后,进程池中的8个进程全部停止运行了** ![图片说明](https://img-ask.csdn.net/upload/201901/26/1548506504_930707.png) ![图片说明](https://img-ask.csdn.net/upload/201901/26/1548506544_201575.png) ## 可以看到此时代码并没有运行完毕,而且代码运行卡在这里无论等多久都不会继续运行 * 我观察发现,这些进程在下载某辆车如本田-雅阁的所有文章后,注意是将所有文章下载完毕才会停止运行,而且不再运行 ## 我想知道进程池中的进程为什么会停止运行,而我的函数没有停止?可以确定的是我的爬虫任务并没有全部完成,仅仅完成了一小部分。进程池中的每一个进程在爬取几辆车的所有文章后停止运行,求大佬解答,不甚感激。 ## 代码如下 ``` # coding=utf-8 import requests import os import re import json import time import random import threading import multiprocessing import concurrent.futures from bs4 import BeautifulSoup def change_title(title): rstr = r"[\/\\\:\*\?\"\<\>\|]" return re.sub(rstr, "", title) USER_AGENTS = [ "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; AcooBrowser; .NET CLR 1.1.4322; .NET CLR 2.0.50727)", "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0; Acoo Browser; SLCC1; .NET CLR 2.0.50727; Media Center PC 5.0; .NET CLR 3.0.04506)", "Mozilla/4.0 (compatible; MSIE 7.0; AOL 9.5; AOLBuild 4337.35; Windows NT 5.1; .NET CLR 1.1.4322; .NET CLR 2.0.50727)", "Mozilla/5.0 (Windows; U; MSIE 9.0; Windows NT 9.0; en-US)", "Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Win64; x64; Trident/5.0; .NET CLR 3.5.30729; .NET CLR 3.0.30729; .NET CLR 2.0.50727; Media Center PC 6.0)", "Mozilla/5.0 (compatible; MSIE 8.0; Windows NT 6.0; Trident/4.0; WOW64; Trident/4.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; .NET CLR 1.0.3705; .NET CLR 1.1.4322)", "Mozilla/4.0 (compatible; MSIE 7.0b; Windows NT 5.2; .NET CLR 1.1.4322; .NET CLR 2.0.50727; InfoPath.2; .NET CLR 3.0.04506.30)", "Mozilla/5.0 (Windows; U; Windows NT 5.1; zh-CN) AppleWebKit/523.15 (KHTML, like Gecko, Safari/419.3) Arora/0.3 (Change: 287 c9dfb30)", "Mozilla/5.0 (X11; U; Linux; en-US) AppleWebKit/527+ (KHTML, like Gecko, Safari/419.3) Arora/0.6", "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.2pre) Gecko/20070215 K-Ninja/2.1.1", "Mozilla/5.0 (Windows; U; Windows NT 5.1; zh-CN; rv:1.9) Gecko/20080705 Firefox/3.0 Kapiko/3.0", "Mozilla/5.0 (X11; Linux i686; U;) Gecko/20070322 Kazehakase/0.4.5", "Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.0.8) Gecko Fedora/1.9.0.8-1.fc10 Kazehakase/0.5.6", "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.11 (KHTML, like Gecko) Chrome/17.0.963.56 Safari/535.11", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_3) AppleWebKit/535.20 (KHTML, like Gecko) Chrome/19.0.1036.7 Safari/535.20", "Opera/9.80 (Macintosh; Intel Mac OS X 10.6.8; U; fr) Presto/2.9.168 Version/11.52", ] http_ip = list() https_ip = list() with open(r'D:\pycharm\Spider\99mm\useful_ip.txt', 'r') as fp: lines = fp.readlines() for line in lines: ips = eval(line) if str(ips['kind']) == 'HTTP': http_ip.append(ips['proxy']) else: https_ip.append(ips['proxy']) def get_all_cars(main_url, file_path): car_dict = {} html = requests.get(main_url) soup = BeautifulSoup(html.text, "html.parser") catalog = soup.find("div", id="hotcar-1").find_all("div", class_="name") for cata in catalog[-1:]: # suv, 紧凑型车, 中型车 cata_a = cata.find("a") print(cata_a["href"]) print(cata_a.get_text()) car_url = main_url + cata_a["href"] car_html = requests.get(car_url) car_soup = BeautifulSoup(car_html.text, "html.parser") # 有4个 class_="tab-content-item" car_letter_boxes = car_soup.find("div", class_="tab-content-item").find_all("div", class_="uibox") for car_letter_box in car_letter_boxes[:]: # 车牌按字母排序 A~Z, 一个字母下有很多车牌, 对每个字母进行处理 car_brand_info = car_letter_box.find("div", class_="uibox-con rank-list rank-list-pic") if car_brand_info: car_brands = car_brand_info.find_all("dl", olr=re.compile("^.*$")) for car_brand in car_brands: # 一个车牌有很多种车型, 对每个车牌进行处理 brand_name = car_brand.find("div").find("a").get_text() print("-car brand-", brand_name) car_dict[cata_a.get_text() + "-" + brand_name] = {} car_brand_path = main_path + "\\" + cata_a.get_text() + "-" + brand_name if not os.path.exists(car_brand_path): os.mkdir(car_brand_path) # os.chdir(car_brand_path) car_name_lists = car_brand.find_all("ul", class_="rank-list-ul") for car_name_list in car_name_lists: car_name_lis = car_name_list.find_all("li", id=re.compile("^.*$")) for car_name_li in car_name_lis: car_a_tag = car_name_li.find("h4").find("a") specific_car_url = "https:" + car_a_tag["href"] car_name = car_a_tag.get_text() print("\t", car_name, "\t", specific_car_url) car_dict[cata_a.get_text() + "-" + brand_name][car_name] = specific_car_url brand_cars_path = car_brand_path + "\\" + car_name if not os.path.exists(brand_cars_path): os.mkdir(brand_cars_path) # os.chdir(brand_cars_path) # 至此, 找到了每一辆车的url, 需要从这个url中找到它对应的一系列文章 # get_each_car_articles(main_url, specific_car_url) else: continue return car_dict def get_each_car_articles(main_url, specific_car_url, file_path, headers, proxies, info): # main_url, specific_car_url, file_path, headers, proxies, info = args # 传入的是每一种车的url, 即specific_car_url article_dict = {} specific_car_html = requests.get(url=specific_car_url, headers=headers, proxies=proxies) specific_car_soup = BeautifulSoup(specific_car_html.text, "html.parser") art_temp = specific_car_soup.find("div", class_="athm-sub-nav__channel athm-js-sticky") if art_temp: art = art_temp.find_all("li") else: print(f"\t\t****article is None, url is {specific_car_url}****") return part_url = art[6].find("a")["href"] specific_car_article_url = main_url + part_url right_pos = specific_car_article_url.rfind("/") specific_car_article_url = specific_car_article_url[:right_pos + 1] specific_car_article_html = requests.get(specific_car_article_url, headers=headers, proxies=proxies) specific_car_article_soup = BeautifulSoup(specific_car_article_html.text, "html.parser") page_info = specific_car_article_soup.find("div", class_="page") page_num = 1 if page_info: pages = page_info.find_all("a", target="_self") page_num = int(pages[-2].get_text()) for i in range(1, page_num + 1): if i == 1: page_url = specific_car_article_url else: page_url = specific_car_article_url[:-4] + str(i) + specific_car_article_url[-3:] # print("\t"*2, f"正在查找第{i}页的文章\t", page_url) page_html = requests.get(page_url, headers=headers, proxies=proxies) page_soup = BeautifulSoup(page_html.text, "html.parser") articles = page_soup.find("div", class_="cont-info").find_all("li") for article in articles: each_article = article.find("h3").find("a") each_article_url = "https:" + each_article["href"] each_article_title = each_article.get_text() article_dict[each_article_title] = each_article_url os.chdir(file_path) with concurrent.futures.ThreadPoolExecutor(max_workers=8) as t_executor: for key, value in article_dict.items(): t_executor.submit(download_each_article, *(value, key,info)) # thread_list = [] # for key, value in article_dict.items(): # thread_list.append(threading.Thread(target=download_each_article, args=(value, key,info))) # [thread.start() for thread in thread_list] # [thread.join() for thread in thread_list] def download_each_article(each_article_url, each_article_title, info): headers = { "User-Agent": random.choice(USER_AGENTS), "Referer": "https://www.autohome.com.cn" } proxies = {"proxy": random.choice(http_ip)} # each_article_url, each_article_title, headers, proxies, info = args print(f"\t\t--下载文章-- {info}\t{each_article_title}\t{each_article_url}") article_html = requests.get(each_article_url, headers=headers, proxies=proxies) article_soup = BeautifulSoup(article_html.text, "html.parser") article_content = article_soup.find("div", class_="container article") if article_content: with open(f"{change_title(each_article_title)}.txt", "w+", encoding="utf-8") as f: time_span = article_content.find("div", class_="article-info").find("span", class_="time") time = time_span.get_text() time_dict = {"time": time} f.write(json.dumps(time_dict) + "\n\n") article_content_div = article_content.find("div", id="articleContent") for content in article_content_div.find_all("p"): if content.get_text().strip(): content_dict = {"content": content.get_text()} f.write(json.dumps(content_dict) + "\n") else: try: imgs = content.find_all("a") for i in imgs: img = i.find("img") img_dict = {f"<[image] {img['alt']}> ": "https:" + img["src"]} f.write(json.dumps(img_dict) + "\n") except: continue pages = article_content.find("div", class_="athm-page__num") if pages: for a in pages.find_all("a", target="_self")[1:]: next_page_url = "https://www.autohome.com.cn" + a["href"] pages_html = requests.get(next_page_url, headers=headers, proxies=proxies) pages_soup = BeautifulSoup(pages_html.text, "html.parser") pages_content_div = pages_soup.find("div", class_="container article").find("div", id="articleContent") for content in pages_content_div.find_all("p"): if content.get_text().strip(): content_dict = {"content": content.get_text()} f.write(json.dumps(content_dict) + "\n") else: try: imgs = content.find_all("a") for i in imgs: img = i.find("img") img_dict = {f"<[image] {img['alt']}> ": "https:" + img["src"]} f.write(json.dumps(img_dict) + "\n") except: continue # 下载评论 f.write("\n") article_comment_span = article_content.find("div", "article-tools").find("span", class_="comment") article_comment_url = "https:" + article_comment_span.find("a")["href"] # print(article_comment_url) basic_reply_url = "https://reply.autohome.com.cn/api/comments/show.json?count=50&" \ "page={}&id={}&appid=1&datatype=jsonp&order=0&replyid=0" html = requests.get(article_comment_url, headers=headers, proxies=proxies) html_soup = BeautifulSoup(html.text, "html.parser") article_id = re.search(r"articleid=([\d]*)#", article_comment_url).groups()[0] first_json_dict = json.loads(requests.get(basic_reply_url.format(1, article_id), headers=headers, proxies=proxies).text[1:-1]) page_num = int(first_json_dict["commentcount"]) // 50 + 1 for i in range(1, page_num + 1): json_dict = json.loads(requests.get(basic_reply_url.format(i, article_id)).text[1:-1]) comment_dicts = json_dict["commentlist"] for comment in comment_dicts: comment_dict = {} comment_dict["RMemberId"] = comment["RMemberId"] comment_dict["RMemberName"] = comment["RMemberName"] comment_dict["replydate"] = comment["replydate"] comment_dict["ReplyId"] = comment["ReplyId"] comment_dict["RObjId"] = comment["RObjId"] comment_dict["RTargetReplyId"] = comment["RTargetReplyId"] comment_dict["RTargetMemberId"] = comment["RTargetMemberId"] comment_dict["RReplyDate"] = comment["RReplyDate"] comment_dict["RContent"] = comment["RContent"] comment_dict["RFloor"] = comment["RFloor"] f.write(json.dumps(comment_dict) + "\n") print(f"**{info}-{each_article_title} completed") else: print(f"\tPicture article, passed. URL is {each_article_url}") if __name__ == '__main__': main_url = r"https://www.autohome.com.cn" main_path = r"D:\pycharm\python_work\autohome\汽车之家" start_time = time.time() proxies = {'proxy': random.choice(http_ip)} headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) " "AppleWebKit/537.36 (KHTML, like Gecko) Chrome/71.0.3578.98 Safari/537.36", "Referer": "https://www.autohome.com.cn" } car_dict = get_all_cars(main_url, main_path) # print(car_dict) # with concurrent.futures.ProcessPoolExecutor(max_workers=8) as p_executor: # for keys, values in car_dict.items(): # for key, value in values.items(): # file_path = main_path + "\\" + str(keys) + "\\" + key # info = f"-{keys}-{key}-" # p_executor.submit(get_each_car_articles, *(main_url, value, file_path, headers, proxies, info)) pool = multiprocessing.Pool() for keys, values in car_dict.items(): print(keys, values) for key, value in values.items(): print("\t", key, value) file_path = main_path + "\\" + str(keys) + "\\" + key info = f"-{keys}-{key}-" pool.apply_async(get_each_car_articles, args=(main_url, value, file_path, headers, proxies, info)) pool.close() pool.join() end_time = time.time() print("##########已完成##########") print(f"spend time {end_time-start_time}") ```

windows上用python学习multiprocessing模块的进程池,程序创建了进程池,但是却没用进入子进程?

1.问题描述: 看网课学习python,昨天学到进程池和进程之间的通信。 看老师的视频时运行正确,自己确实没出想象中的效果。 在windows上用python学习multiprocessing模块的进程池,在pycharm中程序创建了进程池,但是却没用进入子进程?但是在命令窗口去可以进入子进程。 代码: ``` # 测试进程池的使用 from multiprocessing import Pool import time, os def work(num): print('咋了?', end='\t') print(5*num) time.sleep(1) if __name__ == "__main__": print('Parent process %s.' % os.getpid()) # 定义一个进程池,设置最大进程为4,默认为cpu核心数 po = Pool(4) for i in range(10): # 调用apply_saync()方法,apply_saync选择要调用的目标,以及将目标需要的参数 # 以元组形式传递,每次循环都会用空出来的进程去调用目标。 po.apply_async(func=work, args=(i,)) # 关闭进程池,只准许进程从进程池出来,不准进入进程池 po.close() # 主进程等待子进程结束,必须写再close后。 po.join() print('子进程结束') ``` 然后在pycharm的运行结果是既没有报错也没有执行子进程的指令 图是这样的: ![图片说明](https://img-ask.csdn.net/upload/201901/16/1547605427_367407.png) 为了给各位大佬提供更多信息,我在循环那debug了下,尽管我目前还看不懂。 ![图片说明](https://img-ask.csdn.net/upload/201901/16/1547605634_254497.png) 在Windows的命令窗口下直接运行结果就有了。貌似得到我的结果了。 ![图片说明](https://img-ask.csdn.net/upload/201901/16/1547605512_956498.png) 说明:昨天也查了半天资料,说的都是加if __name__ == "__main__": 来保证正常,可是我还是出问题了! 请各位大佬指点迷津,拯救一个初学者吧。

请问有谁搭建多线程时遇到过 AttributeError: 'list' object has no attribute 'Thread'这个错误吗?

import threading1 import os import time threading1 = [] start = time.clock() Currentpath = os.getcwd() print ("Currentpath==> "+Currentpath) print ("*****************************************") DirList = os.listdir(Currentpath) print (DirList) def Getposition(file): StrEnd = file[-7:] if StrEnd == "Sum.txt": filepath = Currentpath + "\\" + folder + "\\" + file print("==> " + filepath) result = [] with open(filepath, 'r') as f: for lines in f.readlines(): txts = lines.split(' ') print(txts[-3:]) tem = ','.join(txts[-3:]) with open(file + '-2.csv', 'a') as fcsv: fcsv.writelines(tem) for folder in DirList: if os.path.isdir(Currentpath+"\\"+folder): print("*****************************************") print("Now working folder==> "+folder) Files = os.listdir(Currentpath+"\\"+folder) print(Files) print("*****************************************") list1 = range(len(Files)) print(list1) if __name__== '__main__' : for i in list1: t = threading1.Thread(target=Getposition, args=(Files[i])) print(threading1) threading1.append(t) for i in list1: threading1[i].start() for i in list1: threading1[i].join() print ("***************Finished!!!***************") end=time.clock() times=end-start print("runtime:"+str(times))

windows下Apache PHP环境搭建 高并发出现进程终止和进程重启 怎么解决啊

因为以前对环境配置全是一键安装这些 没仔细研究过配置 现在用的xampp配置的 环境是win2008(linux确实不熟悉 不敢上手目前) 网上常说的gzip\缓存\修改并发数我都弄了 都配置了 但是我用python 多线程请求服务器 1000多个并发 apache直接关闭 有时候也会出现重启的问, 我用ngnix做了反向代理 apache后端还是会出现进程关闭和有进程重启的问,我看了log有显示过超过连接数 还希望大神能有指点指点 毕竟我是本地测试就这样了 主要就是关于apache的环境配置和一些高并发的配置 和关键点

求一个能计算圆周率的程序的源代码

求一个能计算圆周率的程序的源代码,要求如下: 语言不限,要能计算精确度在100万位以上 要求计算100万位花费的时间(以Pentium 4 3.0GHz CPU为基准),不大于1分钟 计算结果可以保存在外部文件中 计算结果必须是十进制的

在中国程序员是青春饭吗?

今年,我也32了 ,为了不给大家误导,咨询了猎头、圈内好友,以及年过35岁的几位老程序员……舍了老脸去揭人家伤疤……希望能给大家以帮助,记得帮我点赞哦。 目录: 你以为的人生 一次又一次的伤害 猎头界的真相 如何应对互联网行业的「中年危机」 一、你以为的人生 刚入行时,拿着傲人的工资,想着好好干,以为我们的人生是这样的: 等真到了那一天,你会发现,你的人生很可能是这样的: ...

程序员请照顾好自己,周末病魔差点一套带走我。

程序员在一个周末的时间,得了重病,差点当场去世,还好及时挽救回来了。

和黑客斗争的 6 天!

互联网公司工作,很难避免不和黑客们打交道,我呆过的两家互联网公司,几乎每月每天每分钟都有黑客在公司网站上扫描。有的是寻找 Sql 注入的缺口,有的是寻找线上服务器可能存在的漏洞,大部分都...

点沙成金:英特尔芯片制造全过程揭密

“亚马逊丛林里的蝴蝶扇动几下翅膀就可能引起两周后美国德州的一次飓风……” 这句人人皆知的话最初用来描述非线性系统中微小参数的变化所引起的系统极大变化。 而在更长的时间尺度内,我们所生活的这个世界就是这样一个异常复杂的非线性系统…… 水泥、穹顶、透视——关于时间与技艺的蝴蝶效应 公元前3000年,古埃及人将尼罗河中挖出的泥浆与纳特龙盐湖中的矿物盐混合,再掺入煅烧石灰石制成的石灰,由此得来了人...

上班一个月,后悔当初着急入职的选择了

最近有个老铁,告诉我说,上班一个月,后悔当初着急入职现在公司了。他之前在美图做手机研发,今年美图那边今年也有一波组织优化调整,他是其中一个,在协商离职后,当时捉急找工作上班,因为有房贷供着,不能没有收入来源。所以匆忙选了一家公司,实际上是一个大型外包公司,主要派遣给其他手机厂商做外包项目。**当时承诺待遇还不错,所以就立马入职去上班了。但是后面入职后,发现薪酬待遇这块并不是HR所说那样,那个HR自...

女程序员,为什么比男程序员少???

昨天看到一档综艺节目,讨论了两个话题:(1)中国学生的数学成绩,平均下来看,会比国外好?为什么?(2)男生的数学成绩,平均下来看,会比女生好?为什么?同时,我又联想到了一个技术圈经常讨...

副业收入是我做程序媛的3倍,工作外的B面人生是怎样的?

提到“程序员”,多数人脑海里首先想到的大约是:为人木讷、薪水超高、工作枯燥…… 然而,当离开工作岗位,撕去层层标签,脱下“程序员”这身外套,有的人生动又有趣,马上展现出了完全不同的A/B面人生! 不论是简单的爱好,还是正经的副业,他们都干得同样出色。偶尔,还能和程序员的特质结合,产生奇妙的“化学反应”。 @Charlotte:平日素颜示人,周末美妆博主 大家都以为程序媛也个个不修边幅,但我们也许...

如果你是老板,你会不会踢了这样的员工?

有个好朋友ZS,是技术总监,昨天问我:“有一个老下属,跟了我很多年,做事勤勤恳恳,主动性也很好。但随着公司的发展,他的进步速度,跟不上团队的步伐了,有点...

我入职阿里后,才知道原来简历这么写

私下里,有不少读者问我:“二哥,如何才能写出一份专业的技术简历呢?我总感觉自己写的简历太烂了,所以投了无数份,都石沉大海了。”说实话,我自己好多年没有写过简历了,但我认识的一个同行,他在阿里,给我说了一些他当年写简历的方法论,我感觉太牛逼了,实在是忍不住,就分享了出来,希望能够帮助到你。 01、简历的本质 作为简历的撰写者,你必须要搞清楚一点,简历的本质是什么,它就是为了来销售你的价值主张的。往深...

外包程序员的幸福生活

今天给你们讲述一个外包程序员的幸福生活。男主是Z哥,不是在外包公司上班的那种,是一名自由职业者,接外包项目自己干。接下来讲的都是真人真事。 先给大家介绍一下男主,Z哥,老程序员,是我十多年前的老同事,技术大牛,当过CTO,也创过业。因为我俩都爱好喝酒、踢球,再加上住的距离不算远,所以一直也断断续续的联系着,我对Z哥的状况也有大概了解。 Z哥几年前创业失败,后来他开始干起了外包,利用自己的技术能...

C++11:一些微小的变化(新的数据类型、template表达式内的空格、nullptr、std::nullptr_t)

本文介绍一些C++的两个新特性,它们虽然微小,但对你的编程十分重要 一、Template表达式内的空格 C++11标准之前建议在“在两个template表达式的闭符之间放一个空格”的要求已经过时了 例如: vector&lt;list&lt;int&gt; &gt;; //C++11之前 vector&lt;list&lt;int&gt;&gt;; //C++11 二、nullptr ...

优雅的替换if-else语句

场景 日常开发,if-else语句写的不少吧??当逻辑分支非常多的时候,if-else套了一层又一层,虽然业务功能倒是实现了,但是看起来是真的很不优雅,尤其是对于我这种有强迫症的程序"猿",看到这么多if-else,脑袋瓜子就嗡嗡的,总想着解锁新姿势:干掉过多的if-else!!!本文将介绍三板斧手段: 优先判断条件,条件不满足的,逻辑及时中断返回; 采用策略模式+工厂模式; 结合注解,锦...

深入剖析Springboot启动原理的底层源码,再也不怕面试官问了!

大家现在应该都对Springboot很熟悉,但是你对他的启动原理了解吗?

离职半年了,老东家又发 offer,回不回?

有小伙伴问松哥这个问题,他在上海某公司,在离职了几个月后,前公司的领导联系到他,希望他能够返聘回去,他很纠结要不要回去? 俗话说好马不吃回头草,但是这个小伙伴既然感到纠结了,我觉得至少说明了两个问题:1.曾经的公司还不错;2.现在的日子也不是很如意。否则应该就不会纠结了。 老实说,松哥之前也有过类似的经历,今天就来和小伙伴们聊聊回头草到底吃不吃。 首先一个基本观点,就是离职了也没必要和老东家弄的苦...

为什么你不想学习?只想玩?人是如何一步一步废掉的

不知道是不是只有我这样子,还是你们也有过类似的经历。 上学的时候总有很多光辉历史,学年名列前茅,或者单科目大佬,但是虽然慢慢地长大了,你开始懈怠了,开始废掉了。。。 什么?你说不知道具体的情况是怎么样的? 我来告诉你: 你常常潜意识里或者心理觉得,自己真正的生活或者奋斗还没有开始。总是幻想着自己还拥有大把时间,还有无限的可能,自己还能逆风翻盘,只不是自己还没开始罢了,自己以后肯定会变得特别厉害...

为什么程序员做外包会被瞧不起?

二哥,有个事想询问下您的意见,您觉得应届生值得去外包吗?公司虽然挺大的,中xx,但待遇感觉挺低,马上要报到,挺纠结的。

当HR压你价,说你只值7K,你该怎么回答?

当HR压你价,说你只值7K时,你可以流畅地回答,记住,是流畅,不能犹豫。 礼貌地说:“7K是吗?了解了。嗯~其实我对贵司的面试官印象很好。只不过,现在我的手头上已经有一份11K的offer。来面试,主要也是自己对贵司挺有兴趣的,所以过来看看……”(未完) 这段话主要是陪HR互诈的同时,从公司兴趣,公司职员印象上,都给予对方正面的肯定,既能提升HR的好感度,又能让谈判气氛融洽,为后面的发挥留足空间。...

面试:第十六章:Java中级开发(16k)

HashMap底层实现原理,红黑树,B+树,B树的结构原理 Spring的AOP和IOC是什么?它们常见的使用场景有哪些?Spring事务,事务的属性,传播行为,数据库隔离级别 Spring和SpringMVC,MyBatis以及SpringBoot的注解分别有哪些?SpringMVC的工作原理,SpringBoot框架的优点,MyBatis框架的优点 SpringCould组件有哪些,他们...

面试阿里p7,被按在地上摩擦,鬼知道我经历了什么?

面试阿里p7被问到的问题(当时我只知道第一个):@Conditional是做什么的?@Conditional多个条件是什么逻辑关系?条件判断在什么时候执...

面试了一个 31 岁程序员,让我有所触动,30岁以上的程序员该何去何从?

最近面试了一个31岁8年经验的程序猿,让我有点感慨,大龄程序猿该何去何从。

【阿里P6面经】二本,curd两年,疯狂复习,拿下阿里offer

二本的读者,在老东家不断学习,最后逆袭

大三实习生,字节跳动面经分享,已拿Offer

说实话,自己的算法,我一个不会,太难了吧

程序员垃圾简历长什么样?

已经连续五年参加大厂校招、社招的技术面试工作,简历看的不下于万份 这篇文章会用实例告诉你,什么是差的程序员简历! 疫情快要结束了,各个公司也都开始春招了,作为即将红遍大江南北的新晋UP主,那当然要为小伙伴们做点事(手动狗头)。 就在公众号里公开征简历,义务帮大家看,并一一点评。《启舰:春招在即,义务帮大家看看简历吧》 一石激起千层浪,三天收到两百多封简历。 花光了两个星期的所有空闲时...

《经典算法案例》01-08:如何使用质数设计扫雷(Minesweeper)游戏

我们都玩过Windows操作系统中的经典游戏扫雷(Minesweeper),如果把质数当作一颗雷,那么,表格中红色的数字哪些是雷(质数)?您能找出多少个呢?文中用列表的方式罗列了10000以内的自然数、质数(素数),6的倍数等,方便大家观察质数的分布规律及特性,以便对算法求解有指导意义。另外,判断质数是初学算法,理解算法重要性的一个非常好的案例。

《Oracle Java SE编程自学与面试指南》最佳学习路线图(2020最新版)

正确选择比瞎努力更重要!

面试官:你连SSO都不懂,就别来面试了

大厂竟然要考我SSO,卧槽。

微软为一人收购一公司?破解索尼程序、写黑客小说,看他彪悍的程序人生!...

作者 | 伍杏玲出品 | CSDN(ID:CSDNnews)格子衬衫、常掉发、双肩包、修电脑、加班多……这些似乎成了大众给程序员的固定标签。近几年流行的“跨界风”开始刷新人们对程序员的...

终于,月薪过5万了!

来看几个问题想不想月薪超过5万?想不想进入公司架构组?想不想成为项目组的负责人?想不想成为spring的高手,超越99%的对手?那么本文内容是你必须要掌握的。本文主要详解bean的生命...

我说我懂多线程,面试官立马给我发了offer

不小心拿了几个offer,有点烦

自从喜欢上了B站这12个UP主,我越来越觉得自己是个废柴了!

不怕告诉你,我自从喜欢上了这12个UP主,哔哩哔哩成为了我手机上最耗电的软件,几乎每天都会看,可是吧,看的越多,我就越觉得自己是个废柴,唉,老天不公啊,不信你看看…… 间接性踌躇满志,持续性混吃等死,都是因为你们……但是,自己的学习力在慢慢变强,这是不容忽视的,推荐给你们! 都说B站是个宝,可是有人不会挖啊,没事,今天咱挖好的送你一箩筐,首先啊,我在B站上最喜欢看这个家伙的视频了,为啥 ,咱撇...

代码注释如此沙雕,会玩还是你们程序员!

某站后端代码被“开源”,同时刷遍全网的,还有代码里的那些神注释。 我们这才知道,原来程序员个个都是段子手;这么多年来,我们也走过了他们的无数套路… 首先,产品经理,是永远永远吐槽不完的!网友的评论也非常扎心,说看这些代码就像在阅读程序员的日记,每一页都写满了对产品经理的恨。 然后,也要发出直击灵魂的质问:你是尊贵的付费大会员吗? 这不禁让人想起之前某音乐app的穷逼Vip,果然,穷逼在哪里都是...

2020春招面试了10多家大厂,我把问烂了的数据库事务知识点总结了一下

2020年截止目前,我面试了阿里巴巴、腾讯、美团、拼多多、京东、快手等互联网大厂。我发现数据库事务在面试中出现的次数非常多。

程序员如何与产品经理优雅的干架

早前,平安产险科技一名外包程序员和一名外包产品经理干架的视频几乎在互联网圈都传遍了,因为产品提了一个需求:要求用户App的主题颜色能根据手机壳自动调整。 首先说这个需求对于应用开发工程师来说,确实是有点奇葩,当然并非不能实现。这块涉及图形图像处理,用机器学习和人工智能来提取图像颜色,这是基本图像识别过程,对于采集图像,可以提示对着镜子自拍一张,上传图片,通过大量的训练数据,来识别手机体颜色。当然并...

爬虫(101)爬点重口味的

小弟最近在学校无聊的很哪,浏览网页突然看到一张图片,都快流鼻血。。。然后小弟冥思苦想,得干一点有趣的事情python 爬虫库安装https://s.taobao.com/api?_ks...

在拼多多上班,是一种什么样的体验?我心态崩了呀!

之前有很多读者咨询我:武哥,在拼多多上班是一种什么样的体验?由于一直很忙,没抽出时间来和大家分享。上周末特地花点时间来写了一篇文章,跟大家分享一下拼多多的日常。 1. 倒时差的作息 可能很多小伙伴都听说了,拼多多加班很严重。这怎么说呢?作息上确实和其他公司有点区别,大家知道 996,那么自然也就能理解拼多多的“11 11 6”了。 所以当很多小伙伴早上出门时,他们是这样的: 我们是这样的: 当...

应聘3万的职位,有必要这么刁难我么。。。沙雕。。。

又一次被面试官带到坑里面了。面试官:springmvc用过么?我:用过啊,经常用呢面试官:springmvc中为什么需要用父子容器?我:嗯。。。没听明白你说的什么。面试官:就是contr...

太狠了,疫情期间面试,一个问题砍了我5000!

疫情期间找工作确实有点难度,想拿到满意的薪资,确实要点实力啊!面试官:Spring中的@Value用过么,介绍一下我:@Value可以标注在字段上面,可以将外部配置文件中的数据,比如可以...

自学编程的 6 个致命误区

嗨,小伙伴们大家好,我是沉默王二。本篇文章来和大家聊聊自学编程中的一些误区——这是我在 B 站上看了羊哥的一期视频后有感而发的文章。因为确实有很多读者也曾私信问过我这些方面的问题,很有代表性,所以我就结合自己的亲身体会来谈一谈,希望对小伙伴们有所启发。 01、追求时髦 所谓基础不牢,地动山摇啊。可很多小伙伴压根就没注意过这个问题,市面上出什么新鲜的技术就想去尝试,结果把自己学的乱七八糟,心灰意冷...

安卓App太能乱来了!被曝一天扫你后台1.3万次:小米系统更新,一不小心扯出惊人真相...

晓查 乾明 发自 凹非寺量子位 报道 | 公众号 QbitAI安卓乱象,所有人都是知道的。但你知道到底有多乱么?现在,我们这些普通用户,也能定量分析检测了。真相,可能比想象中还严重。来看...

立即提问
相关内容推荐