MATLAB提示我未定义函数或变量,这是为什么?

跑MATLAB时总是提醒我未定义函数或变量 'time'。

“出错 shiyan1 (line 191)
R_block_A_time = time(k)”
小白,求大神赐教

 if (abs(d1_id_A_1(k))< k2*abs(d2_id_A_1(k)))|(abs(d1_id_A_1(k))< k5*abs(d5_id_A_1(k)))
        R_block_A(k)=1;     time1_stan = 1;                       
    if (time1_stan== 1) & (time1_stan_1 == 0)
        R_block_A_time = time(k)%就是这一行
        time1_stan_1 = 1;
    end                           
 else
        R_block_A(k)=0;
 end
Csdn user default icon
上传中...
上传图片
插入图片
抄袭、复制答案,以达到刷声望分或其他目的的行为,在CSDN问答是严格禁止的,一经发现立刻封号。是时候展现真正的技术了!
其他相关推荐
JAVA调用MATLAB报错。未定义函数或变量 'syms'。
![![图片说明](https://img-ask.csdn.net/upload/201808/29/1535511780_724089.png)图片说明](https://img-ask.csdn.net/upload/201808/29/1535511771_245428.png) 在MATLAB中定义函数求解方程组,使用syms定义变量,以便在表达式e 1,e2中使用。 在MATLAB中可以正确得出结果。但是在java中调用却提示“未定义函数或变量 'syms'”。 该怎么解决? (C币不足)
C++调用MATLAB .m文件编译生成的dll,提示未定义函数或变量'sym'
1.MATLAB做了一个数值计算的小程序,输入2个数和2个二维数组,输出4个计算值。 2.MATLAB 中利用下列语句命令进行编译,且编译成功 mcc -W cpplib:dxzdv3 -T link:lib dxzdv3 在C++中也可以编译成功,只是运行的时候提示: 未定义函数或变量'sym' ![图片说明](https://img-ask.csdn.net/upload/201907/22/1563787205_568806.jpg) 3.找到MATLAB 源程序中对应的程序如下: tmp(i,1)=double(sym(mod(IDD3^137,899))); 发现原因是在MATLAB 计算中使用了符号变量计算。C++调用时出现问题。 其中IDD3是一个数值,本句是计算一个大数指数运算后取模(RSA加密算法) 使用符号变量的原因,MATLAB常规计算因为数值太大,数据直接溢出为NaN,使用符号变量sym可以实现大数值计算。 将该sym语句去掉后就正常运行。 请问如何解决C++调用MATLAB编译的DLL无法识别sym的问题? 也尝试过MATLAB不适用符号变量sym来进行计算,但因为数据太大,没有找到合适的方法。
Matlab 显示未定义函数或变量??
%% Dynamic Neural Field Model (1D) clear; clf; hold on; nn = 100; dx=2*pi/nn; sig = 2*pi/10; C=0.5; %% Training weight matrix for loc=1:nn i=(1:nn)'; dis= min(abs(1i-loc),nn-abs(1i-loc)); pat(:,loc)=exp(-(dis*dx).^2/(2*sig^2)); end w=pat*pat'; w=w/w(1,1); w=4*(w-C); %% Update with localised input tall = []; rall = []; I_ext=zeros(nn,1); I_ext(nn/2-floor(nn/10):nn/2+floor(nn/10))=1; [t,u]=ode45('rnn_ode',[10 20],u(size(u,1),:),[],nn,dx,w,I_ext); r=1./(1+exp(-u)); tall=[tall;t]; rall=[rall;r]; %% Update without input I_ext=zeros(nn,1); [t,u]=ode45('rnn_ode',[10 20],u(size(u,1),:),[],nn,dx,w,I_ext); r=1./(1+exp(-u)); tall=[tall;t]; rall=[rall;r]; %% Plotting results surf(tall',1:nn,rall','linestyle','none'); view(0,90); return function udot=rnn_ode(~,u,~,~,dx,w,I_ext) % odefile for recurrent network tau_inv = 1.; % inverse of membrane time constant r=1./(1+exp(-u)); sum=w*r*dx; udot=tau_inv*(-u+sum+I_ext); end 如题,显示未定义函数或变量“u”,请问如何解决?
MATLAB报错未定义函数或变量怎么破啊?附代码
%%----------------------------------------------------------------------------------------------------------------- % fobj 评价函数 % dim 变量的个数 % Max_iteration 最大迭代次数 % SearchAgents_no 种群规模 % lb=[lb1,lb2,...,lbn] lbn 是变量 n 的下界 % ub=[ub1,ub2,...,ubn] ubn 是变量 n 的上界 %%----------------------------------------------------------------------------------------------------------------- % 位置更新函数 [Alpha_score,Alpha_pos,Convergence_curve]=GWO(SearchAgents_no,Max_iter,lb,ub,dim,fobj) % 初始化alpha, beta,和delta_pos Alpha_pos=zeros(1,dim); Alpha_score=inf; Beta_pos=zeros(1,dim); Beta_score=inf; Delta_pos=zeros(1,dim); Delta_score=inf; %初始化灰狼个体的位置 Positions=initialization(SearchAgents_no,dim,ub,lb); Convergence_curve=zeros(1,Max_iter); l=0; % 循环计数 % 主循环 while l<Max_iter for i=1:size(Positions,1) % 边界控制 Flag4ub=Positions(i,:)>ub; Flag4lb=Positions(i,:)<lb; Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb; % 计算评价函数 fitness=fobj(Positions(i,:)); % 更新 Alpha, Beta 和 Delta if fitness<Alpha_score Alpha_score=fitness; % 更新 alpha Alpha_pos=Positions(i,:); end if fitness>Alpha_score && fitness<Beta_score Beta_score=fitness; % 更新 beta Beta_pos=Positions(i,:); end if fitness>Alpha_score && fitness>Beta_score && fitness<Delta_score Delta_score=fitness; % 更新delta Delta_pos=Positions(i,:); end end a=2-l*((2)/Max_iter); % 线性下降从 2到0 % 更新灰狼个体的位置 for i=1:size(Positions,1) for j=1:size(Positions,2) r1=rand(); % r1 是 0 到 1 之间的随机数 r2=rand(); % r2 是 0 到 1 之间的随机数 A1=2*a*r1-a; C1=2*r2; D_alpha=abs(C1*Alpha_pos(j)-Positions(i,j)); X1=Alpha_pos(j)-A1*D_alpha; r1=rand(); r2=rand(); A2=2*a*r1-a; C2=2*r2; D_beta=abs(C2*Beta_pos(j)-Positions(i,j)); X2=Beta_pos(j)-A2*D_beta; r1=rand(); r2=rand(); A3=2*a*r1-a; C3=2*r2; D_delta=abs(C3*Delta_pos(j)-Positions(i,j)); X3=Delta_pos(j)-A3*D_delta; Positions(i,j)=(X1+X2+X3)/3; end end l=l+1; Convergence_curve(l)=Alpha_score; end
MATLAB运行程序显示未定义函数或变量 'net'。
我的环境是MATLAB 2016a+vs2015+GPUwindows,想运行一段行人再识别的train源代码,代码是从github上下载的,但是总:显示未定义函数或变量 'net'。如下图所示、 ![图片说明](https://img-ask.csdn.net/upload/201809/14/1536887989_682483.png) 源代码网址https://github.com/layumi/2016_person_re-ID.git 想请教一下这个要怎么处理,万分感谢。下面是我的代码 function train_id_net_res_2stream(varargin) % ------------------------------------------------------------------------- % Part 4.1: prepare the data % ------------------------------------------------------------------------- % Load character dataset imdb = load('./url_data.mat') ; imdb = imdb.imdb; % ------------------------------------------------------------------------- % Part 4.2: initialize a CNN architecture % ------------------------------------------------------------------------- net = resnet52_2stream(); net.params(net.getParamIndex('fc751f')).learningRate = 0.01; net.params(net.getParamIndex('fc751b')).learningRate = 0.2; net.conserveMemory = true; net.meta.normalization.averageImage = reshape([105.6920,99.1345,97.9152],1,1,3); % ------------------------------------------------------------------------- % Part 4.3: train and evaluate the CNN % ------------------------------------------------------------------------- opts.train.averageImage = net.meta.normalization.averageImage; opts.train.batchSize = 48; opts.train.continue = true; opts.train.gpus = 1; %Select gpu card. The gpu id in Matlab start from 1. opts.train.prefetch = false ; opts.train.expDir = './data/resnet52_2stream_drop0.9_new' ; % your model will store here opts.train.learningRate = [0.1*ones(1,70),0.01*ones(1,5)] ; opts.train.derOutputs = {'objective', 0.5,'objective_2', 0.5,'objective_final', 1} ; opts.train.weightDecay = 0.0005; opts.train.numEpochs = numel(opts.train.learningRate) ; [opts, ~] = vl_argparse(opts.train, varargin) ; % Call training function in MatConvNet [~,~] = cnn_train_dag(net, imdb, @getBatch,opts) ; % -------------------------------------------------------------------- function inputs = getBatch(imdb, batch,opts) % -------------------------------------------------------------------- im1_url = imdb.images.data(batch) ; label1 = imdb.images.label(:,batch) ; batchsize = numel(batch); % every epoch we will add negative pairs until 1:4 dividor = 2; dividor = min(5,dividor*power(1.01,opts.epoch)); half = round(batchsize/dividor); label_f = cat(1,ones(half,1,'single'),ones(batchsize-half,1,'single')*2); % select half from same class, second half from different class; batch2 = zeros(batchsize,1); for i=1:batchsize if(i<=half) batch2(i) = rand_same_class(imdb, batch(i)); else batch2(i) = rand_diff_class(imdb, batch(i)); end end im2_url = imdb.images.data(batch2) ; im1 = vl_imreadjpeg(im1_url,'Flip'); im2 = vl_imreadjpeg(im2_url,'Flip'); label2 = imdb.images.label(:,batch2) ; %------------------------------process data oim1 = zeros(224,224,3,batchsize,'single'); oim2 = zeros(224,224,3,batchsize,'single'); for i=1:batchsize x1 = randi(33);x2 = randi(33); y1 = randi(33);y2 = randi(33); tim1 = im1{i}; tim2 = im2{i}; temp1 = tim1(x1:x1+223,y1:y1+223,:); temp2 = tim2(x2:x2+223,y2:y2+223,:); oim1(:,:,:,i) = temp1; oim2(:,:,:,i) = temp2; end oim1 = bsxfun(@minus,oim1,opts.averageImage); oim2 = bsxfun(@minus,oim2,opts.averageImage); inputs = {'data',gpuArray(oim1),'data_2',gpuArray(oim2),'label',label1,'label_2',label2,'label_f',label_f}; ``` ```
mexopencv未定义函数或变量 'MotionSaliencyBinWangApr2014_'
未定义函数或变量 'MotionSaliencyBinWangApr2014_'。 出错 cv.MotionSaliencyBinWangApr2014 (line 70) this.id = MotionSaliencyBinWangApr2014_(0, 'new'); 出错 backgroundDemon (line 61) saliency = cv.MotionSaliencyBinWangApr2014(); 设置了路径+mex -setup c++ mexopencv.make('opencv_path', 'D:\DayDayUp\opencv\build') 运行过程中还出现这个东西,不知道问题出现在哪里
【MATLAB】未定义函数或变量 "d_k"
function y = rsc_encode(g, x, end1) [n,K] = size(g); m = K - 1; if end1>0 L_info = length(x); L_total = L_info + m; else L_total = length(x); L_info = L_total - m; end state = zeros(1,m); for i = 1:L_total if end1<0 | (end1>0 & i<=L_info) d_k = x(1,i); elseif end1>0 & i>L_info d_k = rem( g(1,2:K)*state', 2 ); end a_k = rem( g(1,:)*[d_k state]', 2 ); [output_bits, state] = encode_bit(g, a_k, state); output_bits(1,1) = d_k; y(n*(i-1)+1:n*i) = output_bits; end
MATLAB总显示 “未定义函数或变量 'x'。”
# 函数文件如下: ``` function y=average(x) [a,b]=size(x); if ~((a==1)||(b==1)||((a==1)&&(b==1))) %之前版本 或 使用 |,和 使用 & error('必须输出入向量。') end y=sum(x)/length(x); ``` 初学者,谢谢,使用的是2018a版本,和之前的版本有改。
matlab运行SIFT算法总是出现未定义函数变量?
未定义函数或变量 "pt11"。 出错 features_matching (line 14) [B1,IX] = sort(pt11(:,1)); 出错 tuxiangpingjie (line 34) [pt1,pt2]= features_matching( db, desc2, dist_ratio , pos1 , pos2); features_matching 程序 function [pt1,pt2] = features_matching( database, desc, dist_ratio , pos1 , pos2 ) num = 1; for k = 1:size(desc,1) dist = sqrt(sum((database.desc - repmat(desc(k,:),size(database.desc,1),1)).^2,2)); [B,IX] = sort(dist); if B(1)/B(2) >= dist_ratio %nn2_dist >= dist_ratio idx = 0; else pt22(num,:) = pos2(k,:); pt11(num,:) = pos1(IX(1),:); num = num + 1; end end [B1,IX] = sort(pt11(:,1)); Pt1 = pt11(IX,:); Pt2 = pt22(IX,:); k = 1; for i = 2:num-1 Dist = sqrt((Pt1(i,1) - Pt1(i-1,1))^2 +(Pt1(i,2) - Pt1(i-1,2))^2); if Dist > 3 pt1(k,:) = Pt1(i,:); pt2(k,:) = Pt2(i,:); k = k + 1; end end [B1,IX] = sort(pt2(:,1)); Pt1 = pt1(IX,:); Pt2 = pt2(IX,:); kk = 1; pt1 = []; pt2 = []; for i = 2:k-1 Dist = sqrt((Pt2(i,1) - Pt2(i-1,1))^2 +(Pt2(i,2) - Pt2(i-1,2))^2); if Dist > 3 pt1(kk,:) = Pt1(i,:); pt2(kk,:) = Pt2(i,:); kk = kk + 1; end end
关于matlab函数定义的问题,定义了但是提示未定义 求大神解答
![这是.m文件](https://img-ask.csdn.net/upload/201904/18/1555578183_437205.png) 以下是关于函数的定义 function p = init_phi(im,type) im = dimensionz(im); %m = im(150:250,150:250); [dim1, dim2] = size(im); p = zeros(dim1+2,dim2+2); switch lower (type) case 'circle' for i = 1:dim1+2 for j = 1:dim2+2 p(i,j) = (sqrt((i/dim1-0.5)^2 + (j/dim2-0.5)^2) - 0.2) * 30; end end case 'grid' for i = 1:dim1+1 for j = 1:dim2+1 p(i,j) = sin(i*pi/5) + sin(j*pi/5); end end case 'circle 2' for i = 1:dim1+2 for j = 1:dim2+2 p(i,j) = (sqrt(((i+2)/dim1-0.3)^2 + (j/dim2-0.9)^2) - 0.2) * 30; end end case 'square' %p = zeros(dim1+2,dim2+2); p(floor((dim1+2)/3:(dim1+2)*2/3),floor((dim2+2)/3:(dim2+2)*2/3)) = 1; % p(floor(((dim1+2)/3)+1):floor((dim1+2)*2/3)-1,floor((dim2+2)/3)+1:floor((dim2+2)*2/3)-1) = 0; p = bwdist(p)-bwdist(1-p)+im2double(p)-.5; end end 运行后提示 未定义函数或变量 'init'。求大神详细解答ORZ
有未定义的变量,这类函数变量应该怎么定义?
这是需要绘制的函数 ![](https://img-ask.csdn.net/upload/201603/06/1457244253_300961.jpg) 这是赋值、循环和绘图语句 ![](https://img-ask.csdn.net/upload/201603/06/1457244296_830770.jpg) 纯新手,感谢大家帮助!~
关于MATLAB中if语句内赋值问题
目标:截取整个矩阵中指定部分并保存,指定坐标在.mat文件position中,矩阵名mat,坐标名pos。 问题:未定义函数或变量 'mat'。或者 引用了已清除变量'mat'。 ``` clear; clc; path = 'D:\Workspace\name'; mat_list = dir(path); mat_list(1:2)=[]; for para = 1:length(mat_list) if contain('mat', para) load(cat(2, path, '\', mat_list(para).name)); end end target = mat(pos(2):pos(2)+pos(4),pos(1):pos(1)+pos(3),:); save([path, '\', mat_list(para).name, 'Final.mat'], 'target'); ``` pos 是一个1*4的矩阵,里面的元素指定的位置按照代码中的逻辑运算后,就是需要截取另存为的部分。 上面就是代码大致逻辑。 但是这个代码不是说mat未定义就是说mat已清除。。 查了一天的百度也没查到,看提示似乎是因为if函数内赋值和加载文件都是局部变量 然后我百度怎么局部转全局,结果只有global函数,如果可以赋值变量就可以,但是我有两个需要加载的.mat文件。。找不到办法赋值 有没有老师教教我这关怎么过。
关于matlab程序移植后出现的GUI主函数问题?
我将代码移植过来后,运行调试,出现了以下错误: >> face 未定义函数或变量 'pcacov'。 出错 face>pushbutton3_Callback (line 154) [COEFF, latent, explained] = pcacov(covMat); 出错 gui_mainfcn (line 95) feval(varargin{:}); 出错 face (line 43) gui_mainfcn(gui_State, varargin{:}); 出错 matlab.graphics.internal.figfile.FigFile/read>@(hObject,eventdata)face('pushbutton3_Callback',hObject,eventdata,guidata(hObject)) 计算 UIControl Callback 时出错。 恳请大神解答!万分感激!
这个程序(Matlab)哪里写错了?
这是一个生成一个x从-5到5,y从0到10的坐标系,然后计算坐标系中点(-0.525,0)到坐标系中的某一点的夹角的程序。 x=-5:5;y=0:10;[X,Y] = meshgrid(x,y); if(X>-0.525&Y>0) beta1=atand(abs((Y-0)/(X+0.525))); elseif(X<-0.525&Y>0) beta1=90+atand(abs((X+0.525)/(Y-0))); elseif(X==-0.525) beta1=90; elseif(Y==0&X>-0.525) beta1=0; elseif(Y==0&X<-0.525) beta1=180; end disp(beta1) 错误提示如下 test 未定义函数或变量 'beta1'。 出错 test (line 14) disp(beta1)
caffe生成解决方案时出错
编译环境:win10 vs2017 15.5.6 boost_1_70_0 主要报错: Unknown compiler version - please run the configure tests and report the results 再次点生成解决方案时的主要报错: for each 语句不能在“std::array *”类型的变量上操作 ; “std::array”: 模板 参数太少 ; 无法打开文件“libboost_date_time-vc140-mt-gd-1_59.lib” 等等; 因为只能一条条复制,所以如有需要,可提供详细错误; 下面是重新生成解决方案的具体报错,有大佬来救救我吗,感激不尽!需要更详细信息可以直说。 报错:1>------ 已启动全部重新生成: 项目: libcaffe, 配置: Debug x64 ------ 1>ProtoCompile.cmd : Create proto temp directory "C:\Users\Kay Chow\Documents\caffe-master\windows\..\src\caffe\proto\temp" 1>ProtoCompile.cmd : Generating "C:\Users\Kay Chow\Documents\caffe-master\windows\..\src\caffe\proto\temp\caffe.pb.h" and "C:\Users\Kay Chow\Documents\caffe-master\windows\..\src\caffe\proto\temp\caffe.pb.cc" 1>ProtoCompile.cmd : Create proto include directory 1>子目录或文件 C:\Users\Kay Chow\Documents\caffe-master\windows\..\include\caffe\proto 已经存在。 1>ProtoCompile.cmd : Compare newly compiled caffe.pb.h with existing one 1>blob.cpp 1>common.cpp 1>data_reader.cpp 1>data_transformer.cpp 1>internal_thread.cpp 1>layer.cpp 1>absval_layer.cpp 1>accuracy_layer.cpp 1>Unknown compiler version - please run the configure tests and report the results 1>Unknown compiler version - please run the configure tests and report the results 1>Unknown compiler version - please run the configure tests and report the results 1>Unknown compiler version - please run the configure tests and report the results 1>Unknown compiler version - please run the configure tests and report the results 1>Unknown compiler version - please run the configure tests and report the results 1>Unknown compiler version - please run the configure tests and report the results 1>Unknown compiler version - please run the configure tests and report the results 1>argmax_layer.cpp 1>base_conv_layer.cpp 1>base_data_layer.cpp 1>Unknown compiler version - please run the configure tests and report the results 1>Unknown compiler version - please run the configure tests and report the results 1>Unknown compiler version - please run the configure tests and report the results 1>batch_norm_layer.cpp 1>Unknown compiler version - please run the configure tests and report the results 1>batch_reindex_layer.cpp 1>bias_layer.cpp 1>Unknown compiler version - please run the configure tests and report the results 1>Unknown compiler version - please run the configure tests and report the results 1>bnll_layer.cpp 1>box_annotator_ohem_layer.cpp 1>Unknown compiler version - please run the configure tests and report the results 1>concat_layer.cpp 1>contrastive_loss_layer.cpp 1>Unknown compiler version - please run the configure tests and report the results 1>Unknown compiler version - please run the configure tests and report the results 1>Unknown compiler version - please run the configure tests and report the results 1>conv_layer.cpp 1>Unknown compiler version - please run the configure tests and report the results 1>crop_layer.cpp 1>cudnn_conv_layer.cpp 1>cudnn_lcn_layer.cpp 1>cudnn_lrn_layer.cpp 1>cudnn_pooling_layer.cpp 1>Unknown compiler version - please run the configure tests and report the results 1>cudnn_relu_layer.cpp 1>cudnn_sigmoid_layer.cpp 1>cudnn_softmax_layer.cpp 1>cudnn_tanh_layer.cpp 1>data_layer.cpp 1>deconv_layer.cpp 1>dropout_layer.cpp 1>dummy_data_layer.cpp 1>eltwise_layer.cpp 1>elu_layer.cpp 1>Unknown compiler version - please run the configure tests and report the results 1>Unknown compiler version - please run the configure tests and report the results 1>Unknown compiler version - please run the configure tests and report the results 1>Unknown compiler version - please run the configure tests and report the results 1>Unknown compiler version - please run the configure tests and report the results 1>Unknown compiler version - please run the configure tests and report the results 1>embed_layer.cpp 1>Unknown compiler version - please run the configure tests and report the results 1>euclidean_loss_layer.cpp 1>Unknown compiler version - please run the configure tests and report the results 1>exp_layer.cpp 1>filter_layer.cpp 1>flatten_layer.cpp 1>hdf5_data_layer.cpp 1>Unknown compiler version - please run the configure tests and report the results 1>Unknown compiler version - please run the configure tests and report the results 1>hdf5_output_layer.cpp 1>Unknown compiler version - please run the configure tests and report the results 1>Unknown compiler version - please run the configure tests and report the results 1>Unknown compiler version - please run the configure tests and report the results 1>hinge_loss_layer.cpp 1>Unknown compiler version - please run the configure tests and report the results 1>im2col_layer.cpp 1>image_data_layer.cpp 1>infogain_loss_layer.cpp 1>inner_product_layer.cpp 1>Unknown compiler version - please run the configure tests and report the results 1>input_layer.cpp 1>Unknown compiler version - please run the configure tests and report the results 1>log_layer.cpp 1>loss_layer.cpp 1>Unknown compiler version - please run the configure tests and report the results 1>Unknown compiler version - please run the configure tests and report the results 1>Unknown compiler version - please run the configure tests and report the results 1>Unknown compiler version - please run the configure tests and report the results 1>Unknown compiler version - please run the configure tests and report the results 1>lrn_layer.cpp 1>Unknown compiler version - please run the configure tests and report the results 1>memory_data_layer.cpp 1>multinomial_logistic_loss_layer.cpp 1>mvn_layer.cpp 1>neuron_layer.cpp 1>Unknown compiler version - please run the configure tests and report the results 1>parameter_layer.cpp 1>Unknown compiler version - please run the configure tests and report the results 1>Unknown compiler version - please run the configure tests and report the results 1>pooling_layer.cpp 1>Unknown compiler version - please run the configure tests and report the results 1>Unknown compiler version - please run the configure tests and report the results 1>Unknown compiler version - please run the configure tests and report the results 1>power_layer.cpp 1>Unknown compiler version - please run the configure tests and report the results 1>prelu_layer.cpp 1>psroi_pooling_layer.cpp 1>reduction_layer.cpp 1>relu_layer.cpp 1>reshape_layer.cpp 1>scale_layer.cpp 1>sigmoid_cross_entropy_loss_layer.cpp 1>Unknown compiler version - please run the configure tests and report the results 1>Unknown compiler version - please run the configure tests and report the results 1>Unknown compiler version - please run the configure tests and report the results 1>Unknown compiler version - please run the configure tests and report the results 1>Unknown compiler version - please run the configure tests and report the results 1>Unknown compiler version - please run the configure tests and report the results 1>Unknown compiler version - please run the configure tests and report the results 1>sigmoid_layer.cpp 1>Unknown compiler version - please run the configure tests and report the results 1>silence_layer.cpp 1>slice_layer.cpp 1>smooth_l1_loss_layer.cpp 1>smooth_L1_loss_ohem_layer.cpp 1>Unknown compiler version - please run the configure tests and report the results 1>softmax_layer.cpp 1>Unknown compiler version - please run the configure tests and report the results 1>Unknown compiler version - please run the configure tests and report the results 1>softmax_loss_layer.cpp 1>Unknown compiler version - please run the configure tests and report the results 1>softmax_loss_ohem_layer.cpp 1>Unknown compiler version - please run the configure tests and report the results 1>split_layer.cpp 1>Unknown compiler version - please run the configure tests and report the results 1>Unknown compiler version - please run the configure tests and report the results 1>Unknown compiler version - please run the configure tests and report the results 1>spp_layer.cpp 1>tanh_layer.cpp 1>threshold_layer.cpp 1>tile_layer.cpp 1>window_data_layer.cpp 1>Unknown compiler version - please run the configure tests and report the results 1>Unknown compiler version - please run the configure tests and report the results 1>Unknown compiler version - please run the configure tests and report the results 1>Unknown compiler version - please run the configure tests and report the results 1>layer_factory.cpp 1>net.cpp 1>parallel.cpp 1>Unknown compiler version - please run the configure tests and report the results 1>Unknown compiler version - please run the configure tests and report the results 1>Unknown compiler version - please run the configure tests and report the results 1>Unknown compiler version - please run the configure tests and report the results 1>caffe.pb.cc 1>solver.cpp 1>adadelta_solver.cpp 1>adagrad_solver.cpp 1>Unknown compiler version - please run the configure tests and report the results 1>Unknown compiler version - please run the configure tests and report the results 1>Unknown compiler version - please run the configure tests and report the results 1>adam_solver.cpp 1>Unknown compiler version - please run the configure tests and report the results 1>nesterov_solver.cpp 1>Unknown compiler version - please run the configure tests and report the results 1>rmsprop_solver.cpp 1>sgd_solver.cpp 1>syncedmem.cpp 1>Unknown compiler version - please run the configure tests and report the results 1>Unknown compiler version - please run the configure tests and report the results 1>benchmark.cpp 1>Unknown compiler version - please run the configure tests and report the results 1>Unknown compiler version - please run the configure tests and report the results 1>blocking_queue.cpp 1>Unknown compiler version - please run the configure tests and report the results 1>cudnn.cpp 1>db.cpp 1>db_leveldb.cpp 1>Unknown compiler version - please run the configure tests and report the results 1>db_lmdb.cpp 1>Unknown compiler version - please run the configure tests and report the results 1>Unknown compiler version - please run the configure tests and report the results 1>hdf5.cpp 1>Unknown compiler version - please run the configure tests and report the results 1>im2col.cpp 1>insert_splits.cpp 1>io.cpp 1>Unknown compiler version - please run the configure tests and report the results 1>math_functions.cpp 1>signal_handler.cpp 1>Unknown compiler version - please run the configure tests and report the results 1>Unknown compiler version - please run the configure tests and report the results 1>Unknown compiler version - please run the configure tests and report the results 1>upgrade_proto.cpp 1>Unknown compiler version - please run the configure tests and report the results 1>Unknown compiler version - please run the configure tests and report the results 1>libcaffe.vcxproj -> C:\Users\Kay Chow\Documents\caffe-master\windows\..\Build\x64\Debug\libcaffe.lib 1>BinplaceCudaDependencies : CPU only build, don't copy cuda dependencies. 2>------ 已启动全部重新生成: 项目: caffe, 配置: Debug x64 ------ 3>------ 已启动全部重新生成: 项目: caffe.managed, 配置: Debug x64 ------ 4>------ 已启动全部重新生成: 项目: convert_cifar_data, 配置: Debug x64 ------ 5>------ 已启动全部重新生成: 项目: classification, 配置: Debug x64 ------ 6>------ 已启动全部重新生成: 项目: convert_mnist_data, 配置: Debug x64 ------ 7>------ 已启动全部重新生成: 项目: convert_mnist_siamese_data, 配置: Debug x64 ------ 8>------ 已启动全部重新生成: 项目: upgrade_net_proto_binary, 配置: Debug x64 ------ 9>------ 已启动全部重新生成: 项目: upgrade_net_proto_text, 配置: Debug x64 ------ 2>caffe.cpp 9>upgrade_net_proto_text.cpp 2>Unknown compiler version - please run the configure tests and report the results 4>convert_cifar_data.cpp 3>Stdafx.cpp 9>Unknown compiler version - please run the configure tests and report the results 5>classification.cpp 6>convert_mnist_data.cpp 7>convert_mnist_siamese_data.cpp 4>Unknown compiler version - please run the configure tests and report the results 5>Unknown compiler version - please run the configure tests and report the results 8>upgrade_net_proto_binary.cpp 6>Unknown compiler version - please run the configure tests and report the results 8>Unknown compiler version - please run the configure tests and report the results 7>Unknown compiler version - please run the configure tests and report the results 3>AssemblyInfo.cpp 3>caffelib.cpp 3>caffelib.cpp(61): error C2976: “std::array”: 模板 参数太少 3>D:\VS2017\VC\Tools\MSVC\14.12.25827\include\utility(474): note: 参见“std::array”的声明 3>caffelib.cpp(62): error C3699: “^”: 不能在类型“std::array”上使用此间接寻址 3>caffelib.cpp(62): note: 编译器将“^”替换为“*”以继续进行分析 3>caffelib.cpp(68): error C2976: “std::array”: 模板 参数太少 3>D:\VS2017\VC\Tools\MSVC\14.12.25827\include\utility(474): note: 参见“std::array”的声明 3>caffelib.cpp(68): error C3699: “^”: 不能在类型“std::array”上使用此间接寻址 3>caffelib.cpp(68): note: 编译器将“^”替换为“*”以继续进行分析 3>caffelib.cpp(69): error C3699: “^”: 不能在类型“std::array”上使用此间接寻址 3>caffelib.cpp(69): note: 编译器将“^”替换为“*”以继续进行分析 3>caffelib.cpp(127): error C2976: “std::array”: 模板 参数太少 3>D:\VS2017\VC\Tools\MSVC\14.12.25827\include\utility(474): note: 参见“std::array”的声明 3>caffelib.cpp(128): error C3699: “^”: 不能在类型“std::array”上使用此间接寻址 3>caffelib.cpp(128): note: 编译器将“^”替换为“*”以继续进行分析 3>caffelib.cpp(136): error C2976: “std::array”: 模板 参数太少 3>D:\VS2017\VC\Tools\MSVC\14.12.25827\include\utility(474): note: 参见“std::array”的声明 3>caffelib.cpp(136): error C3699: “^”: 不能在类型“std::array”上使用此间接寻址 3>caffelib.cpp(136): note: 编译器将“^”替换为“*”以继续进行分析 3>caffelib.cpp(137): error C3699: “^”: 不能在类型“std::array”上使用此间接寻址 3>caffelib.cpp(137): note: 编译器将“^”替换为“*”以继续进行分析 3>caffelib.cpp(64): error C2976: “std::array”: 模板 参数太少 3>D:\VS2017\VC\Tools\MSVC\14.12.25827\include\utility(474): note: 参见“std::array”的声明 3>caffelib.cpp(64): error C2027: 使用了未定义类型“std::array” 3>D:\VS2017\VC\Tools\MSVC\14.12.25827\include\utility(474): note: 参见“std::array”的声明 3>caffelib.cpp(64): error C3536: “outputs”: 初始化之前无法使用 3>caffelib.cpp(64): error C2109: 下标要求数组或指针类型 3>caffelib.cpp(65): error C2440: “return”: 无法从“int”转换为“std::array *” 3>caffelib.cpp(65): note: 从整型转换为指针类型要求 reinterpret_cast、C 样式转换或函数样式转换 3>caffelib.cpp(71): error C3285: for each 语句不能在“std::array *”类型的变量上操作 3>caffelib.cpp(72): error C2065: “name”: 未声明的标识符 3>caffelib.cpp(74): error C2976: “std::array”: 模板 参数太少 3>D:\VS2017\VC\Tools\MSVC\14.12.25827\include\utility(474): note: 参见“std::array”的声明 3>caffelib.cpp(74): error C3699: “^”: 不能在类型“std::array”上使用此间接寻址 3>caffelib.cpp(74): note: 编译器将“^”替换为“*”以继续进行分析 3>caffelib.cpp(74): error C2027: 使用了未定义类型“std::array” 3>D:\VS2017\VC\Tools\MSVC\14.12.25827\include\utility(474): note: 参见“std::array”的声明 3>caffelib.cpp(78): error C2976: “std::array”: 模板 参数太少 3>D:\VS2017\VC\Tools\MSVC\14.12.25827\include\utility(474): note: 参见“std::array”的声明 3>caffelib.cpp(78): error C2027: 使用了未定义类型“std::array” 3>D:\VS2017\VC\Tools\MSVC\14.12.25827\include\utility(474): note: 参见“std::array”的声明 3>caffelib.cpp(78): error C3536: “values”: 初始化之前无法使用 3>caffelib.cpp(78): error C2109: 下标要求数组或指针类型 3>caffelib.cpp(79): error C3536: “outputs”: 初始化之前无法使用 3>caffelib.cpp(79): error C2109: 下标要求数组或指针类型 3>caffelib.cpp(81): error C2440: “return”: 无法从“int”转换为“std::array *” 3>caffelib.cpp(81): note: 从整型转换为指针类型要求 reinterpret_cast、C 样式转换或函数样式转换 3>caffelib.cpp(132): error C2976: “std::array”: 模板 参数太少 3>D:\VS2017\VC\Tools\MSVC\14.12.25827\include\utility(474): note: 参见“std::array”的声明 3>caffelib.cpp(132): error C2027: 使用了未定义类型“std::array” 3>D:\VS2017\VC\Tools\MSVC\14.12.25827\include\utility(474): note: 参见“std::array”的声明 3>caffelib.cpp(132): error C3536: “outputs”: 初始化之前无法使用 3>caffelib.cpp(132): error C2109: 下标要求数组或指针类型 3>caffelib.cpp(133): error C2440: “return”: 无法从“int”转换为“std::array *” 3>caffelib.cpp(133): note: 从整型转换为指针类型要求 reinterpret_cast、C 样式转换或函数样式转换 3>caffelib.cpp(141): error C3285: for each 语句不能在“std::array *”类型的变量上操作 3>caffelib.cpp(142): error C2065: “name”: 未声明的标识符 3>caffelib.cpp(144): error C2976: “std::array”: 模板 参数太少 3>D:\VS2017\VC\Tools\MSVC\14.12.25827\include\utility(474): note: 参见“std::array”的声明 3>caffelib.cpp(144): error C3699: “^”: 不能在类型“std::array”上使用此间接寻址 3>caffelib.cpp(144): note: 编译器将“^”替换为“*”以继续进行分析 3>caffelib.cpp(144): error C2027: 使用了未定义类型“std::array” 3>D:\VS2017\VC\Tools\MSVC\14.12.25827\include\utility(474): note: 参见“std::array”的声明 3>caffelib.cpp(148): error C2976: “std::array”: 模板 参数太少 3>D:\VS2017\VC\Tools\MSVC\14.12.25827\include\utility(474): note: 参见“std::array”的声明 3>caffelib.cpp(148): error C2027: 使用了未定义类型“std::array” 3>D:\VS2017\VC\Tools\MSVC\14.12.25827\include\utility(474): note: 参见“std::array”的声明 3>caffelib.cpp(148): error C3536: “values”: 初始化之前无法使用 3>caffelib.cpp(148): error C2109: 下标要求数组或指针类型 3>caffelib.cpp(149): error C3536: “outputs”: 初始化之前无法使用 3>caffelib.cpp(149): error C2109: 下标要求数组或指针类型 3>caffelib.cpp(151): error C2440: “return”: 无法从“int”转换为“std::array *” 3>caffelib.cpp(151): note: 从整型转换为指针类型要求 reinterpret_cast、C 样式转换或函数样式转换 3>已完成生成项目“caffe.managed.vcxproj”的操作 - 失败。 4>LINK : fatal error LNK1104: 无法打开文件“libboost_thread-vc140-mt-gd-1_59.lib” 10>------ 已启动全部重新生成: 项目: upgrade_solver_proto_text, 配置: Debug x64 ------ 4>已完成生成项目“convert_cifar_data.vcxproj”的操作 - 失败。 6>LINK : fatal error LNK1104: 无法打开文件“libboost_thread-vc140-mt-gd-1_59.lib” 6>已完成生成项目“convert_mnist_data.vcxproj”的操作 - 失败。 10>upgrade_solver_proto_text.cpp 7>LINK : fatal error LNK1104: 无法打开文件“libboost_thread-vc140-mt-gd-1_59.lib” 7>已完成生成项目“convert_mnist_siamese_data.vcxproj”的操作 - 失败。 10>Unknown compiler version - please run the configure tests and report the results 9>LINK : fatal error LNK1104: 无法打开文件“libboost_date_time-vc140-mt-gd-1_59.lib” 9>已完成生成项目“upgrade_net_proto_text.vcxproj”的操作 - 失败。 8>LINK : fatal error LNK1104: 无法打开文件“libboost_date_time-vc140-mt-gd-1_59.lib” 8>已完成生成项目“upgrade_net_proto_binary.vcxproj”的操作 - 失败。 5>LINK : fatal error LNK1104: 无法打开文件“libboost_date_time-vc140-mt-gd-1_59.lib” 5>已完成生成项目“classification.vcxproj”的操作 - 失败。 2>LINK : fatal error LNK1104: 无法打开文件“libboost_date_time-vc140-mt-gd-1_59.lib” 2>已完成生成项目“caffe.vcxproj”的操作 - 失败。 11>------ 已启动全部重新生成: 项目: compute_image_mean, 配置: Debug x64 ------ 12>------ 已启动全部重新生成: 项目: convert_imageset, 配置: Debug x64 ------ 13>------ 已启动全部重新生成: 项目: extract_features, 配置: Debug x64 ------ 14>------ 已启动全部重新生成: 项目: test_all, 配置: Debug x64 ------ 15>------ 已启动全部重新生成: 项目: pycaffe, 配置: Debug x64 ------ 16>------ 已启动全部重新生成: 项目: matcaffe, 配置: Debug x64 ------ 15>Skipping project pycaffe, Python support is not enabled in CommonSettings.props. 16>Skipping project matcaffe, Matlab support is not enabled in CommonSettings.props. 12>convert_imageset.cpp 11>compute_image_mean.cpp 13>extract_features.cpp 14>test_accuracy_layer.cpp 14>test_argmax_layer.cpp 14>test_batch_norm_layer.cpp 14>test_batch_reindex_layer.cpp 14>test_benchmark.cpp 14>test_bias_layer.cpp 14>test_blob.cpp 14>test_caffe_main.cpp 14>Unknown compiler version - please run the configure tests and report the results 13>Unknown compiler version - please run the configure tests and report the results 12>Unknown compiler version - please run the configure tests and report the results 11>Unknown compiler version - please run the configure tests and report the results 14>Unknown compiler version - please run the configure tests and report the results 10>LINK : fatal error LNK1104: 无法打开文件“libboost_date_time-vc140-mt-gd-1_59.lib” 10>已完成生成项目“upgrade_solver_proto_text.vcxproj”的操作 - 失败。 14>Unknown compiler version - please run the configure tests and report the results 14>Unknown compiler version - please run the configure tests and report the results 14>Unknown compiler version - please run the configure tests and report the results 14>Unknown compiler version - please run the configure tests and report the results 14>Unknown compiler version - please run the configure tests and report the results 14>Unknown compiler version - please run the configure tests and report the results 11>LINK : fatal error LNK1104: 无法打开文件“libboost_filesystem-vc140-mt-gd-1_59.lib” 11>已完成生成项目“compute_image_mean.vcxproj”的操作 - 失败。 12>LINK : fatal error LNK1104: 无法打开文件“libboost_filesystem-vc140-mt-gd-1_59.lib” 12>已完成生成项目“convert_imageset.vcxproj”的操作 - 失败。 13>LINK : fatal error LNK1104: 无法打开文件“libboost_filesystem-vc140-mt-gd-1_59.lib” 13>已完成生成项目“extract_features.vcxproj”的操作 - 失败。 14>test_common.cpp 14>test_concat_layer.cpp 14>test_contrastive_loss_layer.cpp 14>test_convolution_layer.cpp 14>test_crop_layer.cpp 14>test_data_layer.cpp 14>Unknown compiler version - please run the configure tests and report the results 14>Unknown compiler version - please run the configure tests and report the results 14>Unknown compiler version - please run the configure tests and report the results 14>Unknown compiler version - please run the configure tests and report the results 14>Unknown compiler version - please run the configure tests and report the results 14>Unknown compiler version - please run the configure tests and report the results 14>test_data_transformer.cpp 14>Unknown compiler version - please run the configure tests and report the results 14>test_db.cpp 14>test_deconvolution_layer.cpp 14>Unknown compiler version - please run the configure tests and report the results 14>test_dummy_data_layer.cpp 14>test_eltwise_layer.cpp 14>Unknown compiler version - please run the configure tests and report the results 14>test_embed_layer.cpp 14>test_euclidean_loss_layer.cpp 14>test_filler.cpp 14>Unknown compiler version - please run the configure tests and report the results 14>Unknown compiler version - please run the configure tests and report the results 14>Unknown compiler version - please run the configure tests and report the results 14>Unknown compiler version - please run the configure tests and report the results 14>Unknown compiler version - please run the configure tests and report the results 14>test_filter_layer.cpp 14>Unknown compiler version - please run the configure tests and report the results 14>test_flatten_layer.cpp 14>test_gradient_based_solver.cpp 14>Unknown compiler version - please run the configure tests and report the results 14>test_hdf5data_layer.cpp 14>test_hdf5_output_layer.cpp 14>test_hinge_loss_layer.cpp 14>Unknown compiler version - please run the configure tests and report the results 14>test_im2col_layer.cpp 14>test_image_data_layer.cpp 14>Unknown compiler version - please run the configure tests and report the results 14>Unknown compiler version - please run the configure tests and report the results 14>Unknown compiler version - please run the configure tests and report the results 14>Unknown compiler version - please run the configure tests and report the results 14>Unknown compiler version - please run the configure tests and report the results 14>test_infogain_loss_layer.cpp 14>Unknown compiler version - please run the configure tests and report the results 14>test_inner_product_layer.cpp 14>Unknown compiler version - please run the configure tests and report the results 14>test_internal_thread.cpp 14>test_io.cpp 14>test_layer_factory.cpp 14>test_lrn_layer.cpp 14>Unknown compiler version - please run the configure tests and report the results 14>test_math_functions.cpp 14>Unknown compiler version - please run the configure tests and report the results 14>Unknown compiler version - please run the configure tests and report the results 14>Unknown compiler version - please run the configure tests and report the results 14>Unknown compiler version - please run the configure tests and report the results 14>test_maxpool_dropout_layers.cpp 14>Unknown compiler version - please run the configure tests and report the results 14>test_memory_data_layer.cpp 14>test_multinomial_logistic_loss_layer.cpp 14>test_mvn_layer.cpp 14>Unknown compiler version - please run the configure tests and report the results 14>Unknown compiler version - please run the configure tests and report the results 14>Unknown compiler version - please run the configure tests and report the results 14>test_net.cpp 14>test_neuron_layer.cpp 14>test_platform.cpp 14>test_pooling_layer.cpp 14>test_power_layer.cpp 14>Unknown compiler version - please run the configure tests and report the results 14>Unknown compiler version - please run the configure tests and report the results 14>Unknown compiler version - please run the configure tests and report the results 14>Unknown compiler version - please run the configure tests and report the results 14>test_protobuf.cpp 14>test_random_number_generator.cpp 14>Unknown compiler version - please run the configure tests and report the results 14>test_reduction_layer.cpp 14>c:\users\kay chow\documents\caffe-master\src\caffe\test\test_net.cpp(1010): error C2220: 警告被视为错误 - 没有生成“object”文件 14>c:\users\kay chow\documents\caffe-master\src\caffe\test\test_net.cpp(992): note: 编译 类 模板 成员函数 "void caffe::NetTest_TestLossWeightMidNet_Test<T>::TestBody(void)" 时 14> with 14> [ 14> T=Type 14> ] 14>c:\users\kay chow\documents\caffe-master\src\gtest\gtest.h(7341): note: 参见对正在编译的 类 模板 实例化 "caffe::NetTest_TestLossWeightMidNet_Test<T>" 的引用 14> with 14> [ 14> T=Type 14> ] (编译源文件 ..\..\src\caffe\test\test_net.cpp) 14>c:\users\kay chow\documents\caffe-master\src\gtest\gtest.h(7327): note: 编译 类 模板 成员函数 "bool testing::internal::TypeParameterizedTest<caffe::NetTest,testing::internal::TemplateSel<caffe::NetTest_TestLossWeightMidNet_Test>,caffe::gtest_type_params_NetTest_>::Register(const char *,const char *,const char *,int)" 时 (编译源文件 ..\..\src\caffe\test\test_net.cpp) 14>c:\users\kay chow\documents\caffe-master\src\caffe\test\test_net.cpp(992): note: 参见对正在编译的函数 模板 实例化“bool testing::internal::TypeParameterizedTest<caffe::NetTest,testing::internal::TemplateSel<caffe::NetTest_TestLossWeightMidNet_Test>,caffe::gtest_type_params_NetTest_>::Register(const char *,const char *,const char *,int)”的引用 14>c:\users\kay chow\documents\caffe-master\src\caffe\test\test_net.cpp(992): note: 参见对正在编译的 类 模板 实例化 "testing::internal::TypeParameterizedTest<caffe::NetTest,testing::internal::TemplateSel<caffe::NetTest_TestLossWeightMidNet_Test>,caffe::gtest_type_params_NetTest_>" 的引用 14>c:\users\kay chow\documents\caffe-master\src\caffe\test\test_net.cpp(1010): warning C4838: 从“double”转换到“Dtype”需要收缩转换 14>c:\users\kay chow\documents\caffe-master\src\caffe\test\test_net.cpp(961): warning C4838: 从“double”转换到“Dtype”需要收缩转换 14>c:\users\kay chow\documents\caffe-master\src\caffe\test\test_net.cpp(941): note: 编译 类 模板 成员函数 "void caffe::NetTest_TestLossWeight_Test<T>::TestBody(void)" 时 14> with 14> [ 14> T=Type 14> ] 14>c:\users\kay chow\documents\caffe-master\src\gtest\gtest.h(7341): note: 参见对正在编译的 类 模板 实例化 "caffe::NetTest_TestLossWeight_Test<T>" 的引用 14> with 14> [ 14> T=Type 14> ] (编译源文件 ..\..\src\caffe\test\test_net.cpp) 14>c:\users\kay chow\documents\caffe-master\src\gtest\gtest.h(7327): note: 编译 类 模板 成员函数 "bool testing::internal::TypeParameterizedTest<caffe::NetTest,testing::internal::TemplateSel<caffe::NetTest_TestLossWeight_Test>,caffe::gtest_type_params_NetTest_>::Register(const char *,const char *,const char *,int)" 时 (编译源文件 ..\..\src\caffe\test\test_net.cpp) 14>c:\users\kay chow\documents\caffe-master\src\caffe\test\test_net.cpp(941): note: 参见对正在编译的函数 模板 实例化“bool testing::internal::TypeParameterizedTest<caffe::NetTest,testing::internal::TemplateSel<caffe::NetTest_TestLossWeight_Test>,caffe::gtest_type_params_NetTest_>::Register(const char *,const char *,const char *,int)”的引用 14>c:\users\kay chow\documents\caffe-master\src\caffe\test\test_net.cpp(941): note: 参见对正在编译的 类 模板 实例化 "testing::internal::TypeParameterizedTest<caffe::NetTest,testing::internal::TemplateSel<caffe::NetTest_TestLossWeight_Test>,caffe::gtest_type_params_NetTest_>" 的引用 14>test_reshape_layer.cpp 14>Unknown compiler version - please run the configure tests and report the results 14>Unknown compiler version - please run the configure tests and report the results 14>Unknown compiler version - please run the configure tests and report the results 14>test_scale_layer.cpp 14>test_sigmoid_cross_entropy_loss_layer.cpp 14>test_slice_layer.cpp 14>test_softmax_layer.cpp 14>Unknown compiler version - please run the configure tests and report the results 14>Unknown compiler version - please run the configure tests and report the results 14>test_softmax_with_loss_layer.cpp 14>Unknown compiler version - please run the configure tests and report the results 14>Unknown compiler version - please run the configure tests and report the results 14>Unknown compiler version - please run the configure tests and report the results 14>test_solver.cpp 14>Unknown compiler version - please run the configure tests and report the results 14>test_solver_factory.cpp 14>test_split_layer.cpp 14>Unknown compiler version - please run the configure tests and report the results 14>test_spp_layer.cpp 14>Unknown compiler version - please run the configure tests and report the results 14>test_stochastic_pooling.cpp 14>test_syncedmem.cpp 14>test_tanh_layer.cpp 14>Unknown compiler version - please run the configure tests and report the results 14>test_threshold_layer.cpp 14>Unknown compiler version - please run the configure tests and report the results 14>Unknown compiler version - please run the configure tests and report the results 14>Unknown compiler version - please run the configure tests and report the results 14>Unknown compiler version - please run the configure tests and report the results 14>test_tile_layer.cpp 14>Unknown compiler version - please run the configure tests and report the results 14>test_upgrade_proto.cpp 14>test_util_blas.cpp 14>gtest-all.cpp 14>Unknown compiler version - please run the configure tests and report the results 14>已完成生成项目“test_all.vcxproj”的操作 - 失败。 ========== 全部重新生成: 成功 3 个,失败 13 个,跳过 0 个 ==========
关于frft的matlab程序问题 Input argument "r" is undefined.
function Faf = frft(f, a) % The fast Fractional Fourier Transform % input: f = samples of the signal % a = fractional power % output: Faf = fast Fractional Fourier transform error(nargchk(2, 2, nargin)); f = f(:); N = length(f); shft = rem((0:N-1)+fix(N/2),N)+1;%rem()取余数;fix()取整数部分;总体是右边的一半数移到左边; sN = sqrt(N); a = mod(a,4); % do special cases if (a==0), Faf = f; return; end; if (a==2), Faf = flipud(f); return; end;%flipud turn oppsite if (a==1), Faf(shft,1) = fft(f(shft))/sN; return; end if (a==3), Faf(shft,1) = ifft(f(shft))*sN; return; end % reduce to interval 0.5 < a < 1.5 if (a>2.0), a = a-2; f = flipud(f); end if (a>1.5), a = a-1; f(shft,1) = fft(f(shft))/sN; end if (a<0.5), a = a+1; f(shft,1) = ifft(f(shft))*sN; end % the general case for 0.5 < a < 1.5 alpha = a*pi/2; tana2 = tan(alpha/2); sina = sin(alpha); f = [zeros(N-1,1) ; interp(f) ; zeros(N-1,1)];%increase sampling rate % chirp premultiplication chrp = exp(-i*pi/N*tana2/4*(-2*N+2:2*N-2)'.^2); f = chrp.*f; % chirp convolution c = pi/N/sina/4; Faf = fconv(exp(i*c*(-(4*N-4):4*N-4)'.^2),f); Faf = Faf(4*N-3:8*N-7)*sqrt(c/pi); % chirp post multiplication Faf = chrp.*Faf; % normalizing constant Faf = exp(-i*(1-a)*pi/4)*Faf(N:2:end-N+1); 输入f(采样值)和a(阶数),我运行了一下,当a不是整数时会出现:![图片说明](https://img-ask.csdn.net/upload/201704/15/1492263551_4274.png) 说未定义变量“r”,可是整个程序里面根本没有出现“r”,所以不知道哪里出问题了,求各位大神帮忙看看。
Java学习的正确打开方式
在博主认为,对于入门级学习java的最佳学习方法莫过于视频+博客+书籍+总结,前三者博主将淋漓尽致地挥毫于这篇博客文章中,至于总结在于个人,实际上越到后面你会发现学习的最好方式就是阅读参考官方文档其次就是国内的书籍,博客次之,这又是一个层次了,这里暂时不提后面再谈。博主将为各位入门java保驾护航,各位只管冲鸭!!!上天是公平的,只要不辜负时间,时间自然不会辜负你。 何谓学习?博主所理解的学习,它是一个过程,是一个不断累积、不断沉淀、不断总结、善于传达自己的个人见解以及乐于分享的过程。
程序员必须掌握的核心算法有哪些?
由于我之前一直强调数据结构以及算法学习的重要性,所以就有一些读者经常问我,数据结构与算法应该要学习到哪个程度呢?,说实话,这个问题我不知道要怎么回答你,主要取决于你想学习到哪些程度,不过针对这个问题,我稍微总结一下我学过的算法知识点,以及我觉得值得学习的算法。这些算法与数据结构的学习大多数是零散的,并没有一本把他们全部覆盖的书籍。下面是我觉得值得学习的一些算法以及数据结构,当然,我也会整理一些看过...
有哪些让程序员受益终生的建议
从业五年多,辗转两个大厂,出过书,创过业,从技术小白成长为基层管理,联合几个业内大牛回答下这个问题,希望能帮到大家,记得帮我点赞哦。 敲黑板!!!读了这篇文章,你将知道如何才能进大厂,如何实现财务自由,如何在工作中游刃有余,这篇文章很长,但绝对是精品,记得帮我点赞哦!!!! 一腔肺腑之言,能看进去多少,就看你自己了!!! 目录: 在校生篇: 为什么要尽量进大厂? 如何选择语言及方...
大学四年自学走来,这些私藏的实用工具/学习网站我贡献出来了
大学四年,看课本是不可能一直看课本的了,对于学习,特别是自学,善于搜索网上的一些资源来辅助,还是非常有必要的,下面我就把这几年私藏的各种资源,网站贡献出来给你们。主要有:电子书搜索、实用工具、在线视频学习网站、非视频学习网站、软件下载、面试/求职必备网站。 注意:文中提到的所有资源,文末我都给你整理好了,你们只管拿去,如果觉得不错,转发、分享就是最大的支持了。 一、电子书搜索 对于大部分程序员...
linux系列之常用运维命令整理笔录
本博客记录工作中需要的linux运维命令,大学时候开始接触linux,会一些基本操作,可是都没有整理起来,加上是做开发,不做运维,有些命令忘记了,所以现在整理成博客,当然vi,文件操作等就不介绍了,慢慢积累一些其它拓展的命令,博客不定时更新 free -m 其中:m表示兆,也可以用g,注意都要小写 Men:表示物理内存统计 total:表示物理内存总数(total=used+free) use...
比特币原理详解
一、什么是比特币 比特币是一种电子货币,是一种基于密码学的货币,在2008年11月1日由中本聪发表比特币白皮书,文中提出了一种去中心化的电子记账系统,我们平时的电子现金是银行来记账,因为银行的背后是国家信用。去中心化电子记账系统是参与者共同记账。比特币可以防止主权危机、信用风险。其好处不多做赘述,这一层面介绍的文章很多,本文主要从更深层的技术原理角度进行介绍。 二、问题引入 假设现有4个人...
程序员接私活怎样防止做完了不给钱?
首先跟大家说明一点,我们做 IT 类的外包开发,是非标品开发,所以很有可能在开发过程中会有这样那样的需求修改,而这种需求修改很容易造成扯皮,进而影响到费用支付,甚至出现做完了项目收不到钱的情况。 那么,怎么保证自己的薪酬安全呢? 我们在开工前,一定要做好一些证据方面的准备(也就是“讨薪”的理论依据),这其中最重要的就是需求文档和验收标准。一定要让需求方提供这两个文档资料作为开发的基础。之后开发...
网页实现一个简单的音乐播放器(大佬别看。(⊙﹏⊙))
今天闲着无事,就想写点东西。然后听了下歌,就打算写个播放器。 于是乎用h5 audio的加上js简单的播放器完工了。 演示地点演示 html代码如下` music 这个年纪 七月的风 音乐 ` 然后就是css`*{ margin: 0; padding: 0; text-decoration: none; list-...
Python十大装B语法
Python 是一种代表简单思想的语言,其语法相对简单,很容易上手。不过,如果就此小视 Python 语法的精妙和深邃,那就大错特错了。本文精心筛选了最能展现 Python 语法之精妙的十个知识点,并附上详细的实例代码。如能在实战中融会贯通、灵活使用,必将使代码更为精炼、高效,同时也会极大提升代码B格,使之看上去更老练,读起来更优雅。
数据库优化 - SQL优化
以实际SQL入手,带你一步一步走上SQL优化之路!
2019年11月中国大陆编程语言排行榜
2019年11月2日,我统计了某招聘网站,获得有效程序员招聘数据9万条。针对招聘信息,提取编程语言关键字,并统计如下: 编程语言比例 rank pl_ percentage 1 java 33.62% 2 cpp 16.42% 3 c_sharp 12.82% 4 javascript 12.31% 5 python 7.93% 6 go 7.25% 7 p...
通俗易懂地给女朋友讲:线程池的内部原理
餐盘在灯光的照耀下格外晶莹洁白,女朋友拿起红酒杯轻轻地抿了一小口,对我说:“经常听你说线程池,到底线程池到底是个什么原理?”
《奇巧淫技》系列-python!!每天早上八点自动发送天气预报邮件到QQ邮箱
将代码部署服务器,每日早上定时获取到天气数据,并发送到邮箱。 也可以说是一个小型人工智障。 知识可以运用在不同地方,不一定非是天气预报。
经典算法(5)杨辉三角
杨辉三角 是经典算法,这篇博客对它的算法思想进行了讲解,并有完整的代码实现。
英特尔不为人知的 B 面
从 PC 时代至今,众人只知在 CPU、GPU、XPU、制程、工艺等战场中,英特尔在与同行硬件芯片制造商们的竞争中杀出重围,且在不断的成长进化中,成为全球知名的半导体公司。殊不知,在「刚硬」的背后,英特尔「柔性」的软件早已经做到了全方位的支持与支撑,并持续发挥独特的生态价值,推动产业合作共赢。 而对于这一不知人知的 B 面,很多人将其称之为英特尔隐形的翅膀,虽低调,但是影响力却不容小觑。 那么,在...
腾讯算法面试题:64匹马8个跑道需要多少轮才能选出最快的四匹?
昨天,有网友私信我,说去阿里面试,彻底的被打击到了。问了为什么网上大量使用ThreadLocal的源码都会加上private static?他被难住了,因为他从来都没有考虑过这个问题。无独有偶,今天笔者又发现有网友吐槽了一道腾讯的面试题,我们一起来看看。 腾讯算法面试题:64匹马8个跑道需要多少轮才能选出最快的四匹? 在互联网职场论坛,一名程序员发帖求助到。二面腾讯,其中一个算法题:64匹...
面试官:你连RESTful都不知道我怎么敢要你?
干货,2019 RESTful最贱实践
为啥国人偏爱Mybatis,而老外喜欢Hibernate/JPA呢?
关于SQL和ORM的争论,永远都不会终止,我也一直在思考这个问题。昨天又跟群里的小伙伴进行了一番讨论,感触还是有一些,于是就有了今天这篇文。 声明:本文不会下关于Mybatis和JPA两个持久层框架哪个更好这样的结论。只是摆事实,讲道理,所以,请各位看官勿喷。 一、事件起因 关于Mybatis和JPA孰优孰劣的问题,争论已经很多年了。一直也没有结论,毕竟每个人的喜好和习惯是大不相同的。我也看...
白话阿里巴巴Java开发手册高级篇
不久前,阿里巴巴发布了《阿里巴巴Java开发手册》,总结了阿里巴巴内部实际项目开发过程中开发人员应该遵守的研发流程规范,这些流程规范在一定程度上能够保证最终的项目交付质量,通过在时间中总结模式,并推广给广大开发人员,来避免研发人员在实践中容易犯的错误,确保最终在大规模协作的项目中达成既定目标。 无独有偶,笔者去年在公司里负责升级和制定研发流程、设计模板、设计标准、代码标准等规范,并在实际工作中进行...
SQL-小白最佳入门sql查询一
不要偷偷的查询我的个人资料,即使你再喜欢我,也不要这样,真的不好;
redis分布式锁,面试官请随便问,我都会
文章有点长并且绕,先来个图片缓冲下! 前言 现在的业务场景越来越复杂,使用的架构也就越来越复杂,分布式、高并发已经是业务要求的常态。像腾讯系的不少服务,还有CDN优化、异地多备份等处理。 说到分布式,就必然涉及到分布式锁的概念,如何保证不同机器不同线程的分布式锁同步呢? 实现要点 互斥性,同一时刻,智能有一个客户端持有锁。 防止死锁发生,如果持有锁的客户端崩溃没有主动释放锁,也要保证锁可以正常释...
项目中的if else太多了,该怎么重构?
介绍 最近跟着公司的大佬开发了一款IM系统,类似QQ和微信哈,就是聊天软件。我们有一部分业务逻辑是这样的 if (msgType = "文本") { // dosomething } else if(msgType = "图片") { // doshomething } else if(msgType = "视频") { // doshomething } else { // doshom...
Nginx 原理和架构
Nginx 是一个免费的,开源的,高性能的 HTTP 服务器和反向代理,以及 IMAP / POP3 代理服务器。Nginx 以其高性能,稳定性,丰富的功能,简单的配置和低资源消耗而闻名。 Nginx 的整体架构 Nginx 里有一个 master 进程和多个 worker 进程。master 进程并不处理网络请求,主要负责调度工作进程:加载配置、启动工作进程及非停升级。worker 进程负责处...
Python 编程开发 实用经验和技巧
Python是一门很灵活的语言,也有很多实用的方法,有时候实现一个功能可以用多种方法实现,我这里总结了一些常用的方法和技巧,包括小数保留指定位小数、判断变量的数据类型、类方法@classmethod、制表符中文对齐、遍历字典、datetime.timedelta的使用等,会持续更新......
YouTube排名第一的励志英文演讲《Dream(梦想)》
Idon’t know what that dream is that you have, I don't care how disappointing it might have been as you've been working toward that dream,but that dream that you’re holding in your mind, that it’s po...
“狗屁不通文章生成器”登顶GitHub热榜,分分钟写出万字形式主义大作
一、垃圾文字生成器介绍 最近在浏览GitHub的时候,发现了这样一个骨骼清奇的雷人项目,而且热度还特别高。 项目中文名:狗屁不通文章生成器 项目英文名:BullshitGenerator 根据作者的介绍,他是偶尔需要一些中文文字用于GUI开发时测试文本渲染,因此开发了这个废话生成器。但由于生成的废话实在是太过富于哲理,所以最近已经被小伙伴们给玩坏了。 他的文风可能是这样的: 你发现,...
程序员:我终于知道post和get的区别
是一个老生常谈的话题,然而随着不断的学习,对于以前的认识有很多误区,所以还是需要不断地总结的,学而时习之,不亦说乎
《程序人生》系列-这个程序员只用了20行代码就拿了冠军
你知道的越多,你不知道的越多 点赞再看,养成习惯GitHub上已经开源https://github.com/JavaFamily,有一线大厂面试点脑图,欢迎Star和完善 前言 这一期不算《吊打面试官》系列的,所有没前言我直接开始。 絮叨 本来应该是没有这期的,看过我上期的小伙伴应该是知道的嘛,双十一比较忙嘛,要值班又要去帮忙拍摄年会的视频素材,还得搞个程序员一天的Vlog,还要写BU...
加快推动区块链技术和产业创新发展,2019可信区块链峰会在京召开
11月8日,由中国信息通信研究院、中国通信标准化协会、中国互联网协会、可信区块链推进计划联合主办,科技行者协办的2019可信区块链峰会将在北京悠唐皇冠假日酒店开幕。   区块链技术被认为是继蒸汽机、电力、互联网之后,下一代颠覆性的核心技术。如果说蒸汽机释放了人类的生产力,电力解决了人类基本的生活需求,互联网彻底改变了信息传递的方式,区块链作为构造信任的技术有重要的价值。   1...
Java世界最常用的工具类库
Apache Commons Apache Commons有很多子项目 Google Guava 参考博客
程序员把地府后台管理系统做出来了,还有3.0版本!12月7号最新消息:已在开发中有github地址
第一幕:缘起 听说阎王爷要做个生死簿后台管理系统,我们派去了一个程序员…… 996程序员做的梦: 第一场:团队招募 为了应对地府管理危机,阎王打算找“人”开发一套地府后台管理系统,于是就在地府总经办群中发了项目需求。 话说还是中国电信的信号好,地府都是满格,哈哈!!! 经常会有外行朋友问:看某网站做的不错,功能也简单,你帮忙做一下? 而这次,面对这样的需求,这个程序员...
网易云6亿用户音乐推荐算法
网易云音乐是音乐爱好者的集聚地,云音乐推荐系统致力于通过 AI 算法的落地,实现用户千人千面的个性化推荐,为用户带来不一样的听歌体验。 本次分享重点介绍 AI 算法在音乐推荐中的应用实践,以及在算法落地过程中遇到的挑战和解决方案。 将从如下两个部分展开: AI算法在音乐推荐中的应用 音乐场景下的 AI 思考 从 2013 年 4 月正式上线至今,网易云音乐平台持续提供着:乐屏社区、UGC...
8年经验面试官详解 Java 面试秘诀
作者 |胡书敏 责编 | 刘静 出品 | CSDN(ID:CSDNnews) 本人目前在一家知名外企担任架构师,而且最近八年来,在多家外企和互联网公司担任Java技术面试官,前后累计面试了有两三百位候选人。在本文里,就将结合本人的面试经验,针对Java初学者、Java初级开发和Java开发,给出若干准备简历和准备面试的建议。 Java程序员准备和投递简历的实...
相关热词 c# 引用mysql c#动态加载非托管dll c# 两个表数据同步 c# 返回浮点json c# imap 链接状态 c# 漂亮字 c# 上取整 除法 c#substring c#中延时关闭 c#线段拖拉
立即提问