函数KNeighborsClassifier()的返回结果是什么
比如下面这个例子,实在是看不懂
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
iris = datasets.load_iris() # 鸢尾花数据集
iris_X = iris.data # 特征
iris_Y = iris.target # 标签
X_train, X_test, Y_train, Y_test = train_test_split(iris_X, iris_Y, test_size=0.3) # 随机取70%数据作为训练,30%作为测试
knn = KNeighborsClassifier() # K近邻(K-Nearest Neighbor)分类器
knn.fit(X_train, Y_train) # 进行分类
Y_predict = knn.predict(X_test)
print(Y_predict) # 预测值
print(Y_test) # 真实值
print(knn.score(X_train, Y_train)) # 正确率
版权声明:本文为CSDN博主「象牙塔小明」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/u014571489/article/details/84728046