修改的SSD—Tensorflow 版本在训练的时候遇到loss输入维度不一致

目前在学习目标检测识别的方向。

自己参考了一些论文 对原版的SSD进行了一些改动工作

前面的网络模型部分已经修改完成且不报错。
但是在进行训练操作的时候会出现
’ValueError: Dimension 0 in both shapes must be equal, but are 233920 and 251392. Shapes are [233920] and [251392]. for 'ssd_losses/Select' (op: 'Select') with input shapes: [251392], [233920], [251392].

‘两个形状中的尺寸0必须相等,但分别为233920和251392。形状有[233920]和[251392]。对于输入形状为[251392]、[233920]、[251392]的''ssd_losses/Select' (op: 'Select')

图片说明

图片说明

SSD loss function.

===========================================================================

def ssd_losses(logits, localisations,
gclasses, glocalisations, gscores,
match_threshold=0.5,
negative_ratio=3.,
alpha=1.,
label_smoothing=0.,
device='/cpu:0',
scope=None):
with tf.name_scope(scope, 'ssd_losses'):
lshape = tfe.get_shape(logits[0], 5)
num_classes = lshape[-1]
batch_size = lshape[0]

    # Flatten out all vectors!
    flogits = []
    fgclasses = []
    fgscores = []
    flocalisations = []
    fglocalisations = []
    for i in range(len(logits)):
        flogits.append(tf.reshape(logits[i], [-1, num_classes]))
        fgclasses.append(tf.reshape(gclasses[i], [-1]))
        fgscores.append(tf.reshape(gscores[i], [-1]))
        flocalisations.append(tf.reshape(localisations[i], [-1, 4]))
        fglocalisations.append(tf.reshape(glocalisations[i], [-1, 4]))
    # And concat the crap!
    logits = tf.concat(flogits, axis=0)
    gclasses = tf.concat(fgclasses, axis=0)
    gscores = tf.concat(fgscores, axis=0)
    localisations = tf.concat(flocalisations, axis=0)
    glocalisations = tf.concat(fglocalisations, axis=0)
    dtype = logits.dtype

    # Compute positive matching mask...
    pmask = gscores > match_threshold
    fpmask = tf.cast(pmask, dtype)
    n_positives = tf.reduce_sum(fpmask)

    # Hard negative mining...
    no_classes = tf.cast(pmask, tf.int32)
    predictions = slim.softmax(logits)
    nmask = tf.logical_and(tf.logical_not(pmask),
                           gscores > -0.5)
    fnmask = tf.cast(nmask, dtype)
    nvalues = tf.where(nmask,
                       predictions[:, 0],
                       1. - fnmask)
    nvalues_flat = tf.reshape(nvalues, [-1])
    # Number of negative entries to select.
    max_neg_entries = tf.cast(tf.reduce_sum(fnmask), tf.int32)
    n_neg = tf.cast(negative_ratio * n_positives, tf.int32) + batch_size
    n_neg = tf.minimum(n_neg, max_neg_entries)

    val, idxes = tf.nn.top_k(-nvalues_flat, k=n_neg)
    max_hard_pred = -val[-1]
    # Final negative mask.
    nmask = tf.logical_and(nmask, nvalues < max_hard_pred)
    fnmask = tf.cast(nmask, dtype)

    # Add cross-entropy loss.
    with tf.name_scope('cross_entropy_pos'):
        loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits,
                                                              labels=gclasses)
        loss = tf.div(tf.reduce_sum(loss * fpmask), batch_size, name='value')
        tf.losses.add_loss(loss)

    with tf.name_scope('cross_entropy_neg'):
        loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits,
                                                              labels=no_classes)
        loss = tf.div(tf.reduce_sum(loss * fnmask), batch_size, name='value')
        tf.losses.add_loss(loss)

    # Add localization loss: smooth L1, L2, ...
    with tf.name_scope('localization'):
        # Weights Tensor: positive mask + random negative.
        weights = tf.expand_dims(alpha * fpmask, axis=-1)
        loss = custom_layers.abs_smooth(localisations - glocalisations)
        loss = tf.div(tf.reduce_sum(loss * weights), batch_size, name='value')
        tf.losses.add_loss(loss)

研究了一段时间的源码 (因为只是SSD-Tensorflow-Master中的ssd_vgg_300.py中定义网络结构的那部分做了修改 ,loss函数代码部分并没有进行改动)所以没所到错误所在,网上也找不到相关的解决方案。

希望大神能够帮忙解答
感激不尽~

1个回答

你如果只有一个输出的,把中间for这行代码去掉,别的都不变,就可以了,如果输出的结果是多个,SSD的这种方式是正确的。

Csdn user default icon
上传中...
上传图片
插入图片
抄袭、复制答案,以达到刷声望分或其他目的的行为,在CSDN问答是严格禁止的,一经发现立刻封号。是时候展现真正的技术了!
其他相关推荐
TensorFlow SSD训练自己的数据 checkpoint问题

1、参考教程:https://blog.csdn.net/liuyan20062010/article/details/78905517 2、一直到训练成功! 3、导入模型测试,代码 ``` # Restore SSD model. ckpt_filename = '../train_model/model.ckpt-100' # ckpt_filename = '../checkpoints/VGG_VOC0712_SSD_300x300_ft_iter_120000.ckpt' isess.run(tf.global_variables_initializer()) saver = tf.train.Saver() saver.restore(isess, ckpt_filename) ``` 4、错误信息: ![图片说明](https://img-ask.csdn.net/upload/201903/31/1553997360_295222.png) 5、经网上查阅,说是修改了模型结构的问题,但是只是按教程上面修改了类别数,且训练成功了。其他均未修改。

怎么在tensorflow框架上组装ssd-mobilenetv3

我想实现 mobilenetv3与ssd结合,现在我已有tensorflow的ssd源码,ssd源码是vgg主网络结构 我需要把vgg改成mobilenetv3,从而实现新的ssd目标检测。 请问 我该怎么进行组装在tensorflow框架上? 是只把ssd内部的vgg替换吗 还是需要改订其他一些程序,求大神指导一波,不胜感激! 现在我只把程序里的vgg网络模块替换成mobileNetv3模块修改完后才呢过后 进行fine-tuning训练,训练3万次跑出来的结果很不理想,现在粘贴一些我操作的图片,让各位大神看看, 希望能够得到指导! 如果能解决为问题 必有重谢!! 图1是 我在程序里替换 ![图片说明](https://img-ask.csdn.net/upload/201912/30/1577689264_646355.jpg) 图2是 我下载mobileNetv3预训练 ![图片说明](https://img-ask.csdn.net/upload/201912/30/1577689304_202300.jpg) 图3是 我准备训练填写的一些参数 ![图片说明](https://img-ask.csdn.net/upload/201912/30/1577689325_156789.jpg) 图4是 我训练完成后 测试得到的mAP ![图片说明](https://img-ask.csdn.net/upload/201912/30/1577689335_185248.jpg)

请问tensorflow的训练的loss一直在1.几和0.几之间跳来跳去是算没收敛还是收敛了?

UCI上面找的训练集的输入是连续的,而标签是离散的,我见别人的LOSS都是持续下降到0.00几的,我这个把学习率调到0.001,激活函数是sigmoid,但还是在1.几和0.几之间徘徊,这是正常现象吗?不是的话是哪里出问题了? 跪求大佬解答!!

用tensorflow-gpu跑SSD-Mobilenet模型隔一段时间就会出现以下内容

![图片说明](https://img-ask.csdn.net/upload/201903/16/1552739746_369680.png) 我用的以下命令python object____detection/train.py --train_dir object_detection/train --pipeline_config_path object__detection/ssd__model/ssd_mobilenet_v1_pets.config___ 然后在object_detection 目录下没有见到train文件夹 这正常吗,我之前用CPU跑的时候很快就创建了train文件夹

TensorFlow Object Detection API 训练过程相关问题?

``` 2019-03-22 11:47:37.264972: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 4714 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1060 6GB, pci bus id: 0000:08:00.0, compute capability: 6.1) ``` Tensorflow能正常值用。 启动model_main().py后卡在这不动、相关文件夹中没有生成.ckpt文件。 ![图片说明](https://img-ask.csdn.net/upload/201903/22/1553233226_55747.jpg) 是我显卡太垃圾、计算慢还是其他原因啊???求大神。

tensorflow训练自己的数据集

tensorflow框架下进行VGG网络的训练,训练自己的数据集,生成模型,损失函数的计算一直保持0.69,这是为什么,应该怎样调整?

关于SSD目标检测训练时,不报错但是训练慢与一直停在这里的问题。

![图片说明](https://img-ask.csdn.net/upload/202004/07/1586265452_657504.png) ![图片说明](https://img-ask.csdn.net/upload/202004/07/1586265474_298038.png) 图一是我一开始训练的时候显示出来的,这个红色方框是我认为是正在训练的,并且红色这个框,每分钟100步,我是使用gpu训练的。但是到了后面,就10分钟才运行一次,一直卡在图2,每10分钟自动保存一个checkpoint,我查了相关资料,这是因为estimator的问题,10分钟会自动保存。 直到后面,我cpu和gpu不动了,也就是占用率不高了(这证明没有在训练),这是为什么??

训练SSD_mobilenet_v1_coco模型时tensorflow出现以下报错,请问原因是什么 怎么解决?

tensorflow.python.framework.errors_impl.InvalidArgumentError: indices[0] = 0 is not in [0, 0) [[{{node GatherV2_4}}]] [[node IteratorGetNext (defined at C:\Users\lenovo\Anaconda3\lib\site-packages\tensorflow_estimator\python\estimator\util.py:110) ]] ``` ```

Tensorflow object detection API 训练自己数据时报错 Windows fatal exception: access violation

python3.6, tf 1.14.0,Tensorflow object detection API 跑demo图片和改为摄像头进行物体识别均正常, 训练自己的数据训练自己数据时报错 Windows fatal exception: access violation 用的ssd_mobilenet_v1_coco_2018_01_28模型, 命令:python model_main.py -pipeline_config_path=/pre_model/pipeline.config -model_dir=result -num_train_steps=2000 -alsologtostderr 其实就是按照网上基础的训练来的,一直报这个,具体错误输出如下: (py36) D:\pythonpro\TensorFlowLearn\face_tf_model>python model_main.py -pipeline_config_path=/pre_model/pipeline.config -model_dir=result -num_train_steps=2000 -alsologtostderr WARNING: Logging before flag parsing goes to stderr. W0622 16:50:30.230578 14180 lazy_loader.py:50] The TensorFlow contrib module will not be included in TensorFlow 2.0. For more information, please see: * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md * https://github.com/tensorflow/addons * https://github.com/tensorflow/io (for I/O related ops) If you depend on functionality not listed there, please file an issue. W0622 16:50:30.317274 14180 deprecation_wrapper.py:119] From D:\Anaconda3\libdata\tf_models\research\slim\nets\inception_resnet_v2.py:373: The name tf.GraphKeys is deprecated. Please use tf.compat.v1.GraphKeys instead. W0622 16:50:30.355400 14180 deprecation_wrapper.py:119] From D:\Anaconda3\libdata\tf_models\research\slim\nets\mobilenet\mobilenet.py:397: The name tf.nn.avg_pool is deprecated. Please use tf.nn.avg_pool2d instead. W0622 16:50:30.388313 14180 deprecation_wrapper.py:119] From model_main.py:109: The name tf.app.run is deprecated. Please use tf.compat.v1.app.run instead. W0622 16:50:30.397290 14180 deprecation_wrapper.py:119] From D:\Anaconda3\envs\py36\lib\site-packages\object_detection-0.1-py3.6.egg\object_detection\utils\config_util.py:98: The name tf.gfile.GFile is deprecated. Please use tf.io.gfile.GFile instead. Windows fatal exception: access violation Current thread 0x00003764 (most recent call first): File "D:\Anaconda3\envs\py36\lib\site-packages\tensorflow\python\lib\io\file_io.py", line 84 in _preread_check File "D:\Anaconda3\envs\py36\lib\site-packages\tensorflow\python\lib\io\file_io.py", line 122 in read File "D:\Anaconda3\envs\py36\lib\site-packages\object_detection-0.1-py3.6.egg\object_detection\utils\config_util.py", line 99 in get_configs_from_pipeline_file File "D:\Anaconda3\envs\py36\lib\site-packages\object_detection-0.1-py3.6.egg\object_detection\model_lib.py", line 606 in create_estimator_and_inputs File "model_main.py", line 71 in main File "D:\Anaconda3\envs\py36\lib\site-packages\absl\app.py", line 251 in _run_main File "D:\Anaconda3\envs\py36\lib\site-packages\absl\app.py", line 300 in run File "D:\Anaconda3\envs\py36\lib\site-packages\tensorflow\python\platform\app.py", line 40 in run File "model_main.py", line 109 in <module> (py36) D:\pythonpro\TensorFlowLearn\face_tf_model> 请大神指点下

用TensorFlow和opencv实现ssd目标检测的时候调不出摄像头

大家能帮我看看吗,感激不尽https://img-ask.csdn.net/upload/201906/24/1561370902_714838.jpg)

用tensorflow-gpu跑SSD-Mobilenet模型GPU使用率很低这是为什么

![这是GPU运行情况](https://img-ask.csdn.net/upload/201903/16/1552742279_678606.png) 这是GPU运行情况 ![这是训练过程](https://img-ask.csdn.net/upload/201903/16/1552742314_282445.png) 这是训练过程

在训练Tensorflow模型(object_detection)时,训练在第一次评估后退出,怎么使训练继续下去?

当我进行ssd模型训练时,训练进行了10分钟,然后进入评估阶段,评估之后程序就自动退出了,没有看到误和警告,这是为什么,怎么让程序一直训练下去? 训练命令: ``` python object_detection/model_main.py --pipeline_config_path=D:/gitcode/models/research/object_detection/ssd_mobilenet_v1_coco_2018_01_28/pipeline.config --model_dir=D:/gitcode/models/research/object_detection/ssd_mobilenet_v1_coco_2018_01_28/saved_model --num_train_steps=50000 --alsologtostderr ``` 配置文件: ``` training exit after the first evaluation(only one evaluation) in Tensorflow model(object_detection) without error and waring System information What is the top-level directory of the model you are using:models/research/object_detection/ Have I written custom code (as opposed to using a stock example script provided in TensorFlow):NO OS Platform and Distribution (e.g., Linux Ubuntu 16.04):Windows-10(64bit) TensorFlow installed from (source or binary):conda install tensorflow-gpu TensorFlow version (use command below):1.13.1 Bazel version (if compiling from source):N/A CUDA/cuDNN version:cudnn-7.6.0 GPU model and memory:GeForce GTX 1060 6GB Exact command to reproduce:See below my command for training : python object_detection/model_main.py --pipeline_config_path=D:/gitcode/models/research/object_detection/ssd_mobilenet_v1_coco_2018_01_28/pipeline.config --model_dir=D:/gitcode/models/research/object_detection/ssd_mobilenet_v1_coco_2018_01_28/saved_model --num_train_steps=50000 --alsologtostderr This is my config : train_config { batch_size: 24 data_augmentation_options { random_horizontal_flip { } } data_augmentation_options { ssd_random_crop { } } optimizer { rms_prop_optimizer { learning_rate { exponential_decay_learning_rate { initial_learning_rate: 0.00400000018999 decay_steps: 800720 decay_factor: 0.949999988079 } } momentum_optimizer_value: 0.899999976158 decay: 0.899999976158 epsilon: 1.0 } } fine_tune_checkpoint: "D:/gitcode/models/research/object_detection/ssd_mobilenet_v1_coco_2018_01_28/model.ckpt" from_detection_checkpoint: true num_steps: 200000 train_input_reader { label_map_path: "D:/gitcode/models/research/object_detection/idol/tf_label_map.pbtxt" tf_record_input_reader { input_path: "D:/gitcode/models/research/object_detection/idol/train/Iframe_??????.tfrecord" } } eval_config { num_examples: 8000 max_evals: 10 use_moving_averages: false } eval_input_reader { label_map_path: "D:/gitcode/models/research/object_detection/idol/tf_label_map.pbtxt" shuffle: false num_readers: 1 tf_record_input_reader { input_path: "D:/gitcode/models/research/object_detection/idol/eval/Iframe_??????.tfrecord" } ``` 窗口输出: (default) D:\gitcode\models\research>python object_detection/model_main.py --pipeline_config_path=D:/gitcode/models/research/object_detection/ssd_mobilenet_v1_coco_2018_01_28/pipeline.config --model_dir=D:/gitcode/models/research/object_detection/ssd_mobilenet_v1_coco_2018_01_28/saved_model --num_train_steps=50000 --alsologtostderr WARNING: The TensorFlow contrib module will not be included in TensorFlow 2.0. For more information, please see: https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md https://github.com/tensorflow/addons If you depend on functionality not listed there, please file an issue. WARNING:tensorflow:Forced number of epochs for all eval validations to be 1. WARNING:tensorflow:Expected number of evaluation epochs is 1, but instead encountered eval_on_train_input_config.num_epochs = 0. Overwriting num_epochs to 1. WARNING:tensorflow:Estimator's model_fn (<function create_model_fn..model_fn at 0x0000027CBAB7BB70>) includes params argument, but params are not passed to Estimator. WARNING:tensorflow:From C:\Users\qian\Anaconda3\envs\default\lib\site-packages\tensorflow\python\framework\op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version. Instructions for updating: Colocations handled automatically by placer. WARNING:tensorflow:From C:\Users\qian\Anaconda3\envs\default\lib\site-packages\object_detection-0.1-py3.7.egg\object_detection\builders\dataset_builder.py:86: parallel_interleave (from tensorflow.contrib.data.python.ops.interleave_ops) is deprecated and will be removed in a future version. Instructions for updating: Use tf.data.experimental.parallel_interleave(...). WARNING:tensorflow:From C:\Users\qian\Anaconda3\envs\default\lib\site-packages\object_detection-0.1-py3.7.egg\object_detection\core\preprocessor.py:196: sample_distorted_bounding_box (from tensorflow.python.ops.image_ops_impl) is deprecated and will be removed in a future version. Instructions for updating: seed2 arg is deprecated.Use sample_distorted_bounding_box_v2 instead. WARNING:tensorflow:From C:\Users\qian\Anaconda3\envs\default\lib\site-packages\object_detection-0.1-py3.7.egg\object_detection\builders\dataset_builder.py:158: batch_and_drop_remainder (from tensorflow.contrib.data.python.ops.batching) is deprecated and will be removed in a future version. Instructions for updating: Use tf.data.Dataset.batch(..., drop_remainder=True). WARNING:tensorflow:From C:\Users\qian\Anaconda3\envs\default\lib\site-packages\tensorflow\python\ops\losses\losses_impl.py:448: to_float (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version. Instructions for updating: Use tf.cast instead. WARNING:tensorflow:From C:\Users\qian\Anaconda3\envs\default\lib\site-packages\tensorflow\python\ops\array_grad.py:425: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version. Instructions for updating: Use tf.cast instead. 2019-08-14 16:29:31.607841: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1433] Found device 0 with properties: name: GeForce GTX 1060 6GB major: 6 minor: 1 memoryClockRate(GHz): 1.7845 pciBusID: 0000:04:00.0 totalMemory: 6.00GiB freeMemory: 4.97GiB 2019-08-14 16:29:31.621836: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1512] Adding visible gpu devices: 0 2019-08-14 16:29:32.275712: I tensorflow/core/common_runtime/gpu/gpu_device.cc:984] Device interconnect StreamExecutor with strength 1 edge matrix: 2019-08-14 16:29:32.283072: I tensorflow/core/common_runtime/gpu/gpu_device.cc:990] 0 2019-08-14 16:29:32.288675: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1003] 0: N 2019-08-14 16:29:32.293514: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 4714 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1060 6GB, pci bus id: 0000:04:00.0, compute capability: 6.1) WARNING:tensorflow:From C:\Users\qian\Anaconda3\envs\default\lib\site-packages\object_detection-0.1-py3.7.egg\object_detection\eval_util.py:796: to_int64 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version. Instructions for updating: Use tf.cast instead. WARNING:tensorflow:From C:\Users\qian\Anaconda3\envs\default\lib\site-packages\object_detection-0.1-py3.7.egg\object_detection\utils\visualization_utils.py:498: py_func (from tensorflow.python.ops.script_ops) is deprecated and will be removed in a future version. Instructions for updating: tf.py_func is deprecated in TF V2. Instead, use tf.py_function, which takes a python function which manipulates tf eager tensors instead of numpy arrays. It's easy to convert a tf eager tensor to an ndarray (just call tensor.numpy()) but having access to eager tensors means tf.py_functions can use accelerators such as GPUs as well as being differentiable using a gradient tape. 2019-08-14 16:41:44.736212: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1512] Adding visible gpu devices: 0 2019-08-14 16:41:44.741242: I tensorflow/core/common_runtime/gpu/gpu_device.cc:984] Device interconnect StreamExecutor with strength 1 edge matrix: 2019-08-14 16:41:44.747522: I tensorflow/core/common_runtime/gpu/gpu_device.cc:990] 0 2019-08-14 16:41:44.751256: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1003] 0: N 2019-08-14 16:41:44.755548: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 4714 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1060 6GB, pci bus id: 0000:04:00.0, compute capability: 6.1) WARNING:tensorflow:From C:\Users\qian\Anaconda3\envs\default\lib\site-packages\tensorflow\python\training\saver.py:1266: checkpoint_exists (from tensorflow.python.training.checkpoint_management) is deprecated and will be removed in a future version. Instructions for updating: Use standard file APIs to check for files with this prefix. creating index... index created! creating index... index created! Running per image evaluation... Evaluate annotation type bbox DONE (t=2.43s). Accumulating evaluation results... DONE (t=0.14s). Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.287 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.529 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.278 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.031 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.312 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.162 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.356 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.356 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.061 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.384 (default) D:\gitcode\models\research>

在caffe下训练修改后的SSD网络时报错

运行ssd_pascal_py的脚本文件后,设置为不马上执行训练。 修改脚本文件生成的train, test,deploy的三个prototxt文件, 将前两个最大池化改为步长为2的卷积操作。 layer { name: "pool1" type: "Convolution" bottom: "conv1_2" top: "pool1" param { lr_mult: 1.0 decay_mult: 1.0 } param { lr_mult: 2.0 decay_mult: 0.0 } convolution_param { num_output: 64 kernel_size: 2 stride:2 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0.0 } } } layer { name: "relu1_3" type: "ReLU" bottom: "pool1" top: "pool1" } 如上把第一个最大池化改为了卷积,第二个最大池化也这样进行了修改 运行.sh文件开始训练时,报错 ![图片说明](https://img-ask.csdn.net/upload/201909/04/1567564505_936440.png) 问下大家如何解决??

tensorflow环境下只要import keras 就会出现python已停止运行?

python小白在写代码的时候发现只要import keras就会出现python停止运行的情况,目前tensorflow版本1.2.1,keras版本2.1.1,防火墙关了也还是这样,具体代码和问题信息如下,请大神赐教。 ``` # -*- coding: utf-8 -*- import numpy as np from scipy.io import loadmat, savemat from keras.utils import np_utils 问题事件名称: BEX64 应用程序名: pythonw.exe 应用程序版本: 3.6.2150.1013 应用程序时间戳: 5970e8ca 故障模块名称: StackHash_1dc2 故障模块版本: 0.0.0.0 故障模块时间戳: 00000000 异常偏移: 0000000000000000 异常代码: c0000005 异常数据: 0000000000000008 OS 版本: 6.1.7601.2.1.0.256.1 区域设置 ID: 2052 其他信息 1: 1dc2 其他信息 2: 1dc22fb1de37d348f27e54dbb5278e7d 其他信息 3: eae3 其他信息 4: eae36a4b5ffb27c9d33117f4125a75c2 ```

ssd训练后测试一张图片出现警告

运行ssd_detect.py后出现警告,估计是检测的是单通道的灰度图片,图片并没有 画出目标框。![图片说明](https://img-ask.csdn.net/upload/201709/15/1505460973_954110.jpg)

tensorflow模型ckpt转化为pb后,pb文件1kb

转换后的pb文件也无法调用,不知道是我转换代码问题还是什么问题。 请大神赐教,如果是代码问题也请大神提点一下转换代码

tensorflow 保存的PB模型200+MB 怎么处理

下面的是模型保存密码的部分 ```python def save_model(sess, epoch): builder = tf.saved_model.builder.SavedModelBuilder("model-v1.0_%d" % epoch) builder.add_meta_graph_and_variables(sess, ['v1.0']) builder.save() ```

SSD训练修改梯度下降法

在SSD的python执行文件ssd_pascal.py中有如下代码用于创建solver配置文件, solver = caffe_pb2.SolverParameter( train_net=train_net_file, test_net=[test_net_file], snapshot_prefix=snapshot_prefix, **solver_param) 其中solver_param是一个字典,包含了训练一些超参数的设置, solver_param = { # Train parameters 'base_lr': base_lr, 'weight_decay': 0.0005, 'lr_policy': "multistep", #'stepvalue': [80000, 100000, 120000], 'stepvalue': [80000,100000,120000], 'gamma': 0.1, 'momentum': 0.9, 'iter_size': iter_size, #'max_iter': 120000, #'snapshot': 80000, 'max_iter': 120000, 'snapshot': 10000, 'display': 10, 'average_loss': 10, 'type': "SGD", 'solver_mode': solver_mode, 'device_id': device_id, 'debug_info': False, 'snapshot_after_train': True, # Test parameters 'test_iter': [test_iter], #'test_interval': 10000, 'test_interval': 10000, 'eval_type': "detection", 'ap_version': "11point", 'test_initialization': False, } 我把优化方法从SGD改为Adam,训练正常进行,但是明显不对,因为loss显示输出还是从sgd_layer.cpp中输出的,模型结果确实也不对。请问caffe_pb2.SolverParameter是在哪里定义,我想看看里面怎么调用这个参数

java jdk 8 帮助文档 中文 文档 chm 谷歌翻译

JDK1.8 API 中文谷歌翻译版 java帮助文档 JDK API java 帮助文档 谷歌翻译 JDK1.8 API 中文 谷歌翻译版 java帮助文档 Java最新帮助文档 本帮助文档是使用谷

软件测试2小时入门

本课程内容系统、全面、简洁、通俗易懂,通过2个多小时的介绍,让大家对软件测试有个系统的理解和认识,具备基本的软件测试理论基础。 主要内容分为5个部分: 1 软件测试概述,了解测试是什么、测试的对象、原则、流程、方法、模型;&nbsp; 2.常用的黑盒测试用例设计方法及示例演示;&nbsp; 3 常用白盒测试用例设计方法及示例演示;&nbsp; 4.自动化测试优缺点、使用范围及示例‘;&nbsp; 5.测试经验谈。

汽车行驶工况构建2019 D题.zip

1. 标记0与0之间的片段位置 2.标记所之间的毛刺数的位置 3.去掉毛刺数据 速度 并生成 新的数组 4.标记时间段 5. 0与0之间 如果有不连续的时间片段 置零 先找到时间间隔 再看间隔时间对应

Python+OpenCV计算机视觉

Python+OpenCV计算机视觉系统全面的介绍。

面试了一个 31 岁程序员,让我有所触动,30岁以上的程序员该何去何从?

最近面试了一个31岁8年经验的程序猿,让我有点感慨,大龄程序猿该何去何从。

专为程序员设计的数学课

<p> 限时福利限时福利,<span>15000+程序员的选择!</span> </p> <p> 1、原价 115 元,限时特价仅需 49 元!<br> 2、购课后添加学习助手(微信号:csdnxy68),按提示消息领取编程大礼包!并获取讲师答疑服务! </p> <p> <br> </p> <p> 套餐中一共包含5门程序员必学的数学课程(共47讲) </p> <p> 课程1:《零基础入门微积分》 </p> <p> 课程2:《数理统计与概率论》 </p> <p> 课程3:《代码学习线性代数》 </p> <p> 课程4:《数据处理的最优化》 </p> <p> 课程5:《马尔可夫随机过程》 </p> <p> <br> </p> <p> 哪些人适合学习这门课程? </p> <p> 1)大学生,平时只学习了数学理论,并未接触如何应用数学解决编程问题; </p> <p> 2)对算法、数据结构掌握程度薄弱的人,数学可以让你更好的理解算法、数据结构原理及应用; </p> <p> 3)看不懂大牛代码设计思想的人,因为所有的程序设计底层逻辑都是数学; </p> <p> 4)想学习新技术,如:人工智能、机器学习、深度学习等,这门课程是你的必修课程; </p> <p> 5)想修炼更好的编程内功,在遇到问题时可以灵活的应用数学思维解决问题。 </p> <p> <br> </p> <p> 在这门「专为程序员设计的数学课」系列课中,我们保证你能收获到这些:<br> <br> <span> </span> </p> <p class="ql-long-24357476"> <span class="ql-author-24357476">①价值300元编程课程大礼包</span> </p> <p class="ql-long-24357476"> <span class="ql-author-24357476">②应用数学优化代码的实操方法</span> </p> <p class="ql-long-24357476"> <span class="ql-author-24357476">③数学理论在编程实战中的应用</span> </p> <p class="ql-long-24357476"> <span class="ql-author-24357476">④程序员必学的5大数学知识</span> </p> <p class="ql-long-24357476"> <span class="ql-author-24357476">⑤人工智能领域必修数学课</span> </p> <p> <br> 备注:此课程只讲程序员所需要的数学,即使你数学基础薄弱,也能听懂,只需要初中的数学知识就足矣。<br> <br> 如何听课? </p> <p> 1、登录CSDN学院 APP 在我的课程中进行学习; </p> <p> 2、登录CSDN学院官网。 </p> <p> <br> </p> <p> 购课后如何领取免费赠送的编程大礼包和加入答疑群? </p> <p> 购课后,添加助教微信:<span> csdnxy68</span>,按提示领取编程大礼包,或观看付费视频的第一节内容扫码进群答疑交流! </p> <p> <img src="https://img-bss.csdn.net/201912251155398753.jpg" alt=""> </p>

微信公众平台开发入门

本套课程的设计完全是为初学者量身打造,课程内容由浅入深,课程讲解通俗易懂,代码实现简洁清晰。通过本课程的学习,学员能够入门微信公众平台开发,能够胜任企业级的订阅号、服务号、企业号的应用开发工作。 通过本课程的学习,学员能够对微信公众平台有一个清晰的、系统性的认识。例如,公众号是什么,它有什么特点,它能做什么,怎么开发公众号。 其次,通过本课程的学习,学员能够掌握微信公众平台开发的方法、技术和应用实现。例如,开发者文档怎么看,开发环境怎么搭建,基本的消息交互如何实现,常用的方法技巧有哪些,真实应用怎么开发。

4小时玩转微信小程序——基础入门与微信支付实战

这是一个门针对零基础学员学习微信小程序开发的视频教学课程。课程采用腾讯官方文档作为教程的唯一技术资料来源。杜绝网络上质量良莠不齐的资料给学员学习带来的障碍。 视频课程按照开发工具的下载、安装、使用、程序结构、视图层、逻辑层、微信小程序等几个部分组织课程,详细讲解整个小程序的开发过程

Java基础知识面试题(2020最新版)

文章目录Java概述何为编程什么是Javajdk1.5之后的三大版本JVM、JRE和JDK的关系什么是跨平台性?原理是什么Java语言有哪些特点什么是字节码?采用字节码的最大好处是什么什么是Java程序的主类?应用程序和小程序的主类有何不同?Java应用程序与小程序之间有那些差别?Java和C++的区别Oracle JDK 和 OpenJDK 的对比基础语法数据类型Java有哪些数据类型switc...

IE主页被篡改修复

IE主页修复。IE主页被篡改修复。一键修复IE主页

我说我不会算法,阿里把我挂了。

不说了,字节跳动也反手把我挂了。

土豆SDK(Java版)-非官方

由于土豆SDK一直建设中,最近几天抽空写了一套java的SDK。包含了现有的所有请求协议。本套SDK中仅提供了oAuth的方式(引用oAuth.net的java版示例),并没有在框架中实现,涉及到登录

Java8零基础入门视频教程

这门课程基于主流的java8平台,由浅入深的详细讲解了java SE的开发技术,可以使java方向的入门学员,快速扎实的掌握java开发技术!

【数据结构与算法综合实验】欢乐连连看(C++ & MFC)案例

这是武汉理工大学计算机学院数据结构与算法综合实验课程的第三次项目:欢乐连连看(C++ & MFC)迭代开发代码。运行环境:VS2017。已经实现功能:开始游戏、消子、判断胜负、提示、重排、计时、帮助。

数学建模竞赛D题“汽车行驶工况构建

第十六届“华为杯”数学建模竞赛D题“汽车行驶工况构建”论文。论文获得比赛国家二等奖,论文为原创,仅供参考。 关键词:数据处理;降维;聚类。

Vue.js 2.0之全家桶系列视频课程

基于新的Vue.js 2.3版本, 目前新全的Vue.js教学视频,让你少走弯路,直达技术前沿! 1. 包含Vue.js全家桶(vue.js、vue-router、axios、vuex、vue-cli、webpack、ElementUI等) 2. 采用笔记+代码案例的形式讲解,通俗易懂

Android音视频开发全套

Android平台音视频开发全套,涉及:FFmpeg软解码解码、Mediacodec硬解码编码、Openssl音频播放、OpenGL ES视频渲染、RTMP推流等核心重要知识点。

设计模式(JAVA语言实现)--20种设计模式附带源码

课程亮点: 课程培训详细的笔记以及实例代码,让学员开始掌握设计模式知识点 课程内容: 工厂模式、桥接模式、组合模式、装饰器模式、外观模式、享元模式、原型模型、代理模式、单例模式、适配器模式 策略模式、模板方法模式、观察者模式、迭代器模式、责任链模式、命令模式、备忘录模式、状态模式、访问者模式 课程特色: 笔记设计模式,用笔记串连所有知识点,让学员从一点一滴积累,学习过程无压力 笔记标题采用关键字标识法,帮助学员更加容易记住知识点 笔记以超链接形式让知识点关联起来,形式知识体系 采用先概念后实例再应用方式,知识点深入浅出 提供授课内容笔记作为课后复习以及工作备查工具 部分图表(电脑PC端查看):

极简JAVA学习营第四期(报名以后加助教微信:eduxy-1)

想学好JAVA必须要报两万的培训班吗? Java大神勿入 如果你: 零基础想学JAVA却不知道从何入手 看了一堆书和视频却还是连JAVA的环境都搭建不起来 囊中羞涩面对两万起的JAVA培训班不忍直视 在职没有每天大块的时间专门学习JAVA 那么恭喜你找到组织了,在这里有: 1. 一群志同道合立志学好JAVA的同学一起学习讨论JAVA 2. 灵活机动的学习时间完成特定学习任务+每日编程实战练习 3. 热心助人的助教和讲师及时帮你解决问题,不按时完成作业小心助教老师的家访哦 上一张图看看前辈的感悟: &nbsp; &nbsp; 大家一定迫不及待想知道什么是极简JAVA学习营了吧,下面就来给大家说道说道: 什么是极简JAVA学习营? 1. 针对Java小白或者初级Java学习者; 2. 利用9天时间,每天1个小时时间; 3.通过 每日作业 / 组队PK / 助教答疑 / 实战编程 / 项目答辩 / 社群讨论 / 趣味知识抢答等方式让学员爱上学习编程 , 最终实现能独立开发一个基于控制台的‘库存管理系统’ 的学习模式 极简JAVA学习营是怎么学习的? &nbsp; 如何报名? 只要购买了极简JAVA一:JAVA入门就算报名成功! &nbsp;本期为第四期极简JAVA学习营,我们来看看往期学员的学习状态: 作业看这里~ &nbsp; 助教的作业报告是不是很专业 不交作业打屁屁 助教答疑是不是很用心 &nbsp; 有奖抢答大家玩的很嗨啊 &nbsp; &nbsp; 项目答辩终于开始啦 &nbsp; 优秀者的获奖感言 &nbsp; 这是答辩项目的效果 &nbsp; &nbsp; 这么细致的服务,这么好的氛围,这样的学习效果,需要多少钱呢? 不要1999,不要199,不要99,只要9.9 是的你没听错,只要9.9以上所有就都属于你了 如果你: 1、&nbsp;想学JAVA没有基础 2、&nbsp;想学JAVA没有整块的时间 3、&nbsp;想学JAVA没有足够的预算 还等什么?赶紧报名吧,抓紧抢位,本期只招300人,错过只有等时间待定的下一期了 &nbsp; 报名请加小助手微信:eduxy-1 &nbsp; &nbsp;

2019 AI开发者大会

2019 AI开发者大会(AI ProCon 2019)是由中国IT社区CSDN主办的AI技术与产业年度盛会。多年经验淬炼,如今蓄势待发:2019年9月6-7日,大会将有近百位中美顶尖AI专家、知名企业代表以及千余名AI开发者齐聚北京,进行技术解读和产业论证。我们不空谈口号,只谈技术,诚挚邀请AI业内人士一起共铸人工智能新篇章!

web网页制作期末大作业

分享思维,改变世界. web网页制作,期末大作业. 所用技术:html css javascript 分享所学所得

手把手实现Java图书管理系统(附源码)

【超实用课程内容】 本课程演示的是一套基于Java的SSM框架实现的图书管理系统,主要针对计算机相关专业的正在做毕设的学生与需要项目实战练习的java人群。详细介绍了图书管理系统的实现,包括:环境搭建、系统业务、技术实现、项目运行、功能演示、系统扩展等,以通俗易懂的方式,手把手的带你从零开始运行本套图书管理系统,该项目附带全部源码可作为毕设使用。 【课程如何观看?】 PC端:https://edu.csdn.net/course/detail/27513 移动端:CSDN 学院APP(注意不是CSDN APP哦) 本课程为录播课,课程2年有效观看时长,大家可以抓紧时间学习后一起讨论哦~ 【学员专享增值服务】 源码开放 课件、课程案例代码完全开放给你,你可以根据所学知识,自行修改、优化 下载方式:电脑登录https://edu.csdn.net/course/detail/27513,点击右下方课程资料、代码、课件等打包下载

MySQL数据库面试题(2020最新版)

文章目录数据库基础知识为什么要使用数据库什么是SQL?什么是MySQL?数据库三大范式是什么mysql有关权限的表都有哪几个MySQL的binlog有有几种录入格式?分别有什么区别?数据类型mysql有哪些数据类型引擎MySQL存储引擎MyISAM与InnoDB区别MyISAM索引与InnoDB索引的区别?InnoDB引擎的4大特性存储引擎选择索引什么是索引?索引有哪些优缺点?索引使用场景(重点)...

2019 Python开发者日-培训

本次活动将秉承“只讲技术,拒绝空谈”的理念,邀请十余位身处一线的Python技术专家,重点围绕Web开发、自动化运维、数据分析、人工智能等技术模块,分享真实生产环境中使用Python应对IT挑战的真知灼见。此外,针对不同层次的开发者,大会还安排了深度培训实操环节,为开发者们带来更多深度实战的机会。

C++语言基础视频教程

C++语言基础视频培训课程:本课与主讲者在大学开出的程序设计课程直接对接,准确把握知识点,注重教学视频与实践体系的结合,帮助初学者有效学习。本教程详细介绍C++语言中的封装、数据隐藏、继承、多态的实现等入门知识;主要包括类的声明、对象定义、构造函数和析构函数、运算符重载、继承和派生、多态性实现等。 课程需要有C语言程序设计的基础(可以利用本人开出的《C语言与程序设计》系列课学习)。学习者能够通过实践的方式,学会利用C++语言解决问题,具备进一步学习利用C++开发应用程序的基础。

零基础学C#编程—C#从小白到大咖

本课程从初学者角度出发,提供了C#从入门到成为程序开发高手所需要掌握的各方面知识和技术。 【课程特点】 1 由浅入深,编排合理; 2 视频讲解,精彩详尽; 3 丰富实例,轻松易学; 4 每章总结配有难点解析文档。 15大章节,228课时,1756分钟与你一同进步!

编程实现学生基本信息管理程序

编程实现学生基本信息管理程序。学生基本信息包括:学号、姓名、性别、年龄、班级、学院、专业等。具体实现的管理功能如下: (1) 输入并显示多个学生的基本信息; (2) 可根据需要实现学生信息的添加; (

android 漂亮的UI界面 完整的界面设计

声明:这也是我学习时在网上下载的,鉴于分享精神,并且觉得很不错才上传上来的。。。。。 android 漂亮的UI界面 完整的界面设计 这是一个完整的UI设计,但是没写动作,这是一个公司程序员的公司任务

Anaconda详细安装及使用教程(带图文)

Anacond的介绍 Anaconda指的是一个开源的Python发行版本,其包含了conda、Python等180多个科学包及其依赖项。 因为包含了大量的科学包,Anaconda 的下载文件比较大(约 531 MB),如果只需要某些包,或者需要节省带宽或存储空间,也可以使用Miniconda这个较小的发行版(仅包含conda和 Python)。 Conda是一个开源的包、环境管理器,可以用于...

DirectX修复工具V4.0增强版

DirectX修复工具(DirectX Repair)是一款系统级工具软件,简便易用。本程序为绿色版,无需安装,可直接运行。 本程序的主要功能是检测当前系统的DirectX状态,如果发现异常则进行修复

几率大的Redis面试题(含答案)

本文的面试题如下: Redis 持久化机制 缓存雪崩、缓存穿透、缓存预热、缓存更新、缓存降级等问题 热点数据和冷数据是什么 Memcache与Redis的区别都有哪些? 单线程的redis为什么这么快 redis的数据类型,以及每种数据类型的使用场景,Redis 内部结构 redis的过期策略以及内存淘汰机制【~】 Redis 为什么是单线程的,优点 如何解决redis的并发竞争key问题 Red...

相关热词 c# 按行txt c#怎么扫条形码 c#打包html c# 实现刷新数据 c# 两个自定义控件重叠 c#浮点类型计算 c#.net 中文乱码 c# 时间排序 c# 必备书籍 c#异步网络通信
立即提问