m0_63759235 2022-05-19 13:00 采纳率: 0%
浏览 357
已结题

ValueError: A `Concatenate` layer requires inputs with matching shapes except for the concat axis

问题遇到的现象和发生背景

執行程式碼 報錯 ValueError: A Concatenate layer requires inputs with matching shapes except for the concat axis. Got inputs shapes: [(None, 2, 2, 512), (None, 2, 1, 512)]

问题相关代码,请勿粘贴截图
运行结果及报错内容

runfile('C:/Users/User/Desktop/p2p/p2p.py', wdir='C:/Users/User/Desktop/p2p')
Loaded (280, 184, 1, 1) (280, 184, 1, 1)
Traceback (most recent call last):

File "C:\Users\User\Desktop\p2p\p2p.py", line 262, in
g_model = define_generator(image_shape)

File "C:\Users\User\Desktop\p2p\p2p.py", line 121, in define_generator
d1 = decoder_block(b, e7, 512)

File "C:\Users\User\Desktop\p2p\p2p.py", line 98, in decoder_block
g = Concatenate()([g, skip_in])

File "C:\Users\User\AppData\Roaming\Python\Python38\site-packages\tensorflow\python\keras\engine\base_layer.py", line 897, in call
self._maybe_build(inputs)

File "C:\Users\User\AppData\Roaming\Python\Python38\site-packages\tensorflow\python\keras\engine\base_layer.py", line 2416, in _maybe_build
self.build(input_shapes) # pylint:disable=not-callable

File "C:\Users\User\AppData\Roaming\Python\Python38\site-packages\tensorflow\python\keras\utils\tf_utils.py", line 316, in wrapper
output_shape = fn(instance, input_shape)

File "C:\Users\User\AppData\Roaming\Python\Python38\site-packages\tensorflow\python\keras\layers\merge.py", line 519, in build
raise ValueError(err_msg)

ValueError: A Concatenate layer requires inputs with matching shapes except for the concat axis. Got inputs shapes: [(None, 2, 2, 512), (None, 2, 1, 512)]

我的解答思路和尝试过的方法
我想要达到的结果
# example of pix2pix gan for satellite to map image-to-image translation
from numpy import load
from numpy import zeros
from numpy import ones
from numpy.random import randint
from keras.initializers import RandomNormal
from keras.models import Model
from keras.models import Input
from keras.layers import Conv2D
from keras.layers import Conv2DTranspose
from keras.layers import LeakyReLU
from keras.layers import Activation
from keras.layers import Concatenate
from keras.layers import Dropout
from keras.layers import BatchNormalization
from keras.optimizers import Adam
from keras.layers import LeakyReLU
from matplotlib import pyplot
import numpy as np
# define the discriminator model
def define_discriminator(image_shape):
    # weight initialization
    init = RandomNormal(stddev=0.02)
    # source image input
    in_src_image = Input(shape=image_shape)
    # target image input
    in_target_image = Input(shape=image_shape)
    # concatenate images channel-wise
    merged = Concatenate()([in_src_image, in_target_image])

    
    # C64
    d = Conv2D(64, (4,4), strides=(2,2), padding='same' ,kernel_initializer=init)(merged)
    d = LeakyReLU(alpha=0.2)(d)
    # C128
    d = Conv2D(128,(4,4),  strides=(2,2), padding='same', kernel_initializer=init)(d)
    d = BatchNormalization()(d)
    d = LeakyReLU(alpha=0.2)(d)
    # C256
    d = Conv2D(256, (4,4), strides=(2,2), padding='same', kernel_initializer=init)(d)
    d = BatchNormalization()(d)
    d = LeakyReLU(alpha=0.2)(d)
    # C512
    d = Conv2D(512, (4,4), strides=(2,2), padding='same', kernel_initializer=init)(d)
    d = BatchNormalization()(d)
    d = LeakyReLU(alpha=0.2)(d)
    # second last output layer
    d = Conv2D(512, (4,4), padding='same', kernel_initializer=init)(d)
    d = BatchNormalization()(d)
    d = LeakyReLU(alpha=0.2)(d)
    # patch output
    d = Conv2D(1, (4,4), padding='same', kernel_initializer=init)(d)
    patch_out = Activation('sigmoid')(d)
    # define model
    model = Model([in_src_image, in_target_image], patch_out)
    # compile model
    opt = Adam(lr=1E-5, beta_1=0.9)
    model.compile(loss='mse', optimizer=opt, loss_weights=[0.9])
    return model

# define an encoder block
def define_encoder_block(layer_in, n_filters, batchnorm=True):
    # weight initialization
    init = RandomNormal(stddev=0.02)
    # add downsampling layer
    g = Conv2D(n_filters, (4,4), strides=(2,2), padding='same', kernel_initializer=init)(layer_in)
    # conditionally add batch normalization
    if batchnorm:
        g = BatchNormalization()(g, training=True)
    # leaky relu activation
    g = LeakyReLU(alpha=0.2)(g)
    return g

# define a decoder block
def decoder_block(layer_in, skip_in, n_filters, dropout=True):
    # weight initialization
    init = RandomNormal(stddev=0.02)
    # add upsampling layer
    g = Conv2DTranspose(n_filters, (4,4), strides=(2,2), padding='same', kernel_initializer=init)(layer_in)
    # add batch normalization
    g = BatchNormalization()(g, training=True)
    # conditionally add dropout
    if dropout:
        g = Dropout(0.5)(g, training=True)
    # merge with skip connection
    g = Concatenate()([g, skip_in])
    # relu activation
    g = Activation('relu')(g)
    return g

# define the standalone generator model
def define_generator(image_shape=( 256,256,1)):
    # weight initialization
    init = RandomNormal(stddev=0.02)
    # image input
    in_image = Input(shape=image_shape)
    # encoder model
    e1 = define_encoder_block(in_image, 64, batchnorm=False)
    e2 = define_encoder_block(e1, 128)
    e3 = define_encoder_block(e2, 256)
    e4 = define_encoder_block(e3, 512)
    e5 = define_encoder_block(e4, 512)
    e6 = define_encoder_block(e5, 512)
    e7 = define_encoder_block(e6, 512)
    # bottleneck, no batch norm and relu
    b = Conv2D(512, (4,4), strides=(2,2), padding='same', kernel_initializer=init)(e7)
    b = Activation('relu')(b)
    # decoder model
    d1 = decoder_block(b, e7, 512)
    d2 = decoder_block(d1, e6, 512)
    d3 = decoder_block(d2, e5, 512)
    d4 = decoder_block(d3, e4, 512, dropout=False)
    d5 = decoder_block(d4, e3, 256, dropout=False)
    d6 = decoder_block(d5, e2, 128, dropout=False)
    d7 = decoder_block(d6, e1, 64, dropout=False)

    # output
    g = Conv2DTranspose(3, (4,4), strides=(2,2), padding='same', kernel_initializer=init)(d7)
    out_image = Activation('tanh')(g)
    # define model
    model = Model(in_image, out_image)
    return model

# define the combined generator and discriminator model, for updating the generator
def define_gan(g_model, d_model, image_shape):
    # make weights in the discriminator not trainable
    for layer in d_model.layers:
        if not isinstance(layer, BatchNormalization):
            layer.trainable = False
    # define the source image
    in_src = Input(shape=image_shape)
    # connect the source image to the generator input
    gen_out = g_model(in_src)
    # connect the source input and generator output to the discriminator input
    dis_out = d_model([in_src, gen_out])
    # src image as input, generated image and classification output
    model = Model(in_src, [dis_out, gen_out])
    # compile model
    opt = Adam(lr=1E-5, beta_1=0.9)
    model.compile(loss=['mse', 'mae'], optimizer=opt, loss_weights=[1,100])
    return model

# load and prepare training images
def load_real_samples(filename):
    # load compressed arrays
    data = load(filename)
    # unpack arrays

    #X1, X2 = (np.int(data['arr_0']), int(np.data['arr_0']))
    X1 =(data['arr_0'])
    X2 =(data['arr_0'])

    # scale from [0,255] to [-1,1]
    X1 = (X1 - 127.5) / 127.5
    X2 = (X2 - 127.5) / 127.5
    X1=X1.reshape(-1,184,1,1)
    X2=X2.reshape(-1,184,1,1)
    return[X1,X2]


# select a batch of random samples, returns images and target
def generate_real_samples(dataset, n_samples, patch_shape):
    # unpack dataset
    trainA, trainB = dataset
    # choose random instances
    ix = randint(0, trainA.shape[0], n_samples)
    # retrieve selected images
    X1, X2 = trainA[ix], trainB[ix]
    # generate 'real' class labels (1)
    y = ones((n_samples, patch_shape, patch_shape, 1))
    return [X1, X2], y

# generate a batch of images, returns images and targets
def generate_fake_samples(g_model, samples, patch_shape):
    # generate fake instance
    X = g_model.predict(samples)
    # create 'fake' class labels (0)
    y = zeros((len(X), patch_shape, patch_shape, 1))
    return X, y

# generate samples and save as a plot and save the model
def summarize_performance(step, g_model, dataset, n_samples=3):
    # select a sample of input images
    [X_realA, X_realB], _ = generate_real_samples(dataset, n_samples, 1)
    # generate a batch of fake samples
    X_fakeB, _ = generate_fake_samples(g_model, X_realA, 1)
    # scale all pixels from [-1,1] to [0,1]
    X_realA = (X_realA + 1) / 2.0
    X_realB = (X_realB + 1) / 2.0
    X_fakeB = (X_fakeB + 1) / 2.0
    # plot real source images
    for i in range(n_samples):
        pyplot.subplot(3, n_samples, 1 + i)
        pyplot.axis('off')
        pyplot.imshow(X_realA[i])
    # plot generated target image
    for i in range(n_samples):
        pyplot.subplot(3, n_samples, 1 + n_samples + i)
        pyplot.axis('off')
        pyplot.imshow(X_fakeB[i])
    # plot real target image
    for i in range(n_samples):
        pyplot.subplot(3, n_samples, 1 + n_samples*2 + i)
        pyplot.axis('off')
        pyplot.imshow(X_realB[i])
    # save plot to file
    filename1 = 'plot_%06d.png' % (step+1)
    pyplot.savefig(filename1)
    pyplot.close()
    # save the generator model
    filename2 = 'model_%06d.h5' % (step+1)
    g_model.save(filename2)
    print('>Saved: %s and %s' % (filename1, filename2))

# train pix2pix models
def train(d_model, g_model, gan_model, dataset, n_epochs=100, n_batch=1):
    # determine the output square shape of the discriminator
    n_patch = d_model.output_shape[1]
    # unpack dataset
    trainA, trainB = dataset
    # calculate the number of batches per training epoch
    bat_per_epo = int(len(trainA) / n_batch)
    # calculate the number of training iterations
    n_steps = bat_per_epo * n_epochs
    # manually enumerate epochs
    for i in range(n_steps):
        # select a batch of real samples
        [X_realA, X_realB], y_real = generate_real_samples(dataset, n_batch, n_patch)
        # generate a batch of fake samples
        X_fakeB, y_fake = generate_fake_samples(g_model, X_realA, n_patch)
        # update discriminator for real samples
        d_loss1 = d_model.train_on_batch([X_realA, X_realB], y_real)
        # update discriminator for generated samples
        d_loss2 = d_model.train_on_batch([X_realA, X_fakeB], y_fake)
        # update the generator
        g_loss, _, _ = gan_model.train_on_batch(X_realA, [y_real, X_realB])
        # summarize performance
        print('>%d, d1[%.3f] d2[%.3f] g[%.3f]' % (i+1, d_loss1, d_loss2, g_loss))
        # summarize model performance
        if (i+1) % (bat_per_epo * 5) == 0:
            summarize_performance(i, g_model, dataset)

# load image data
dataset = load_real_samples('test-feature.npz')
print('Loaded', dataset[0].shape, dataset[1].shape)
# define input shape based on the loaded dataset
image_shape = dataset[0].shape[1:]
# define the models
d_model = define_discriminator(image_shape)
g_model = define_generator(image_shape)
# define the composite model
gan_model = define_gan(g_model, d_model, image_shape)
# train model
train(d_model, g_model, gan_model, dataset)

  • 写回答

0条回答 默认 最新

    报告相同问题?

    问题事件

    • 系统已结题 5月27日
    • 创建了问题 5月19日

    悬赏问题

    • ¥15 微信公众号自制会员卡没有收款渠道啊
    • ¥15 stable diffusion
    • ¥100 Jenkins自动化部署—悬赏100元
    • ¥15 关于#python#的问题:求帮写python代码
    • ¥20 MATLAB画图图形出现上下震荡的线条
    • ¥15 关于#windows#的问题:怎么用WIN 11系统的电脑 克隆WIN NT3.51-4.0系统的硬盘
    • ¥15 perl MISA分析p3_in脚本出错
    • ¥15 k8s部署jupyterlab,jupyterlab保存不了文件
    • ¥15 ubuntu虚拟机打包apk错误
    • ¥199 rust编程架构设计的方案 有偿