ValueError: multilabel-indicator format is not supported的报错原因?

报错ValueError: multilabel-indicator format is not supported?
这个报错意思比较明确,不支持多分类,但我模型里y的label定义就是0和1,binary,为啥会有这个报错?
一个图像2分类的keras模型,总样本量=120,其中label"0"=110,label"1"=10,非平衡,

代码如下:
data = np.load('D:/a.npz')
image_data, label_data= data['image'], data['label']

skf = StratifiedKFold(n_splits=3, shuffle=True)

for train, test in skf.split(image_data, label_data):
train_x=image_data[train]
test_x=image_data[test]
train_y=label_data[train]
test_y=label_data[test]

train_x = train_x.reshape(81,50176)
test_x = test_x.reshape(39,50176)
train_y = keras.utils.to_categorical(train_y,2)
test_y = keras.utils.to_categorical(test_y,2)

model = Sequential()
model.add(Dense(units=128,activation="relu",input_shape=(50176,)))
model.add(Dense(units=128,activation="relu"))
model.add(Dense(units=128,activation="relu"))
model.add(Dense(units=2,activation="sigmoid"))

model.compile(optimizer=SGD(0.001),loss="binary_crossentropy",metrics=["accuracy"])
model.fit(train_x, train_y,batch_size=32,epochs=5,verbose=1)
y_pred_model = model.predict_proba(test_x)[:,1]
fpr_model, tpr_model, _ = roc_curve(test_y, y_pred_model)

报错提示如下:
---> 63 fpr_model, tpr_model, _ = roc_curve(test_y, y_pred_model)
ValueError: multilabel-indicator format is not supported

Csdn user default icon
上传中...
上传图片
插入图片
抄袭、复制答案,以达到刷声望分或其他目的的行为,在CSDN问答是严格禁止的,一经发现立刻封号。是时候展现真正的技术了!
其他相关推荐
Keras报错 ‘ValueError: 'pool5' is not in list’

很长的一个project,在keras下实现VGG16。 这是报错的整个代码段: ``` for roi, roi_context in zip(rois, rois_context): ins = [im_in, dmap_in, np.array([roi]), np.array([roi_context])] print("Testing ROI {c}") subtimer.tic() blobs_out = model.predict(ins) subtimer.toc() print("Storing Results") print(layer_names) post_roi_layers = set(layer_names[layer_names.index("pool5"):]) for name, val in zip(layer_names, blobs_out): if name not in outs: outs[name] = val else: if name in post_roi_layers: outs[name] = np.concatenate([outs[name], val]) c += 1 ``` 报错信息: ``` Loading Test Data data is loaded from roidb_test_19_smol.pkl Number of Images to test: 10 Testing ROI {c} Storing Results ['cls_score', 'bbox_pred_3d'] Traceback (most recent call last): File "/Users/xijiejiao/Amodal3Det_TF/tfmodel/main.py", line 6, in <module> results = test_main.test_tf_implementation(cache_file="roidb_test_19_smol.pkl", weights_path="rgbd_det_iter_40000.h5") File "/Users/xijiejiao/Amodal3Det_TF/tfmodel/test_main.py", line 36, in test_tf_implementation results = test.test_net(tf_model, roidb) File "/Users/xijiejiao/Amodal3Det_TF/tfmodel/test.py", line 324, in test_net im_detect_3d(net, im, dmap, test['boxes'], test['boxes_3d'], test['rois_context']) File "/Users/xijiejiao/Amodal3Det_TF/tfmodel/test.py", line 200, in im_detect_3d post_roi_layers = set(layer_names[layer_names.index("pool5"):]) ValueError: 'pool5' is not in list ```

关于object detection运行视频检测代码出现报错:ValueError:assignment destination is read-only

我参考博主 withzheng的博客:https://blog.csdn.net/xiaoxiao123jun/article/details/76605928 在视频物体识别的部分中,我用的是Anaconda自带的spyder(python3.6)来运行他给的视频检测代码,出现了如下报错,![图片说明](https://img-ask.csdn.net/upload/201904/20/1555752185_448895.jpg) 具体报错: Moviepy - Building video video1_out.mp4. Moviepy - Writing video video1_out.mp4 t: 7%|▋ | 7/96 [00:40<09:17, 6.26s/it, now=None]Traceback (most recent call last): File "", line 1, in runfile('C:/models-master1/research/object_detection/object_detection_tutorial (1).py', wdir='C:/models-master1/research/object_detection') File "C:\Users\Administrator\Anaconda3\lib\site-packages\spyder\utils\site\sitecustomize.py", line 710, in runfile execfile(filename, namespace) File "C:\Users\Administrator\Anaconda3\lib\site-packages\spyder\utils\site\sitecustomize.py", line 101, in execfile exec(compile(f.read(),filename,'exec'), namespace) File "C:/models-master1/research/object_detection/object_detection_tutorial (1).py", line 273, in white_clip.write_videofile(white_output, audio=False) File "", line 2, in write_videofile File "C:\Users\Administrator\Anaconda3\lib\site-packages\moviepy\decorators.py", line 54, in requires_duration return f(clip, *a, **k) File "", line 2, in write_videofile File "C:\Users\Administrator\Anaconda3\lib\site-packages\moviepy\decorators.py", line 137, in use_clip_fps_by_default return f(clip, *new_a, **new_kw) File "", line 2, in write_videofile File "C:\Users\Administrator\Anaconda3\lib\site-packages\moviepy\decorators.py", line 22, in convert_masks_to_RGB return f(clip, *a, **k) File "C:\Users\Administrator\Anaconda3\lib\site-packages\moviepy\video\VideoClip.py", line 326, in write_videofile logger=logger) File "C:\Users\Administrator\Anaconda3\lib\site-packages\moviepy\video\io\ffmpeg_writer.py", line 216, in ffmpeg_write_video fps=fps, dtype="uint8"): File "C:\Users\Administrator\Anaconda3\lib\site-packages\moviepy\Clip.py", line 475, in iter_frames frame = self.get_frame(t) File "", line 2, in get_frame File "C:\Users\Administrator\Anaconda3\lib\site-packages\moviepy\decorators.py", line 89, in wrapper return f(*new_a, **new_kw) File "C:\Users\Administrator\Anaconda3\lib\site-packages\moviepy\Clip.py", line 95, in get_frame return self.make_frame(t) File "C:\Users\Administrator\Anaconda3\lib\site-packages\moviepy\Clip.py", line 138, in newclip = self.set_make_frame(lambda t: fun(self.get_frame, t)) File "C:\Users\Administrator\Anaconda3\lib\site-packages\moviepy\video\VideoClip.py", line 511, in return self.fl(lambda gf, t: image_func(gf(t)), apply_to) File "C:/models-master1/research/object_detection/object_detection_tutorial (1).py", line 267, in process_image image_process=detect_objects(image,sess,detection_graph) File "C:/models-master1/research/object_detection/object_detection_tutorial (1).py", line 258, in detect_objects line_thickness=8) File "C:\models-master1\research\object_detection\utils\visualization_utils.py", line 743, in visualize_boxes_and_labels_on_image_array use_normalized_coordinates=use_normalized_coordinates) File "C:\models-master1\research\object_detection\utils\visualization_utils.py", line 129, in draw_bounding_box_on_image_array np.copyto(image, np.array(image_pil)) ValueError: assignment destination is read-only 想问问各位大神有遇到过类似的问题吗。。如何解决?

错误提示ValueError: unsupported format character

应该是这一段 '''将方法体中的host字段进行替换''' def get_raw_body(self, req, ip): ip = self.get_host_from_url(ip) host_reg = re.compile(r'Host:\s([a-z\.A-Z0-9]+)') host = host_reg.findall(req) if not host or host[0] == '': print ('[-]ERROR MESSAGE!Wrong format for request body') sys.exit() req, num = re.subn(host_reg, "Host: %s", req) return req % ip 错误提示: return req % (ip) ValueError: unsupported format character '{' (0x7b) at index 31 源程序是2.7,我的是3.6,不想卸载去下2.7,为了这一个程序不值得...

zero-size array to reduction operation minimum which has no identity

pthon报错:zero-size array to reduction operation minimum which has no identity请问这是为什么 原代码如下: dataWOE = data[short_list_2] corr = round(dataWOE.corr(),2) mask = np.zeros_like(corr, dtype=np.bool) mask[np.triu_indices_from(mask)] = True plt.figure(figsize = (5, 5)) cmap = sns.diverging_palette(220, 10, as_cmap=True) sns.heatmap(corr, mask=mask, cmap=cmap, center=0, annot =True, cbar_kws={"shrink": .5}) plt.show()

windows上tensorboard无法启动 显示ValueError: Invalid format string

我已经在windows10上安装了tensorflowg的GPU版本,已经按照网上的教程测试完毕了,成功安装上。 但是当我想启动可视化的时候,出现了下列问题。 下图1是网上复制的测试代码。 ![图片说明](https://img-ask.csdn.net/upload/201903/02/1551514606_732628.png) 在annaconda软件中配的tensorflow环境的下已经运行完毕,产生了日志文件并存储与桌面的logs文件夹中。 ![图片说明](https://img-ask.csdn.net/upload/201903/02/1551514729_334182.png) 这时候出现了如下错误: ![图片说明](https://img-ask.csdn.net/upload/201903/02/1551514764_943163.png) 再描述的详细一点吧 ![图片说明](https://img-ask.csdn.net/upload/201903/02/1551524900_605483.png) 也不知道是哪里错了。。 ![图片说明](https://img-ask.csdn.net/upload/201903/02/1551524927_15052.png) 不明白是哪里出的问题,显示的是格式字符无效 也不知道怎么改。。毕竟都是按照网上的教程一步步装的。。已经试了很多种方法,也重装了好几遍就是解决不了。 说明一下:登陆的是实验室的服务器上 是windows server系统的 不知道是不是与这个有关系。 希望有大神可以解决!!跪谢了!!!

报错ValueError: None values not supported.如何解决

在跑代码的时候出现了ValueError: None values not supported. 停在了这里,这是我定义的class 应该是调用fit函数时候出现的问题 ``` class NetworkBase(object): def train(self, x_train, y_train, x_test, y_test, epochs, batch_size, log_dir='/tmp/fullyconnected', stop_early=False): callbacks = [] if backend._BACKEND == 'tensorflow': callbacks.append(TensorBoard(log_dir=log_dir)) if stop_early: callbacks.append(EarlyStopping(monitor='val_loss', patience=2, verbose=1, mode='auto')) self.fcnet.fit(x_train, y_train, epochs=epochs, batch_size=batch_size, shuffle=True, validation_data=(x_test, y_test), callbacks=callbacks) ``` 报错信息如下 ``` File "D:\R\实验室\代码\DL-hybrid-precoder-master\main_train\Model\network_base.py", line 20, in train callbacks=callbacks) File "C:\Users\admin\Anaconda3\lib\site-packages\keras\engine\training.py", line 1213, in fit self._make_train_function() File "C:\Users\admin\Anaconda3\lib\site-packages\keras\engine\training.py", line 316, in _make_train_function loss=self.total_loss) File "C:\Users\admin\Anaconda3\lib\site-packages\keras\legacy\interfaces.py", line 91, in wrapper return func(*args, **kwargs) File "C:\Users\admin\Anaconda3\lib\site-packages\keras\optimizers.py", line 543, in get_updates p_t = p - lr_t * m_t / (K.sqrt(v_t) + self.epsilon) File "C:\Users\admin\Anaconda3\lib\site-packages\tensorflow\python\ops\math_ops.py", line 815, in binary_op_wrapper y = ops.convert_to_tensor(y, dtype=x.dtype.base_dtype, name="y") File "C:\Users\admin\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py", line 1039, in convert_to_tensor return convert_to_tensor_v2(value, dtype, preferred_dtype, name) File "C:\Users\admin\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py", line 1097, in convert_to_tensor_v2 as_ref=False) File "C:\Users\admin\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py", line 1175, in internal_convert_to_tensor ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref) File "C:\Users\admin\Anaconda3\lib\site-packages\tensorflow\python\framework\constant_op.py", line 304, in _constant_tensor_conversion_function return constant(v, dtype=dtype, name=name) File "C:\Users\admin\Anaconda3\lib\site-packages\tensorflow\python\framework\constant_op.py", line 245, in constant allow_broadcast=True) File "C:\Users\admin\Anaconda3\lib\site-packages\tensorflow\python\framework\constant_op.py", line 283, in _constant_impl allow_broadcast=allow_broadcast)) File "C:\Users\admin\Anaconda3\lib\site-packages\tensorflow\python\framework\tensor_util.py", line 454, in make_tensor_proto raise ValueError("None values not supported.") ValueError: None values not supported. ``` 希望有大神可以帮我解答问题出在哪里

ValueError: None values not supported.

Traceback (most recent call last): File "document_summarizer_training_testing.py", line 296, in <module> tf.app.run() File "/home/lyliu/anaconda3/envs/tensorflowgpu/lib/python3.5/site-packages/tensorflow/python/platform/app.py", line 48, _sys.exit(main(_sys.argv[:1] + flags_passthrough)) File "document_summarizer_training_testing.py", line 291, in main train() File "document_summarizer_training_testing.py", line 102, in train model = MY_Model(sess, len(vocab_dict)-2) File "/home/lyliu/Refresh-master-self-attention/my_model.py", line 70, in __init__ self.train_op_policynet_expreward = model_docsum.train_neg_expectedreward(self.rewardweighted_cross_entropy_loss_multi File "/home/lyliu/Refresh-master-self-attention/model_docsum.py", line 835, in train_neg_expectedreward grads_and_vars_capped_norm = [(tf.clip_by_norm(grad, 5.0), var) for grad, var in grads_and_vars] File "/home/lyliu/Refresh-master-self-attention/model_docsum.py", line 835, in <listcomp> grads_and_vars_capped_norm = [(tf.clip_by_norm(grad, 5.0), var) for grad, var in grads_and_vars] File "/home/lyliu/anaconda3/envs/tensorflowgpu/lib/python3.5/site-packages/tensorflow/python/ops/clip_ops.py", line 107,rm t = ops.convert_to_tensor(t, name="t") File "/home/lyliu/anaconda3/envs/tensorflowgpu/lib/python3.5/site-packages/tensorflow/python/framework/ops.py", line 676o_tensor as_ref=False) File "/home/lyliu/anaconda3/envs/tensorflowgpu/lib/python3.5/site-packages/tensorflow/python/framework/ops.py", line 741convert_to_tensor ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref) File "/home/lyliu/anaconda3/envs/tensorflowgpu/lib/python3.5/site-packages/tensorflow/python/framework/constant_op.py", constant_tensor_conversion_function return constant(v, dtype=dtype, name=name) File "/home/lyliu/anaconda3/envs/tensorflowgpu/lib/python3.5/site-packages/tensorflow/python/framework/constant_op.py", onstant tensor_util.make_tensor_proto(value, dtype=dtype, shape=shape, verify_shape=verify_shape)) File "/home/lyliu/anaconda3/envs/tensorflowgpu/lib/python3.5/site-packages/tensorflow/python/framework/tensor_util.py", ake_tensor_proto raise ValueError("None values not supported.") ValueError: None values not supported. 使用tensorflow gpu版本 tensorflow 1.2.0。希望找到解决方法或者出现这个错误的原因

报错Traceback (most recent call last): File... .format(val=len(data), ind=len(index))) ValueError: Length of passed values is 400, index implies 1

我是个小菜鸟,在尝试写生成高斯分布的作业时被报错: ``` D:\Anaconda\python.exe "F:/All tasks in BFU/Study abroad/Internship2019.8 in Google/Homework/Course1/Exercise6/exercise6.py" Traceback (most recent call last): File "F:/All tasks in BFU/Study abroad/Internship2019.8 in Google/Homework/Course1/Exercise6/exercise6.py", line 20, in <module> y = func(x, mean, std) File "F:/All tasks in BFU/Study abroad/Internship2019.8 in Google/Homework/Course1/Exercise6/exercise6.py", line 15, in func f = math.exp(-((x - mu) ^ 2)/(2*sigma ^ 2))/(sigma * math.sqrt(2 * math.pi)) File "D:\Anaconda\lib\site-packages\pandas\core\ops.py", line 1071, in wrapper index=left.index, name=res_name, dtype=None) File "D:\Anaconda\lib\site-packages\pandas\core\ops.py", line 980, in _construct_result out = left._constructor(result, index=index, dtype=dtype) File "D:\Anaconda\lib\site-packages\pandas\core\series.py", line 262, in __init__ .format(val=len(data), ind=len(index))) ValueError: Length of passed values is 400, index implies 1 Process finished with exit code 1 ``` 我有安装anaconda,但是报错中貌似表明panda这个package的问题。请问大神大佬,我存在什么问题呀应该怎么解决⊙︿⊙,我好像没在网上找到和我一样的问题,不敢和网上的回答一样在命令提示符里输入命令怕搞错(。•́︿•̀。),是我比较菜鸟又急着所以麻烦了!! 附上我的作业代码: ``` import math import pandas as pd import numpy as np import matplotlib.pyplot as plt # import matplotlib.mlab as mlb data = pd.read_csv('example-exercise6.csv') # read file of data # data = data_['time'] mean = data.mean() # average of data std = data.std() # std def func(x, mu, sigma): f = math.exp(-((x - mu) ^ 2)/(2*sigma ^ 2))/(sigma * math.sqrt(2 * math.pi)) return f x = np.arange(60, 100, 0.1) y = func(x, mean, std) plt.plot(x, y) plt.hist(data, bins=10, rwidth=0.9, normed=True) # x = np.arange(145, 155,0.2) # y = normfun(x, mean, std) # plt.plot(x,y,'g',linewidth = 3) # plt.hist(data, bins = 6, color = 'b', alpha=0.5, rwidth = 0.9, normed=True) # plt.title('stakes distribution') # plt.xlabel('stakes time') # plt.ylabel('Probability') plt.show() ``` ( 其中csv文件是:) ``` 87 88 83 83 86 80 84 90 84 80 94 89 76 ```

反归一化时报错ValueError: operands could not be broadcast together with shapes

在使用scaler.inverse_transform(y_test)进行反归一化时,报错ValueError: operands could not be broadcast together with shapes (984,2) (4,)(984,2),我断调试了一下,在这个位置报错:![图片说明](https://img-ask.csdn.net/upload/202005/14/1589426709_978169.png)

CNN模型报错None values not supported,怎么解决?

深度学习小白一枚,最近在kaggle网站上看一个皮肤病数据集的代码→ [皮肤病数据集-CNN模型](https://www.kaggle.com/sid321axn/step-wise-approach-cnn-model-77-0344-accuracy "") 可是按照原网站的代码复制上去后(前面访问文件夹的代码有改动,不过不影响后面代码),用vscode运行时出现了问题 ``` history = model.fit_generator(datagen.flow(x_train,y_train, batch_size=batch_size), steps_per_epoch=x_train.shape[0] // batch_size, epochs = epochs, verbose = 1, callbacks=[learning_rate_reduction], validation_data = (x_validate,y_validate)) ``` 报错如下: ![图片说明](https://img-ask.csdn.net/upload/202002/01/1580524933_147759.png) ![图片说明](https://img-ask.csdn.net/upload/202002/01/1580525568_202234.png) ![图片说明](https://img-ask.csdn.net/upload/202002/01/1580525554_366954.png) 报错:ValueError: None values not supported. 求助,这种问题该怎么解决,源代码可以戳上方蓝字进入kaggle网站上看。

RK3288 make otapackage 报错ValueError: need more than 1 value to unpack

mkbootimg_args = (str) multistage_support = (str) 1 recovery_api_version = (int) 2 selinux_fc = (str) /tmp/targetfiles-WQjmn2/BOOT/RAMDISK/file_contexts system_size = (int) 1610612736 tool_extensions = (str) device/rockchip/rksdk update_rename_support = (str) 1 use_set_metadata = (str) 1 using device-specific extensions in device/rockchip/rksdk building image from target_files RECOVERY... running: mkbootfs -f /tmp/targetfiles-WQjmn2/META/recovery_filesystem_config.txt /tmp/targetfiles-WQjmn2/RECOVERY/RAMDISK running: minigzip running: mkbootimg --kernel /tmp/targetfiles-WQjmn2/RECOVERY/kernel --second /tmp/targetfiles-WQjmn2/RECOVERY/resource.img --ramdisk /tmp/tmpBdTCrB --output /tmp/tmpNnUZoC running: drmsigntool /tmp/tmpNnUZoC build/target/product/security/privateKey.bin src_path: /tmp/tmpNnUZoC, private_key_path: build/target/product/security/privateKey.bin can't open file build/target/product/security/privateKey.bin! no find private key, so not sign boot.img! building image from target_files BOOT... running: mkbootfs -f /tmp/targetfiles-WQjmn2/META/boot_filesystem_config.txt /tmp/targetfiles-WQjmn2/BOOT/RAMDISK running: minigzip running: mkbootimg --kernel /tmp/targetfiles-WQjmn2/BOOT/kernel --second /tmp/targetfiles-WQjmn2/BOOT/resource.img --ramdisk /tmp/tmp6LpDeb --output /tmp/tmppqQcvT running: drmsigntool /tmp/tmppqQcvT build/target/product/security/privateKey.bin src_path: /tmp/tmppqQcvT, private_key_path: build/target/product/security/privateKey.bin can't open file build/target/product/security/privateKey.bin! no find private key, so not sign boot.img! running: imgdiff -b /tmp/targetfiles-WQjmn2/SYSTEM/etc/recovery-resource.dat /tmp/tmpD07dY4 /tmp/tmpXulEpX /tmp/tmp1qudyL Traceback (most recent call last): File "./build/tools/releasetools/ota_from_target_files", line 1059, in <module> main(sys.argv[1:]) File "./build/tools/releasetools/ota_from_target_files", line 1027, in main WriteFullOTAPackage(input_zip, output_zip) File "./build/tools/releasetools/ota_from_target_files", line 502, in WriteFullOTAPackage Item.GetMetadata(input_zip) File "./build/tools/releasetools/ota_from_target_files", line 197, in GetMetadata key, value = element.split("=") ValueError: need more than 1 value to unpack make: *** [out/target/product/rk3288/rk3288-ota-eng.wake.zip] 错误 1

python调用cv2.findContours时报错:ValueError: not enough values to unpack (expected 3, got 2)

完整代码如下: ``` import cv2 import numpy as np img = np.zeros((200, 200), dtype=np.uint8) img[50:150, 50:150] = 255 ret, thresh = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY) image, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) color = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) img = cv2.drawContours(color, contours, -1, (0,255,0), 2) cv2.imshow("contours", color) cv2.waitKey() cv2.destroyAllWindows() ``` 但是cv2.findContours报如下错误: ValueError: not enough values to unpack (expected 3, got 2) python版本为3.6,opencv为4.0.0

独热编码后遇到问题,ValueError: could not convert string to float: 'C'

![图片说明](https://img-ask.csdn.net/upload/202004/12/1586622503_274496.png)![图片说明](https://img-ask.csdn.net/upload/202004/12/1586622514_126977.png)![图片说明](https://img-ask.csdn.net/upload/202004/12/1586622536_284157.png)

ValueError: bad input shape () 求问这个报错该怎么解决

对着《python机器学习经典实例》打代码,发现会报错bad input shape ()。感觉问题出在最后一行,菜鸟想问下该怎么解决?非常感谢 数据如下: med,low,5more,more,med,med,good med,low,5more,more,med,high,vgood med,low,5more,more,big,low,unacc med,low,5more,more,big,med,good med,low,5more,more,big,high,vgood low,vhigh,2,2,small,low,unacc low,vhigh,2,2,small,med,unacc low,vhigh,2,2,small,high,unacc ... ``` import numpy as np import sys reload(sys) sys.setdefaultencoding('utf-8') from sklearn import preprocessing from sklearn.ensemble import RandomForestClassifier #读取数据 input_path=u'/Users/zhangbei//Desktop/数据挖掘/机器学习/Python-Machine-Learning-Cookbook-master/Chapter02/car.data.txt' fo=open(input_path) lines=fo.readlines() x=[] for line in lines: line=line.strip() x.append(line.split(',')) x=np.array(x) #把字符串特征转换为数值 encoder=[] x_encoded=np.empty(x.shape) for i,item in enumerate(x[0]): encoder.append(preprocessing.LabelEncoder()) x_encoded[:,i]=encoder[-1].fit_transform(x[:,i]) x_encoded.astype(int) x=x_encoded[:,:-1] y=x_encoded[:,-1] #转换测试数据 input_data=np.array(['vhigh','vhight','2','2','small','low']) data_encoded=[-1]*len(input_data) print data_encoded for i,item in enumerate(input_data): data_encoded[i]=int(encoder[i].transform((input_data[i]))) ```

在引入qgis.core时报错ValueError: PyCapsule_GetPointer called with incorrect name

Traceback (most recent call last): File "D:/pyCode/first/index.py", line 1, in <module> from qgis.core import * File "E:\QGIS\apps\qgis\python\qgis\__init__.py", line 78, in <module> import qgis.gui File "E:\QGIS\apps\qgis\python\qgis\gui\__init__.py", line 25, in <module> from qgis._gui import * ValueError: PyCapsule_GetPointer called with incorrect name

ValueError: could not broadcast input array from shape (100,100,3) into shape (100,100)

path是图片的路径 w,h是图片的设定长宽 ```def read_img(path): cate=[path+x for x in os.listdir(path) if os.path.isdir(path+x)] imgs=[] labels=[] for idx,folder in enumerate(cate): for im in glob.glob(folder+'/*.jpg'): print('reading the images:%s'%(im)) img=io.imread(im) img=transform.resize(img,(w,h)) imgs.append(img) labels.append(idx) return np.asarray(imgs,np.float32),np.asarray(labels,np.int32) data,label=read_img(path) ``` 我运行花卉图片加载的时候无错误,但换个路径运行猫狗识别的时候就报错 File "C:/Users/spirit/Desktop/实验练习/tensorflow/猫狗识别/训练模型/猫狗识别.py", line 34, in <module>data,label=read_img(path) File "C:/Users/spirit/Desktop/实验练习/tensorflow/猫狗识别/训练模型/猫狗识别.py", line 31, in read_img return np.asarray(imgs,np.float32),np.asarray(labels,np.int32) File "D:\Anaconda\envs\tensorflow\lib\site-packages\numpy\core\numeric.py", line 501, in asarray return array(a, dtype, copy=False, order=order) ValueError: could not broadcast input array from shape (100,100,3) into shape (100,100) 我真心不懂,只是换了其他图片加载,为什么就报错,真心求教! 我在想是不是我的猫狗图片出了问题,但看了也感觉没什么问题啊,头痛

ValueError: too many values to unpack (expected 2)

网上说是元素找不到对应的 代码如下: ``` import turtle file=open("C:/Users/jyz_1/Desktop/新建文本文档.txt") file=file.read() lines=file.split("重庆") i=0 lsy=[] for line in lines: #index the temprature inn=line.index('\n')#The first \n inc=line.index("C")#The first C if i==0: tu=int(line[line.find('\n',inn+1)+1:inc])#The second \n if "~" in line: tl=int(line[line.index('~')+1:line.rindex('C')]) else: tl=tu i=i+1 else: fn=line.find('\n',inn+1) tu=int(line[line.find('\n',fn+1)+1:inc])#The third \n if "~" in line: tl=int(line[line.index('~')+1:line.rindex('C')]) else: tl=tu t=(tl+tu)/2#daily average temprature lsy.append(t) #find the date lsx=[] dates=file.split("\n") for date in dates: if "-" in date: if date.replace("-","").isnumeric()==True: p1=date.index('-')#the first - p2=date.find('-',p1+1)#the second - month=date[p1+1:p2] day=date[p2+1:] date_on_x=int(month+day) lsx.append(date_on_x) #draw axis def drawx(): turtle.pu() turtle.goto(-50,-50) turtle.pd() turtle.fd(240) def drawy(): turtle.pu() turtle.goto(-50,-50) turtle.seth(90) turtle.pd() turtle.fd(160) #comment the axis def comx(): turtle.pu() turtle.goto(-50,-65) turtle.seth(0) for i in range(1,13): turtle.write(i) turtle.fd(20) def comy(): turtle.pu() turtle.goto(-75,-50) turtle.seth(90) for i in range(-30,51,10): turtle.write(float(i)) turtle.fd(20) #draw the rainbow def rainbow(): #define the color if t<8: turtle.color("purple") elif 8<=t<12: turtle.color("lightblue") elif 12<=t<22: turtle.color("green") elif 22<=t<28: turtle.color("yellow") elif 28<=t<30: turtle.color("orange") elif t>=30: turtle.color("red") #let's draw! for x,t in lsx,lsy: turtle.pu() turtle.goto(x,t) turtle.pd() turtle.circle(10) drawx() drawy() comx() comy() rainbow() ``` 报错: ``` Traceback (most recent call last): File "C:\Users\jyz_1\AppData\Local\Programs\Python\Python37-32\32rx.py", line 92, in <module> rainbow(t) File "C:\Users\jyz_1\AppData\Local\Programs\Python\Python37-32\32rx.py", line 83, in rainbow for x,t in lsx,lsy: ValueError: too many values to unpack (expected 2) ``` 但是我用len发现lsx,lsy长度相同 也就是说,lsx,lsy中的元素一一对应 那这个报错是怎么回事?

python操作word报错ValueError: can only parse strings。

1、问题描述: 学习Python操作word文件,使用render()方法时报错ValueError: can only parse strings。 2、相关代码 ``` # _*_ encoding:utf-8 _*_ from docxtpl import DocxTemplate data_dic = { 't1':'燕子', 't2':'杨柳', 't3':'桃花', 't4':'针尖', 't5':'头涔涔', 't6':'泪潸潸', 't7':'茫茫然', 't8':'伶伶俐俐', } doc = DocxTemplate("/test/test.doc") #加载模板文件 doc.render(data_dic) #填充数据 doc.save("/test/target.doc") ``` 3、模板信息: ``` {{r t1}}去了,有再来的时候;{{r t2}}枯了,有再青的时候;{{r t3}}谢了,有再开的时候。但是,聪明的,你告诉我,我们的日子为什么一去不复返呢?——是有人偷了他们罢:那是谁?又藏在何处呢?是他们自己逃走了罢:现在又到了哪里呢? 我不知道他们给了我多少日子;但我的手确乎是渐渐空虚了。在默默里算着,八千多日子已经从我手中溜去;像{{r t4}}上一滴水滴在大海里,我的日子滴在时间的流里,没有声音,也没有影子。我不禁{{r t5}}而{{r t6}}了。 去的尽管去了,来的尽管来着;去来的中间,又怎样地匆匆呢?早上我起来的时候,小屋里射进两三方斜斜的太阳。太阳他有脚啊,轻轻悄悄地挪移了;我也{{r t7}}跟着旋转。于是——洗手的时候,日子从水盆里过去;吃饭的时候,日子从饭碗里过去;默默时,便从凝然的双眼前过去。我觉察他去的匆匆了,伸出手遮挽时,他又从遮挽着的手边过去,天黑时,我躺在床上,他便{{r t8}}地从我身上跨过,从我脚边飞去了。等我睁开眼和太阳再见,这算又溜走了一日。我掩着面叹息。但是新来的日子的影儿又开始在叹息里闪过了。 ``` 4、报错信息: ![图片说明](https://img-ask.csdn.net/upload/202001/15/1579068250_471502.png) 5、相关依赖包版本 ``` doc 0.1.0 docx 0.2.4 docxtpl 0.6.3 lxml 3.2.1 Jinja2 2.10.3 ``` 6、我尝试更换了lxml的版本发现报错信息一样。我又尝试跟踪错误,在这个文件里: ![图片说明](https://img-ask.csdn.net/upload/202001/15/1579068951_317573.png) 打印了一下text: ![图片说明](https://img-ask.csdn.net/upload/202001/15/1579068974_898727.png) 发现有一步text为None: ![图片说明](https://img-ask.csdn.net/upload/202001/15/1579069045_944104.png) 7、所以想问一下有没有大佬遇到并解决过这个问题,怎么解决这个问题。救救一下小萌新吧,还有就是val._target._blob这个变量里存的是什么数据,为什么会出现None的情况?谢谢大佬的指点! 8、追加: 问题暂时得到了解决,我在get_headers_footers_xml这个函数里添加了不为空的判断if val._target._blob != None:yield relKey, self.xml_to_string(parse_xml(val._target._blob)) 就不再报错并且成功写入到目标文件里,但是我仍然不清楚这是不是依赖包本身的BUG。如果有大佬知道的话请指点我一下。如果也有遇到这个问题的朋友,可以试一试我这个方法暂时解决一下。下面是我修改的图片: ![图片说明](https://img-ask.csdn.net/upload/202001/15/1579074850_454765.png)

关于python的could not convert string to float的问题。

#!/usr/bin/env python3 #-*- coding: utf-8 -*- import time import subprocess import os from subprocess import call import csv #change offset here offset_peak = 45.0 offset_rsm = 40.0 header_csv = ("time", "amplitude", "rms") try: while True: #pkill because sometimes my microphone was busy subprocess.call("pkill -9 sox | pkill -9 arecord",shell= True) time.sleep( 1 ) #time filedate = time.strftime("%Y%m%d-%H%M%S") filename = "/home/pi/noise/mp3/" + time.strftime("%Y%m%d") + "/" + filedate + ".mp3" filename_csv = "/home/pi/noise/csv/" + time.strftime("%Y%m%d") + ".csv" filedate_csv = time.strftime("%Y-%m-%d %H:%M") terminal_time = time.strftime("%H:%M ") #record subprocess.call("arecord -D hw:1,0 -d 10 -v --fatal-errors --buffer-size=192000 -f dat -t raw --quiet | lame -r --quiet --preset standard - " + filename,shell= True) proc = subprocess.getoutput("sox " + filename + " -n stat 2>&1 | grep 'Maximum amplitude' | cut -d ':' -f 2") proc_rms = subprocess.getoutput("sox " + filename + " -n stat 2>&1 | grep 'RMS.*amplitude' | cut -d ':' -f 2") os.system('clear') proc1 = proc.strip() proc1 = float(proc1) proc_rms = proc_rms.strip() proc_rms = float(proc_rms) #test your microphone in 5 dB steps and create the function e.g. with mycurvefit.com #Fkt 3 30-80 dB proc3 = 83.83064 + (28.34183 - 83.83064)/(1 + (proc1/0.04589368)**1.006258) #Fkt RMS 30-80 dB proc3_rms = 87.69054 + (23.81973 - 87.69054)/(1 + (proc_rms/0.01197014)**0.7397556) #add db filextentions: peak - rms ext_peak = int(round(proc3, 0)) ext_rms = int(round(proc3_rms, 0)) print("Measured values: " + str(proc1) + " / " + str(proc_rms) + " / " + str(proc3) + " / " + str(proc3_rms) + " / " + str(ext_peak) + "\n") #csv file_exists = os.path.isfile(filename_csv) daten_csv = (filedate_csv, proc3, proc3_rms) with open(filename_csv, 'a', newline='') as f: writer = csv.writer(f) if not file_exists: writer.writerow(header_csv) writer.writerow(daten_csv) if proc3 >= offset_peak or proc3_rms >= offset_rsm: print(terminal_time + "Sound detected - save: " + filedate + ".mp3 \n") os.rename(filename, "/home/pi/noise/mp3/" + time.strftime("%Y%m%d") + "/" + filedate + "-" + str(ext_peak) + "-" + str(ext_rms) + ".mp3") time.sleep( 3 ) #os.system('clear') else: print(terminal_time + "No sound detected, delete: " + filedate + ".mp3 \n") os.remove(filename) time.sleep( 3 ) #os.system('clear') except KeyboardInterrupt: subprocess.call("pkill -9 sox | pkill -9 arecord",shell= True) print('End') 详细代码如上,当我运行的时候不知为何python shell显示错误,错误信息如下: Trackback (most recent call last): File:"/home/pi/noise_level_protocol-master/detect.py, line 30 in <module> proc1 = float(proc1) ValueError: could not convert string to float: 希望论坛里的各位大神能够指点迷津, 谢谢。

初级玩转Linux+Ubuntu(嵌入式开发基础课程)

课程主要面向嵌入式Linux初学者、工程师、学生 主要从一下几方面进行讲解: 1.linux学习路线、基本命令、高级命令 2.shell、vi及vim入门讲解 3.软件安装下载、NFS、Samba、FTP等服务器配置及使用

我以为我对Mysql事务很熟,直到我遇到了阿里面试官

太惨了,面试又被吊打

Python代码实现飞机大战

文章目录经典飞机大战一.游戏设定二.我方飞机三.敌方飞机四.发射子弹五.发放补给包六.主模块 经典飞机大战 源代码以及素材资料(图片,音频)可从下面的github中下载: 飞机大战源代码以及素材资料github项目地址链接 ————————————————————————————————————————————————————————— 不知道大家有没有打过飞机,喜不喜欢打飞机。当我第一次接触这个东西的时候,我的内心是被震撼到的。第一次接触打飞机的时候作者本人是身心愉悦的,因为周边的朋友都在打飞机, 每

Python数据分析与挖掘

92讲视频课+16大项目实战+源码+¥800元课程礼包+讲师社群1V1答疑+社群闭门分享会=99元 &nbsp; 为什么学习数据分析? &nbsp; &nbsp; &nbsp; 人工智能、大数据时代有什么技能是可以运用在各种行业的?数据分析就是。 &nbsp; &nbsp; &nbsp; 从海量数据中获得别人看不见的信息,创业者可以通过数据分析来优化产品,营销人员可以通过数据分析改进营销策略,产品经理可以通过数据分析洞察用户习惯,金融从业者可以通过数据分析规避投资风险,程序员可以通过数据分析进一步挖掘出数据价值,它和编程一样,本质上也是一个工具,通过数据来对现实事物进行分析和识别的能力。不管你从事什么行业,掌握了数据分析能力,往往在其岗位上更有竞争力。 &nbsp;&nbsp; 本课程共包含五大模块: 一、先导篇: 通过分析数据分析师的一天,让学员了解全面了解成为一个数据分析师的所有必修功法,对数据分析师不在迷惑。 &nbsp; 二、基础篇: 围绕Python基础语法介绍、数据预处理、数据可视化以及数据分析与挖掘......这些核心技能模块展开,帮助你快速而全面的掌握和了解成为一个数据分析师的所有必修功法。 &nbsp; 三、数据采集篇: 通过网络爬虫实战解决数据分析的必经之路:数据从何来的问题,讲解常见的爬虫套路并利用三大实战帮助学员扎实数据采集能力,避免没有数据可分析的尴尬。 &nbsp; 四、分析工具篇: 讲解数据分析避不开的科学计算库Numpy、数据分析工具Pandas及常见可视化工具Matplotlib。 &nbsp; 五、算法篇: 算法是数据分析的精华,课程精选10大算法,包括分类、聚类、预测3大类型,每个算法都从原理和案例两个角度学习,让你不仅能用起来,了解原理,还能知道为什么这么做。

如何在虚拟机VM上使用串口

在系统内核开发中,经常会用到串口调试,利用VMware的Virtual Machine更是为调试系统内核如虎添翼。那么怎么搭建串口调试环境呢?因为最近工作涉及到这方面,利用强大的google搜索和自己

程序员的兼职技能课

获取讲师答疑方式: 在付费视频第一节(触摸命令_ALL)片头有二维码及加群流程介绍 限时福利 原价99元,今日仅需39元!购课添加小助手(微信号:csdn590)按提示还可领取价值800元的编程大礼包! 讲师介绍: 苏奕嘉&nbsp;前阿里UC项目工程师 脚本开发平台官方认证满级(六级)开发者。 我将如何教会你通过【定制脚本】赚到你人生的第一桶金? 零基础程序定制脚本开发课程,是完全针对零脚本开发经验的小白而设计,课程内容共分为3大阶段: ①前期将带你掌握Q开发语言和界面交互开发能力; ②中期通过实战来制作有具体需求的定制脚本; ③后期将解锁脚本的更高阶玩法,打通任督二脉; ④应用定制脚本合法赚取额外收入的完整经验分享,带你通过程序定制脚本开发这项副业,赚取到你的第一桶金!

MFC一站式终极全套课程包

该套餐共包含从C小白到C++到MFC的全部课程,整套学下来绝对成为一名C++大牛!!!

C++语言基础视频教程

C++语言基础视频培训课程:本课与主讲者在大学开出的程序设计课程直接对接,准确把握知识点,注重教学视频与实践体系的结合,帮助初学者有效学习。本教程详细介绍C++语言中的封装、数据隐藏、继承、多态的实现等入门知识;主要包括类的声明、对象定义、构造函数和析构函数、运算符重载、继承和派生、多态性实现等。 课程需要有C语言程序设计的基础(可以利用本人开出的《C语言与程序设计》系列课学习)。学习者能够通过实践的方式,学会利用C++语言解决问题,具备进一步学习利用C++开发应用程序的基础。

北京师范大学信息科学与技术学院笔试10复试真题

北京师范大学信息科学与技术学院笔试,可以更好的让你了解北师大该学院的复试内容,获得更好的成绩。

深度学习原理+项目实战+算法详解+主流框架(套餐)

深度学习系列课程从深度学习基础知识点开始讲解一步步进入神经网络的世界再到卷积和递归神经网络,详解各大经典网络架构。实战部分选择当下最火爆深度学习框架PyTorch与Tensorflow/Keras,全程实战演示框架核心使用与建模方法。项目实战部分选择计算机视觉与自然语言处理领域经典项目,从零开始详解算法原理,debug模式逐行代码解读。适合准备就业和转行的同学们加入学习! 建议按照下列课程顺序来进行学习 (1)掌握深度学习必备经典网络架构 (2)深度框架实战方法 (3)计算机视觉与自然语言处理项目实战。(按照课程排列顺序即可)

网络工程师小白入门--【思科CCNA、华为HCNA等网络工程师认证】

本课程适合CCNA或HCNA网络小白同志,高手请绕道,可以直接学习进价课程。通过本预科课程的学习,为学习网络工程师、思科CCNA、华为HCNA这些认证打下坚实的基础! 重要!思科认证2020年2月24日起,已启用新版认证和考试,包括题库都会更新,由于疫情原因,请关注官网和本地考点信息。题库网络上很容易下载到。

Python界面版学生管理系统

前不久上传了一个控制台版本的学生管理系统,这个是Python界面版学生管理系统,这个是使用pycharm开发的一个有界面的学生管理系统,基本的增删改查,里面又演示视频和完整代码,有需要的伙伴可以自行下

软件测试2小时入门

本课程内容系统、全面、简洁、通俗易懂,通过2个多小时的介绍,让大家对软件测试有个系统的理解和认识,具备基本的软件测试理论基础。 主要内容分为5个部分: 1 软件测试概述,了解测试是什么、测试的对象、原则、流程、方法、模型;&nbsp; 2.常用的黑盒测试用例设计方法及示例演示;&nbsp; 3 常用白盒测试用例设计方法及示例演示;&nbsp; 4.自动化测试优缺点、使用范围及示例‘;&nbsp; 5.测试经验谈。

Tomcat服务器下载、安装、配置环境变量教程(超详细)

未经我的允许,请不要转载我的文章,在此郑重声明!!! 请先配置安装好Java的环境,若没有安装,请参照我博客上的步骤进行安装! 安装Java环境教程https://blog.csdn.net/qq_40881680/article/details/83585542 Tomcat部署Web项目(一)·内嵌https://blog.csdn.net/qq_40881680/article/d...

2019数学建模A题高压油管的压力控制 省一论文即代码

2019数学建模A题高压油管的压力控制省一完整论文即详细C++和Matlab代码,希望对同学们有所帮助

图书管理系统(Java + Mysql)我的第一个完全自己做的实训项目

图书管理系统 Java + MySQL 完整实训代码,MVC三层架构组织,包含所有用到的图片资源以及数据库文件,大三上学期实训,注释很详细,按照阿里巴巴Java编程规范编写

linux下利用/proc进行进程树的打印

在linux下利用c语言实现的进程树的打印,主要通过/proc下的目录中的进程文件,获取status中的进程信息内容,然后利用递归实现进程树的打印

微信小程序开发实战之番茄时钟开发

微信小程序番茄时钟视频教程,本课程将带着各位学员开发一个小程序初级实战类项目,针对只看过官方文档而又无从下手的开发者来说,可以作为一个较好的练手项目,对于有小程序开发经验的开发者而言,可以更好加深对小程序各类组件和API 的理解,为更深层次高难度的项目做铺垫。

[已解决]踩过的坑之mysql连接报“Communications link failure”错误

目录 前言 第一种方法: 第二种方法 第三种方法(适用于项目和数据库在同一台服务器) 第四种方法 第五种方法(项目和数据库不在同一台服务器) 总结 前言 先给大家简述一下我的坑吧,(我用的是mysql,至于oracle有没有这样的问题,有心的小伙伴们可以测试一下哈), 在自己做个javaweb测试项目的时候,因为买的是云服务器,所以数据库连接的是用ip地址,用IDE开发好...

人工智能-计算机视觉实战之路(必备算法+深度学习+项目实战)

系列课程主要分为3大阶段:(1)首先掌握计算机视觉必备算法原理,结合Opencv进行学习与练手,通过实际视项目进行案例应用展示。(2)进军当下最火的深度学习进行视觉任务实战,掌握深度学习中必备算法原理与网络模型架构。(3)结合经典深度学习框架与实战项目进行实战,基于真实数据集展开业务分析与建模实战。整体风格通俗易懂,项目驱动学习与就业面试。 建议同学们按照下列顺序来进行学习:1.Python入门视频课程 2.Opencv计算机视觉实战(Python版) 3.深度学习框架-PyTorch实战/人工智能框架实战精讲:Keras项目 4.Python-深度学习-物体检测实战 5.后续实战课程按照自己喜好选择就可以

2019 AI开发者大会

2019 AI开发者大会(AI ProCon 2019)是由中国IT社区CSDN主办的AI技术与产业年度盛会。多年经验淬炼,如今蓄势待发:2019年9月6-7日,大会将有近百位中美顶尖AI专家、知名企业代表以及千余名AI开发者齐聚北京,进行技术解读和产业论证。我们不空谈口号,只谈技术,诚挚邀请AI业内人士一起共铸人工智能新篇章!

机器学习初学者必会的案例精讲

通过六个实际的编码项目,带领同学入门人工智能。这些项目涉及机器学习(回归,分类,聚类),深度学习(神经网络),底层数学算法,Weka数据挖掘,利用Git开源项目实战等。

Python数据分析师-实战系列

系列课程主要包括Python数据分析必备工具包,数据分析案例实战,核心算法实战与企业级数据分析与建模解决方案实战,建议大家按照系列课程阶段顺序进行学习。所有数据集均为企业收集的真实数据集,整体风格以实战为导向,通俗讲解Python数据分析核心技巧与实战解决方案。

YOLOv3目标检测实战系列课程

《YOLOv3目标检测实战系列课程》旨在帮助大家掌握YOLOv3目标检测的训练、原理、源码与网络模型改进方法。 本课程的YOLOv3使用原作darknet(c语言编写),在Ubuntu系统上做项目演示。 本系列课程包括三门课: (1)《YOLOv3目标检测实战:训练自己的数据集》 包括:安装darknet、给自己的数据集打标签、整理自己的数据集、修改配置文件、训练自己的数据集、测试训练出的网络模型、性能统计(mAP计算和画出PR曲线)和先验框聚类。 (2)《YOLOv3目标检测:原理与源码解析》讲解YOLOv1、YOLOv2、YOLOv3的原理、程序流程并解析各层的源码。 (3)《YOLOv3目标检测:网络模型改进方法》讲解YOLOv3的改进方法,包括改进1:不显示指定类别目标的方法 (增加功能) ;改进2:合并BN层到卷积层 (加快推理速度) ; 改进3:使用GIoU指标和损失函数 (提高检测精度) ;改进4:tiny YOLOv3 (简化网络模型)并介绍 AlexeyAB/darknet项目。

2021考研数学张宇基础30讲.pdf

张宇:博士,全国著名考研数学辅导专家,教育部“国家精品课程建设骨干教师”,全国畅销书《张宇高等数学18讲》《张宇线性代数9讲》《张宇概率论与数理统计9讲》《张宇考研数学题源探析经典1000题》《张宇考

三个项目玩转深度学习(附1G源码)

从事大数据与人工智能开发与实践约十年,钱老师亲自见证了大数据行业的发展与人工智能的从冷到热。事实证明,计算机技术的发展,算力突破,海量数据,机器人技术等,开启了第四次工业革命的序章。深度学习图像分类一直是人工智能的经典任务,是智慧零售、安防、无人驾驶等机器视觉应用领域的核心技术之一,掌握图像分类技术是机器视觉学习的重中之重。针对现有线上学习的特点与实际需求,我们开发了人工智能案例实战系列课程。打造:以项目案例实践为驱动的课程学习方式,覆盖了智能零售,智慧交通等常见领域,通过基础学习、项目案例实践、社群答疑,三维立体的方式,打造最好的学习效果。

DirectX修复工具V4.0增强版

DirectX修复工具(DirectX Repair)是一款系统级工具软件,简便易用。本程序为绿色版,无需安装,可直接运行。 本程序的主要功能是检测当前系统的DirectX状态,如果发现异常则进行修复

期末考试评分标准的数学模型

大学期末考试与高中的考试存在很大的不同之处,大学的期末考试成绩是主要分为两个部分:平时成绩和期末考试成绩。平时成绩和期末考试成绩总分一般为一百分,然而平时成绩与期末考试成绩所占的比例不同会导致出现不同

Vue.js 2.0之全家桶系列视频课程

基于新的Vue.js 2.3版本, 目前新全的Vue.js教学视频,让你少走弯路,直达技术前沿! 1. 包含Vue.js全家桶(vue.js、vue-router、axios、vuex、vue-cli、webpack、ElementUI等) 2. 采用笔记+代码案例的形式讲解,通俗易懂

c语言项目开发实例

十个c语言案例 (1)贪吃蛇 (2)五子棋游戏 (3)电话薄管理系统 (4)计算器 (5)万年历 (6)电子表 (7)客户端和服务器通信 (8)潜艇大战游戏 (9)鼠标器程序 (10)手机通讯录系统

相关热词 c#中如何设置提交按钮 c#帮助怎么用 c# 读取合并单元格的值 c#带阻程序 c# 替换span内容 c# rpc c#控制台点阵字输出 c#do while循环 c#调用dll多线程 c#找出两个集合不同的
立即提问