STM32 的库函数USART_GetITStatus

本人看到其他人使用STM32中 USART_GetITStatus
uint8_t ucTemp;

void USART1_IRQHandler(void)
{
USART_ClearFlag(USART1,USART_FLAG_TC);
if (USART_GetITStatus(USART1,USART_IT_RXNE)!=RESET)
{
ucTemp = USART_ReceiveData(USART1);
}

}
为什么把if (USART_GetITStatus(USART1,USART_IT_RXNE)!=RESET)
改成
if (USART_GetITStatus(USART1,USART_IT_RXNE)=SET)
编译器报错expression must be a modifiable lvalue
表达式必须是可修改的左值

1个回答

这。。。。
= 改成==
怎么学的c?

qq_42528816
qq_42528816 我理解了 谢谢你
11 个月之前 回复
qq_42528816
qq_42528816 回复qq_42528816: 就是想知道为什么!=这么用的时候 意思是不等于
11 个月之前 回复
qq_42528816
qq_42528816 首先谢谢您的回答 我还想问一下之前为什么用赋值
11 个月之前 回复
Csdn user default icon
上传中...
上传图片
插入图片
抄袭、复制答案,以达到刷声望分或其他目的的行为,在CSDN问答是严格禁止的,一经发现立刻封号。是时候展现真正的技术了!
其他相关推荐
stm32串口发送可以进入中断但没有数据显示

程序功能是:若接收到数据0x55,则发送接收到的数据(0x55)。 但现在问题是:通过串口助手发送0x55,已经进入接收中断接受到数据,然后通过SendData函数发送数据,能进入发送中断,但是串口助手却没有显示0x55(好像是数据并没有发送出去) /*头文件*/ #ifndef __HEAD_H__ #define __HEAD_H__ #include <misc.h> #include <stm32f10x_usart.h> #include <stm32f10x_gpio.h> #include <STM32F10x_rcc.h> #include <stdint.h> #include "stm32f10x_flash.h" //#include <stm32100e_eval.h> //#include <stm32_eval.h> void NVIC_Configuration(void); void RCC_Configuration(void); void Usart_Initial(void); void gpio_Init(void); void Delayms(uint16_t ms); extern uint16_t rece; #endif /*函数*/ #include "head.h" void NVIC_Configuration(void){ //ÖжÏÓÅÏȼ¶ÉèÖà NVIC_InitTypeDef NVIC_InitStruc; NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1); NVIC_InitStruc.NVIC_IRQChannel = USART1_IRQn; NVIC_InitStruc.NVIC_IRQChannelPreemptionPriority = 0; NVIC_InitStruc.NVIC_IRQChannelSubPriority = 0; NVIC_InitStruc.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStruc); } void RCC_Configuration(void){ ErrorStatus HSEStartUpStatus; RCC_DeInit(); RCC_HSEConfig(RCC_HSE_ON); HSEStartUpStatus = RCC_WaitForHSEStartUp(); if(RCC_WaitForHSEStartUp() == SUCCESS) { FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable); FLASH_SetLatency(FLASH_Latency_2); RCC_HCLKConfig(RCC_SYSCLK_Div1); RCC_PCLK2Config(RCC_HCLK_Div1); RCC_PCLK1Config(RCC_HCLK_Div2); RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9); RCC_PLLCmd(ENABLE); while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY==RESET)) {} RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK); while(RCC_GetSYSCLKSource()!=0x08){} } RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_USART1, ENABLE); } void Usart_Initial(void){ USART_InitTypeDef USART_InitStructure; USART_ClockInitTypeDef USART_ClockStructure; USART_InitStructure.USART_BaudRate = 115200; USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; USART_InitStructure.USART_Parity = USART_Parity_No; USART_InitStructure.USART_StopBits = USART_StopBits_1; USART_InitStructure.USART_WordLength = USART_WordLength_8b; // USART_ClockStructure.USART_Clock = USART_Clock_Disable; // USART_ClockStructure.USART_CPHA = USART_CPHA_2Edge; // USART_ClockStructure.USART_CPOL = USART_CPOL_Low; // USART_ClockStructure.USART_LastBit = USART_LastBit_Disable; USART_ClockStructInit(&USART_ClockStructure); USART_Init(USART1,&USART_InitStructure); USART_ClockInit(USART1,&USART_ClockStructure); RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1,ENABLE); // USART_ITConfig(USART1,USART_IT_TXE,ENABLE); // USART_ITConfig(USART1, USART_IT_RXNE,ENABLE); // USART_WakeUpConfig(USART1, USART_WakeUp_IdleLine); USART_Cmd(USART1,ENABLE); } void gpio_Init(void){ GPIO_InitTypeDef GPIO_InitSTA; GPIO_InitTypeDef GPIO_InitSTB; /* GPIO_PinLockConfig(GPIOB,GPIO_Pin_12);*/ RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1 | RCC_APB2Periph_GPIOB,ENABLE); GPIO_InitSTA.GPIO_Mode = GPIO_Mode_Out_PP; //TxD1 GPIO_InitSTA.GPIO_Pin = GPIO_Pin_9; GPIO_InitSTA.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA,&GPIO_InitSTA); GPIO_InitSTA.GPIO_Mode = GPIO_Mode_IN_FLOATING; //RxD1 GPIO_InitSTA.GPIO_Pin = GPIO_Pin_10; // GPIO_InitSTA.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA,&GPIO_InitSTA); GPIO_InitSTB.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_InitSTB.GPIO_Pin = GPIO_Pin_12 | GPIO_Pin_13; GPIO_InitSTB.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOB,&GPIO_InitSTB); GPIO_SetBits(GPIOA,GPIO_Pin_9 | GPIO_Pin_10); GPIO_SetBits(GPIOB,GPIO_Pin_12 | GPIO_Pin_13); } void Delayms(uint16_t ms){ uint16_t i = 0; uint16_t j = 0; for(j = 0;j < ms;j ++){ for(i = 0;i < 12000;i ++){ } } } /*主程序,串口usart1中断函数*/ #include "head.h" #include "stdio.h" #include "stm32f10x_it.h" uint16_t rece = 0; int main(void){ NVIC_Configuration(); RCC_Configuration(); Usart_Initial(); gpio_Init(); USART_ITConfig(USART1,USART_IT_TXE,ENABLE); USART_ITConfig(USART1,USART_IT_RXNE,ENABLE); GPIO_WriteBit(GPIOB,GPIO_Pin_12 | GPIO_Pin_13,Bit_RESET); while(1){ // GPIO_WriteBit(GPIOB,GPIO_Pin_12 | GPIO_Pin_13,Bit_SET); // Delayms(1000); GPIO_WriteBit(GPIOB,GPIO_Pin_12 | GPIO_Pin_13,Bit_RESET); Delayms(1000); // USART_SendData(USART1,0x55); // Delayms(1000); // while(USART_GetFlagStatus(USART1,USART_FLAG_TXE) == RESET){}; } } void USART1_IRQHandler(void) { /* if(USART_GetITStatus(USART1, USART_IT_PE) != RESET) { USART_ITConfig(USART1, USART_IT_RXNE, ENABLE); rece = USART_ReceiveData(USART1); } */ if(USART_GetITStatus(USART1, USART_IT_TXE) != RESET) { GPIO_WriteBit(GPIOB,GPIO_Pin_12,Bit_SET); //若发送0x55,引脚电平会变 // USART_SendData(USART1, 0xff); // while(USART_GetFlagStatus(USART1,USART_FLAG_TXE) == RESET){}; USART_ClearFlag(USART1,USART_FLAG_TC); USART_ITConfig(USART1, USART_IT_TXE, DISABLE); } if(USART_GetITStatus(USART1, USART_IT_RXNE) != RESET) { /* Disable USART1 RXNE Interrupt */ rece = USART_ReceiveData(USART1); USART_ClearFlag(USART1,USART_IT_RXNE); // USART_ITConfig(USART1, USART_IT_RXNE, DISABLE); if(rece == 0x55){ // GPIO_WriteBit(GPIOB,GPIO_Pin_12,Bit_SET); USART_ITConfig(USART1,USART_IT_TXE,ENABLE); USART_SendData(USART1,rece); while(USART_GetFlagStatus(USART1,USART_FLAG_TXE) == RESET){}; // printf("hello"); } } }

STM32F105主板HAL库函数HAL_UART_Receive_IT()中第二个参数uint8_t *pData必须为无符号整型??

stm32f1xx_hal_uart.c文件中对HAL_UART_Receive_IT()函数的描述为 ``` HAL_StatusTypeDef HAL_UART_Transmit_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size) { /* Check that a Tx process is not already ongoing */ if(huart->gState == HAL_UART_STATE_READY) { if((pData == NULL) || (Size == 0U)) { return HAL_ERROR; } /* Process Locked */ __HAL_LOCK(huart); huart->pTxBuffPtr = pData; huart->TxXferSize = Size; huart->TxXferCount = Size; huart->ErrorCode = HAL_UART_ERROR_NONE; huart->gState = HAL_UART_STATE_BUSY_TX; /* Process Unlocked */ __HAL_UNLOCK(huart); /* Enable the UART Transmit data register empty Interrupt */ __HAL_UART_ENABLE_IT(huart, UART_IT_TXE); return HAL_OK; } else { return HAL_BUSY; } } ``` 其中第二个参数定义为uint8_t *pData 本人使用串口中断接收温度数据,而温度数据是有符号整型的,与上述函数定义矛盾,请问应该怎样更改呢??

STM32串口2发送AT指令给ESP8266,发现8266只执行了第一条指令,另外两条没有执行

通过USB转TTL以及串口调试助手是可以看到STM32是可以正常发送两条AT指令以及字符串的 ![图片说明](https://img-ask.csdn.net/upload/201904/05/1554431579_466744.png) 但是插上ESP8266后发现8266只执行了“AT+CIPSTART="TCP","192.168.43.35",8080”这条指令,并且成功连接到了PC服务端,但是剩下的没有发送 ![图片说明](https://img-ask.csdn.net/upload/201904/05/1554431693_767376.png) 主函数如下: ``` #include "serial.h" #include "delay.h" int main() { u8 i=0; //AT+CIPSTART="TCP","192.168.43.35",8080 u8 at_cipstart[] = {0x41,0x54,0x2b,0x43,0x49,0x50,0x53,0x54,0x41,0x52,0x54,0x3d,0x22,0x54,0x43,0x50,0x22,0x2c,0x22,0x31,0x39,0x32,0x2e,0x31,0x36,0x38,0x2e,0x34,0x33,0x2e,0x33,0x35,0x22,0x2c,0x38,0x30,0x38,0x30,0x0d,0x0a}; //AT+CIPSEND=15 u8 at_cipsend[] = {0x41,0x54,0x2b,0x43,0x49,0x50,0x53,0x45,0x4e,0x44,0x3d,0x31,0x35,0x0d,0x0a}; //HELLO WORLD! u8 AAA[] = {0x48,0x45,0x4c,0x4c,0x4f,0x20,0x57,0x4f,0x52,0x4c,0x44,0x21,0x0D,0x0A}; serial1_init(115200); serial2_init(115200); delay_init(); USART2->SR; for(i=0;i<40;i++)//40//AT+CIPSTART="TCP","192.168.43.35",8080(»Ø³µ) { USART_SendData(USART2, at_cipstart[i]); while(USART_GetFlagStatus(USART2,USART_FLAG_TC)!=SET); } delay_ms(1000); for(i=0;i<15;i++)//15//AT+CIPSEND=15 { USART_SendData(USART2, at_cipsend[i]); while(USART_GetFlagStatus(USART2,USART_FLAG_TC)!=SET); } delay_ms(1000); for(i=0;i<14;i++)//14//HELLO WORLD!(»Ø³µ) { USART_SendData(USART2, AAA[i]); while(USART_GetFlagStatus(USART2,USART_FLAG_TC)!=SET); } } ```

STM32 串口接收指令无反应。

C#上位机通过串口给STM32发送指令,结果发现发送指令下位机偶尔有反应,大多数情况下没反应,只有多次点击有时会返回一次数据。代码如下 ``` 上位机发送部分 char[] a = new char[1];//设置标志位 a[0] = 'a'; serialPort1.Write(a, 0, 1); ``` STM32处理部分: ``` while(1) { if(USART_GetITStatus(USART1,USART_IT_RXNE)!=Bit_RESET) { UART_data=USART_ReceiveData(USART1);//接收串口数据 if(UART_data=='a')//进行判断 { USART_SendData(USART1,a);//a为之前定义的一个变量 b也是 } if(UART_data=='b') { USART_SendData(USART1,b); } while(USART_GetFlagStatus(USART1,USART_FLAG_TXE)==Bit_RESET); } } ```

使用stm32f1通过串口接收上位机信息产生中断来控制电机,但是中断打不开,想请大佬看看是为什么?

主要思路是在串口通信助手中发送“1”,然后串口接收中断打开,在串口通信助手中打印“中断开始”的信息。但是这句“中断开始”信息没有显示,想请大佬看看shi'wei'shen'm usart.c ``` #include "stm32f10x.h" #include "usart.h" //已检查 无误 static void NVIC_Config(void) { NVIC_InitTypeDef NVIC_InitStructure; NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn ; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1; NVIC_Init(&NVIC_InitStructure); } //串口初始化函数已检查 无误 void USART1_Init(void) { USART_InitTypeDef USART_InitStructure; GPIO_InitTypeDef GPIO_InitStructure; //看io口和usart的时钟 //RCC_APB2PeriphResetCmd(RCC_APB2Periph_GPIOA,ENABLE); 函数用错了 //RCC_APB2PeriphResetCmd(RCC_APB2Periph_USART1, ENABLE); RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1,ENABLE); //初始化串口USART1输入输出的io口 //输出 推挽复用输出 PA9 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //初始化PA9 GPIO_Init( GPIOA , &GPIO_InitStructure ); //输出 浮空输入 PA10 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //初始化PA10 GPIO_Init( GPIOA , &GPIO_InitStructure ); //初始化串口 USART_InitStructure.USART_BaudRate = 115200; USART_InitStructure.USART_Mode = USART_Mode_Rx|USART_Mode_Tx; USART_InitStructure.USART_StopBits = USART_StopBits_1; USART_InitStructure.USART_WordLength = USART_WordLength_8b; USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; USART_InitStructure.USART_Parity = USART_Parity_No; USART_Init(USART1,&USART_InitStructure); //串口中断优先级配置 NVIC_Config(); //串口接收中断 因为是接受上位机消息后驱动电机转动,所以使用接受中断 USART_ITConfig(USART1, USART_IT_RXNE, ENABLE); //串口使能 USART_Cmd( USART1,ENABLE); } /* 使用串口发送一个字节 */ void USART_SendByte(USART_TypeDef* pUSARTx,uint16_t Data) { USART_SendData( pUSARTx, Data); while( USART_GetFlagStatus( pUSARTx,USART_FLAG_TXE) == RESET); } /* 发送字符串(来自野火教程) */ void USART_SendStr( USART_TypeDef* pUSARTx , uint8_t *str) { uint8_t i=0; do { USART_SendByte( pUSARTx, *(str+i)); i++; }while( *(str+i) != '\0' ); while( USART_GetFlagStatus( pUSARTx,USART_FLAG_TC) == RESET); } ///重定向c库函数printf到串口,重定向后可使用printf函数 int fputc(int ch, FILE *f) { /* 发送一个字节数据到串口 */ USART_SendData(USART1, (uint8_t) ch); /* 等待发送完毕 */ while (USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET); return (ch); } ///重定向c库函数scanf到串口,重写向后可使用scanf、getchar等函数 int fgetc(FILE *f) { /* 等待串口输入数据 */ while (USART_GetFlagStatus(USART1, USART_FLAG_RXNE) == RESET); return (int)USART_ReceiveData(USART1); } ``` usart.h ``` #ifndef __USART_H #define __USART_H #include "stm32f10x.h" #include <stdio.h> void USART1_Init(void); void Usart_SendByte(USART_TypeDef* pUSARTx, uint8_t data); void Usart_SendStr(USART_TypeDef* pUSARTx, uint8_t *str); #endif /* __USART_H */ ``` main.c ``` #include "stm32f10x.h" #include "moto.h" #include "usart.h" int main(void) { USART1_Init(); USART_SendStr( USART1 , "000\n"); //USART1_Init(); while(1){} } ``` 中断服务函数 ``` #include "stm32f10x_it.h" #include "usart.h" u8 Start_Flag=1; //电机启动/锁定标志 u16 Pluse_High=10; //脉冲高电平中断次数 1->10us u16 Pluse_Period=200;//脉冲周期中断次数 (转速) //脉冲中断服务函数------------------------------------------------------------ u32 TimeCount=0;//进中断计数 u16 a=0; void SysTick_Handler(void) { } void USART_IT_Handler(void) { //USART_SendStr( USART1 , "test\n"); if(USART_GetITStatus( USART1 ,USART_IT_RXNE)!=RESET) { printf("中断开始\n");//这句信息在串口通信助手中不显示 while(1) { if( USART_ReceiveData(USART1) == 1 ); break; } GPIO_SetBits(GPIOE,GPIO_Pin_5); while(a>1000)//让方向信号的输出略大于脉冲信号 {a++;} DJ_Init(); while(1){TIM4_Int_Init(10-1,84-1);} } } ```

stm32的库函数和操作系统有关系吗

请问stm32的库函数和操作系统有关系吗? 还是说stm32的库函数不是基于操作系统的?

stm32f407 DMA接收、发送问题

进行串口收发时,可以发送数据,但是DMA无法读取数据,配置看了好几遍,不知道哪里出现了问题,特意贴个代码,希望大家帮忙看看 #include "stm32f4xx.h" #include "myconst.h" #include "myfunction.h" #include <stdio.h> #include "eeprom.h" extern uint8_t uploaddata[10]; extern uint8_t usart1_dma_received[55]; extern uint8_t usart1_dma_flag; //Óë´«¸ÐÐÅÏ¢°åͨÐŵĴ®¿Ú£ºPA9---TX; PA10---RX //½ÓÊÕ´«¸Ð°å·¢À´µÄ59¸ö×Ö½Ú£º3A+A3+±ÚÕÏ2¸ö×Ö½Ú+µçÁ¿2¸ö×Ö½Ú+¹ßµ¼12¸ö×Ö½Ú+GPS39¸ö×Ö½Ú+Éî¶È2¸ö×Ö½Ú //Ïò´«¸Ð°å·¢ËÍË®ÖÊÐÅÏ¢£º10¸ö×Ö½Ú£ºA4+phÖµ2¸ö×Ö½Ú+µçµ¼ÂÊ3¸ö×Ö½Ú+ζÈ2¸ö×Ö½Ú+0A+0D; void USART1_Configuration(void) { USART_InitTypeDef USART_InitStructure; GPIO_InitTypeDef GPIO_InitStructure; DMA_InitTypeDef DMA_InitStructure; RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE); RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE); RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_DMA2, ENABLE); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP; GPIO_Init(GPIOA, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10; GPIO_Init(GPIOA, &GPIO_InitStructure); GPIO_PinAFConfig(GPIOA,GPIO_PinSource9,GPIO_AF_USART1); GPIO_PinAFConfig(GPIOA,GPIO_PinSource10,GPIO_AF_USART1); USART_InitStructure.USART_BaudRate = 115200; USART_InitStructure.USART_WordLength = USART_WordLength_8b; USART_InitStructure.USART_StopBits = USART_StopBits_1; USART_InitStructure.USART_Parity = USART_Parity_No; USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; USART_Init(USART1, &USART_InitStructure); USART_ITConfig(USART1, USART_IT_RXNE, ENABLE); USART_ClearFlag(USART1, USART_FLAG_TC); USART_Cmd(USART1, ENABLE); /*DMA·¢ËÍÅäÖÃ*/ DMA_DeInit(DMA2_Stream7); DMA_StructInit( &DMA_InitStructure); DMA_InitStructure.DMA_Channel = DMA_Channel_4; DMA_InitStructure.DMA_PeripheralBaseAddr =USART1_DR_Base; DMA_InitStructure.DMA_Memory0BaseAddr = (uint32_t)0; DMA_InitStructure.DMA_DIR = DMA_DIR_MemoryToPeripheral; DMA_InitStructure.DMA_BufferSize = 8; DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte; DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte; DMA_InitStructure.DMA_Mode = DMA_Mode_Normal; DMA_InitStructure.DMA_Priority = DMA_Priority_High; DMA_InitStructure.DMA_FIFOMode = DMA_FIFOMode_Disable; DMA_InitStructure.DMA_FIFOThreshold = DMA_FIFOThreshold_Full; DMA_InitStructure.DMA_MemoryBurst = DMA_MemoryBurst_Single; DMA_InitStructure.DMA_PeripheralBurst = DMA_PeripheralBurst_Single; DMA_Init(DMA2_Stream7, &DMA_InitStructure); DMA_ITConfig(DMA2_Stream7, DMA_IT_TC, ENABLE); USART_DMACmd(USART1, USART_DMAReq_Tx, ENABLE); DMA_ClearITPendingBit(DMA2_Stream7, DMA_IT_TCIF7); /*DMA ½ÓÊÕÊý¾ÝÉèÖÃ*/ DMA_DeInit(DMA2_Stream5); DMA_StructInit(&DMA_InitStructure); DMA_InitStructure.DMA_Channel = DMA_Channel_4; //Ñ¡ÔñChannel_5 DMA_InitStructure.DMA_PeripheralBaseAddr =USART1_DR_Base; //Êý¾Ý´«ÊäµÄÍâÉèÊ×µØÖ·£¬Ïê½â¼ûÉÏ DMA_InitStructure.DMA_Memory0BaseAddr = (uint32_t)(&usart1_dma_received[0]); //×Ô¼º¶¨Òå´ý·¢ËÍÊý×éµÄÊ×µØÖ·£¬ÒªÇ¿ÖÆת»»Îª32λ DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralToMemory; //Êý¾Ý´«Êä·½ÏòÑ¡ÔñΪÄÚ´æ<-ÍâÉè DMA_InitStructure.DMA_BufferSize =8; //´«ÊäÊý¾Ý´óСΪ8£¬µ¥Î»ÓÉÒÔÏÂÈ·¶¨£¬´óСҪÅäºÏ¶¨ÒåµÄÊý×éÀàÐͺÍÍâÉèÊý¾ÝÀàÐÍ DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; //ÍâÉèµØÖ·¼Ä´æÆ÷×Ô¶¯Ôö¼Ó½ûÖ¹£¬ÒòΪÕâÀïÖ»Óõ½ÁËDRÊý¾Ý¼Ä´æÆ÷ DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; //ÄÚ´æµØÖ·×ÔÔöÔÊÐí£¬ÒòΪҪ¶ÁÈ¡Ò»¸öÊý×é DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte; //ÍâÉèµÄÊý¾Ý´óС£¬ÒòΪUSART6_DRÊý¾Ý¼Ä´æÆ÷Ϊ8Ϊ£¬¹ÊÑ¡Byte DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte; //ÕâÀïҲѡByte DMA_InitStructure.DMA_Mode = DMA_Mode_Normal; //DMA´«ÊäģʽΪNormal£¬Èç¹ûΪCircular,½«»áÑ­»·´«Êä DMA_InitStructure.DMA_Priority = DMA_Priority_VeryHigh; //ÓÅÏȼ¶ÎªHigh DMA_InitStructure.DMA_FIFOMode = DMA_FIFOMode_Disable; DMA_InitStructure.DMA_FIFOThreshold = DMA_FIFOThreshold_Full; DMA_InitStructure.DMA_MemoryBurst = DMA_MemoryBurst_Single; DMA_InitStructure.DMA_PeripheralBurst = DMA_PeripheralBurst_Single; DMA_Init(DMA2_Stream5, &DMA_InitStructure); //DMA_ITConfig(DMA2_Stream5, DMA_IT_TC, ENABLE); DMA_ClearITPendingBit(DMA2_Stream5, DMA_IT_TCIF5); USART_DMACmd(USART1,USART_DMAReq_Rx, ENABLE); DMA_Cmd(DMA2_Stream5, ENABLE); } /*dma ½ÓÊÕÖжÏ*/ void DMA2_Stream5_IRQHandler(void) { if (DMA_GetITStatus(DMA2_Stream5, DMA_IT_TCIF5) != RESET) { DMA_Cmd(DMA2_Stream5, DISABLE); DMA_ClearITPendingBit(DMA2_Stream5, DMA_IT_TCIF5); USART_DMACmd(USART1, USART_DMAReq_Rx, DISABLE); usart1_dma_flag=1; } } //USART1 DMA ·¢ËÍÖÐ¶Ï void DMA2_Stream7_IRQHandler(void) { if (DMA_GetITStatus(DMA2_Stream7, DMA_IT_TCIF7) != RESET) //·¢ËÍÍê³É { DMA_ClearITPendingBit(DMA2_Stream7, DMA_IT_TCIF7); USART_DMACmd(USART1, USART_DMAReq_Tx, DISABLE); DMA_Cmd(DMA2_Stream7, DISABLE); } } void UASRT1_DMA_Senddata(u32 par,u16 ndtr) { DMA_Cmd(DMA2_Stream7, DISABLE); DMA2_Stream7->M0AR = (uint32_t)(par); DMA2_Stream7->NDTR = ndtr; DMA_Cmd(DMA2_Stream7, ENABLE); USART_DMACmd(USART1, USART_DMAReq_Tx, ENABLE); } void USART1_IRQHandler(void) { if (USART_GetITStatus(USART1, USART_IT_RXNE) != RESET) //ÅжÏΪ½ÓÊÕÖÐ¶Ï { // uint8_t Received; // float angle_temp=0; // Received = USART_ReceiveData(USART1); // USART_SendData(USART1,Received); // usart1_dma_flag=1; USART_ClearITPendingBit(USART1,USART_IT_RXNE); } } int main(void) { while(1) if(usart1_dma_flag==1)//Êý¾Ý½ÓÊÜ { //......... DMA_Cmd(DMA2_Stream5, ENABLE); USART_DMACmd(USART1, USART_DMAReq_Rx, ENABLE); } } void NVIC_Config() { NVIC_InitTypeDef NVIC_InitStructure; /* Enable the USARTx Interrupt */ NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1); ////// NVIC_InitStructure.NVIC_IRQChannel = USART2_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1); ////// NVIC_InitStructure.NVIC_IRQChannel = USART3_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1); ////// NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 2; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1); //ǶÌ×ÓÅÏȼ¶·Ö×éΪ 1 NVIC_InitStructure.NVIC_IRQChannel = DMA2_Stream5_IRQn; //ǶÌ×ͨµÀΪDMA2_Stream7_IRQn NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1; //ÇÀÕ¼ÓÅÏȼ¶Îª 1 NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3; //ÏìÓ¦ÓÅÏȼ¶Îª 0 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //ͨµÀÖжÏʹÄÜ NVIC_Init(&NVIC_InitStructure); NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1); //ǶÌ×ÓÅÏȼ¶·Ö×éΪ 1 NVIC_InitStructure.NVIC_IRQChannel = DMA2_Stream7_IRQn; //ǶÌ×ͨµÀΪDMA2_Stream7_IRQn NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1; //ÇÀÕ¼ÓÅÏȼ¶Îª 1 NVIC_InitStructure.NVIC_IRQChannelSubPriority = 4; //ÏìÓ¦ÓÅÏȼ¶Îª 0 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //ͨµÀÖжÏʹÄÜ NVIC_Init(&NVIC_InitStructure); NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1); ////// NVIC_InitStructure.NVIC_IRQChannel = USART6_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 5; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1); //ǶÌ×ÓÅÏȼ¶·Ö×éΪ 1 NVIC_InitStructure.NVIC_IRQChannel = DMA2_Stream1_IRQn; //ǶÌ×ͨµÀΪDMA2_Stream7_IRQn NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1; //ÇÀÕ¼ÓÅÏȼ¶Îª 1 NVIC_InitStructure.NVIC_IRQChannelSubPriority = 6; //ÏìÓ¦ÓÅÏȼ¶Îª 0 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //ͨµÀÖжÏʹÄÜ NVIC_Init(&NVIC_InitStructure); // // NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1); // ÇÀռʽÓÅÏȼ¶±ð // NVIC_InitStructure.NVIC_IRQChannel = TIM4_IRQn;//Ö¸¶¨ÖжÏÔ´ // NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1; // NVIC_InitStructure.NVIC_IRQChannelSubPriority = 7;// Ö¸¶¨ÏìÓ¦ÓÅÏȼ¶±ð1 // NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; // NVIC_Init(&NVIC_InitStructure); // NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1); // ÇÀռʽÓÅÏȼ¶±ð NVIC_InitStructure.NVIC_IRQChannel = TIM1_UP_TIM10_IRQn;//Ö¸¶¨ÖжÏÔ´ NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 7;// Ö¸¶¨ÏìÓ¦ÓÅÏȼ¶±ð1 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1); // ÇÀռʽÓÅÏȼ¶±ð NVIC_InitStructure.NVIC_IRQChannel = CAN1_RX0_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 2; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); }

请问stm32直接操作寄存器怎么建工程啊,和库函数版本一样吗?

请问stm32直接操作寄存器怎么建工程啊,和库函数版本一样吗?求大神指教,本人菜鸟一只

stm32重定向scanf到串口 这里怎么使用呢?

int fgetc(FILE *f) { while (USART_GetFlagStatus(USART1, USART_FLAG_RXNE) == RESET); return (int)USART_ReceiveData(USART1); }

stm32波特率的计算公式

在stm32中如何设置波特率?即波特率是如何计算的?在设置波特率的过程中出现问题,求解答,谢谢!

关于STM32单片机一个库函数问题求解答

什么时候需要调用SYS.H 和STM32f10x.h这两个文件 萌新求解 中文手册如果有 可以告诉我地方我自己去查

C语言库函数中 _mlock(_CONIO_LOCK);调用的却是lock()函数,这是为什么?

还有语句"_munlock(_CONIO_LOCK);" 调用的是unlock() 前面的"_m"怎么没有读取?

stm 32 关于RTC库函数的小问题

1、RTC_WaitForSynchro() 上面这个函数是进行APB1和RTC时钟同步用的,为什么要进行同步呢,具体有什么作用啊,我不同步行不行呢? 2、还有就是 RTC_WaitForLastTask()这个函数在F40X系列的ARM芯片RTC库函数中已经没有了,这个有什么影响吗? 3、最后一个问题是关于预分频系数设置的,这个先后顺序有没有关系的,本人小白,刚接触stm32。

为什么我包含了stdio.h,也重新定向到了C库函数,但进行stm32和电脑的串口实验中,printf语句还是没有执行?

#include "stm32f10x.h" #include "LED.h" #include "USART.h" #include "stdio.h" void Show_Message(void); char ch; int main(void) { /* 初始化RGB彩灯 */ LED_GPIO_Config(); /* 初始化USART 配置模式为 115200 8-N-1 */ USART_Config(); /* 打印指令输入提示信息 */ Show_Message(); while(1) { char ch; /* 获取字符指令 */ ch=getchar(); printf("接收到字符:%c\n",ch); /* 根据字符指令控制RGB彩灯颜色 */ switch(ch) { case '1': LED_RED; break; case '2': LED_GREEN; break; case '3': LED_BLUE; break; case '4': LED_YELLOW; break; case '5': LED_PURPLE; break; case '6': LED_CYAN; break; case '7': LED_WHITE; break; case '8': LED_RGBOFF; break; default: /* 如果不是指定指令字符,打印提示信息 */ Show_Message(); break; } } } static void Show_Message(void) { printf("\r\n 这是一个通过串口通信指令控制RGB彩灯实验 \n"); printf("使用 USART 参数为:%d 8-N-1 \n",DEBUG_USART_BAUDARATE); printf("开发板接到指令后控制RGB彩灯颜色,指令对应如下:\n"); printf(" 指令 ------ 彩灯颜色 \n"); printf(" 1 ------ 红 \n"); printf(" 2 ------ 绿 \n"); printf(" 3 ------ 蓝 \n"); printf(" 4 ------ 黄 \n"); printf(" 5 ------ 紫 \n"); printf(" 6 ------ 青 \n"); printf(" 7 ------ 白 \n"); printf(" 8 ------ 灭 \n"); } 这是main.c里的。本来是模仿秉火的程序写的,但结果串口发数据可以控制灯的状态,但printf后面的内容却没法在串口助手上显示,后来几乎是把源代码都复制了过来,还是显示不了。源代码就可以在串口助手上显示printf语句内的内容,keil的微库我也勾选了。是不是我的keil哪里还没有设置好?

求stm8s103f3p6 使用官方库函数编写的spi一主多从机的代码

实现一个主机stm8s103f3p6和多个从机stm8s103f3p6的通信代码。

STM32官方DSP库进行FFT运算的问题

使用STM32官方的DSP库进行FFT运算,然后求每一个频率点的幅值,并把幅值用printf在串口打印出来,问题是我把计算幅值的函数放到main.c文件中,结果是正确的,但把它放到其他文件中,在main函数中调用,结果就不正确了,哪位大神知道问什么? 这是main函数,作用就是计算FFT后每一点的幅值,其中GetPowerMag(FFT_Out_Array, FFT_Mag_Array);函数是在fft.c中定义的,但结果不对,如果拿到main.c中就正确了 #include "config.h" #include "led.h" #include <math.h> #include "fft.h" #define Fs 6400 //采样率 #define PI2 6.28318530717959 long FFT_In_Array[NPT]; long FFT_Out_Array[NPT]; unsigned long FFT_Mag_Array[NPT/2]; void fft_Init(void); int main(void) { u8 i; RCC_Configuration(); GPIO_Configuration(); NVIC_Configuration(); USART1_Configuration(); //ADC_Configuration(); //DMA_Configuration(); // initLED(); fft_Init(); //FFT运算 cr4_fft_256_stm32(FFT_Out_Array, FFT_In_Array, NPT); //计算幅值 GetPowerMag(FFT_Out_Array, FFT_Mag_Array); //打印每一点的幅值 for(i=0;i<NPT/2;i++) { printf("%d=%ld\n", i, FFT_Mag_Array[i]); } while (1) { } return 0; } //用指定频率的波形,初始化FFT数组 void fft_Init() { unsigned short i; float fx; for(i=0; i<NPT; i++) { fx = 1500 * sin(PI2 * i * 350.0 / Fs) + 2700 * sin(PI2 * i * 8400.0 / Fs) + 4000 * sin(PI2 * i * 18725.0 / Fs); FFT_In_Array[i] = ((signed short)fx) << 16; } } 以下是fft.c--------------------------------------- #include "fft.h" void GetPowerMag(long *pIn, unsigned long *pMag) { signed short lX,lY; float X,Y,Mag; unsigned short i; for(i=0; i<NPT/2; i++) { lX = (pIn[i] << 16) >> 16; lY = (pIn[i] >> 16); X = NPT * ((float)lX) / 32768; Y = NPT * ((float)lY) / 32768; Mag = sqrt(X * X + Y * Y) / NPT; if(i == 0) pMag[i] = (unsigned long)(Mag * 32768); else pMag[i] = (unsigned long)(Mag * 65536); } }

stm32adc配置问题应用到adc+dma+tim+usart

我将adc配置后读出的数一直为0,怀疑是否adc没有运作。下面是我写的程序,请大神们帮我指点一下,看看哪出了问题。 **********************************************************************************/ #include "adc.h" vu16 AD_Value[N][M]; //用来存放ADC转换结果,也是DMA的目标地址 vu16 After_filter[M]; //用来存放求平均值之后的结果 u16 AD_Data_Ram[N]; u16 Get_RF_Data[N]; extern u16 RF_ADC1_Value_Count[ADRF_Arr_Count]; extern u16 V_ADC1_Value[ADRF_Arr_Count]; //存储采集电池电压缓存 /* * 函数名:ADC1_GPIO_Config * 描述 :使能ADC1和DMA1的时钟,初始化PC.01 * 输入 : 无 * 输出 :无 * 调用 :内部调用 */ static void ADC1_GPIO_Config(void) { GPIO_InitTypeDef GPIO_InitStructure; /* Enable ADC1 and GPIOC clock */ RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1 | RCC_APB2Periph_GPIOB, ENABLE); /*PB0-RF_AD输入 PB1-电压检测输入*/ GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0|GPIO_Pin_1; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; GPIO_Init(GPIOB, &GPIO_InitStructure); } /* 函数名:ADC1_Mode_Config * 描述 :配置ADC1的工作模式为DMA模式 * 输入 : 无 * 输出 :无 * 调用 :内部调用 */ static void ADC1_Mode_Config(void) { ADC_InitTypeDef ADC_InitStructure; // ADC_DMARequestModeConfig(ADC1, ADC_DMAMode_Circular); /* ADC1 configuration */ ADC_DeInit(ADC1); //复位ADC ADC_StructInit(&ADC_InitStructure); //初始化ADC结构体 ADC_InitStructure.ADC_Mode = ADC_Mode_Independent; //独立ADC模式 ADC_InitStructure.ADC_ScanConvMode = ENABLE; //扫描模式用于多通道采集 ADC_InitStructure.ADC_ContinuousConvMode = ENABLE; //ENABLE 开启连续转换模式,即不停地进行ADC转换 ADC_InitStructure.ADC_ExternalTrigConv =ADC_ExternalTrigConv_None; //ADC_ExternalTrigConv_T2_CC2;//外部触发设置为TIM2 //(ADC_ExternalTrigConv_None; //不使用外部触发转换 (ADC_ExternalTrigConv_Ext_IT11_TIM8_TRGO; )//使用外部中断线11作为转换外部触发 ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; //采集数据右对齐 ADC_InitStructure.ADC_NbrOfChannel = M; //要转换的通道数目2 ADC_Init(ADC1, &ADC_InitStructure); /*配置ADC时钟,为PCLK2的8分频,即9MHz*/ RCC_ADCCLKConfig(RCC_PCLK2_Div8); /*配置ADC1的通道8为55.5个采样周期,序列为1 */ /*配置ADC1的通道9为55.5个采样周期,序列为2 */ // ADC_SampleTime_55Cycles5 ADC_RegularChannelConfig(ADC1, ADC_Channel_8, 1, ADC_SampleTime_7Cycles5); ADC_RegularChannelConfig(ADC1, ADC_Channel_9, 2, ADC_SampleTime_7Cycles5); // ADC_RegularChannelConfig(ADC1, ADC_Channel_8, 1, ADC_SampleTime_239Cycles5); // ADC_RegularChannelConfig(ADC1, ADC_Channel_9, 2, ADC_SampleTime_239Cycles5); /* Enable ADC1 external trigger */ // ADC_ExternalTrigConvCmd(ADC1, ENABLE); /* Enable ADC1 DMA */ ADC_DMACmd(ADC1, ENABLE); /* Enable ADC1 */ ADC_Cmd(ADC1, ENABLE); /*复位校准寄存器 */ ADC_ResetCalibration(ADC1); /*等待校准寄存器复位完成 */ while(ADC_GetResetCalibrationStatus(ADC1)); /* ADC校准 */ ADC_StartCalibration(ADC1); /* 等待校准完成*/ while(ADC_GetCalibrationStatus(ADC1)); /* 由于没有采用外部触发,所以使用软件触发ADC转换 */ ADC_SoftwareStartConvCmd(ADC1, ENABLE); // DMA_Cmd(DMA1_Channel1, ENABLE);//使能DMA } void DMA_AD_Init(void) { DMA_InitTypeDef DMA_InitStructure; /* Enable DMA clock */ RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE); /* DMA channel1 configuration */ DMA_DeInit(DMA1_Channel1); DMA_InitStructure.DMA_PeripheralBaseAddr = ADC1_DR_Address; //ADC地址 DMA_InitStructure.DMA_MemoryBaseAddr = (u32)&AD_Value;//内存地址 DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC; //内存作为数据传输的目的地 DMA_InitStructure.DMA_BufferSize = N*M; //DMA通道的DMA缓存的大小 DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;//外设地址固定 DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; //内存地址递增 DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord; //半字 DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord; DMA_InitStructure.DMA_Mode = DMA_Mode_Circular; //循环传输 DMA_InitStructure.DMA_Priority = DMA_Priority_High; //DMA通道拥有高优先级 DMA_InitStructure.DMA_M2M = DMA_M2M_Disable; //DMA通道没有设置为内存到内存传输 DMA_Init(DMA1_Channel1, &DMA_InitStructure); //开启DMA传输完成中断 // DMA_ITConfig(DMA1_Channel1,DMA_IT_TC,ENABLE); // DMA_ClearITPendingBit(DMA_IT_TC); //清除一次DMA中断标志 DMA_Cmd(DMA1_Channel1, ENABLE); //Enable DMA channel1 } /* * 函数名:ADC1_Init * 描述 :无 * 输入 :无 * 输出 :无 * 调用 :外部调用 */ void ADC1_Init(void) { ADC1_GPIO_Config(); DMA_AD_Init(); ADC1_Mode_Config(); }

pic16和18系列有没有类似stm32的可供调用的库函数

pic16和18系列有没有类似stm32的可供调用的库函数,是用picc还是xc6作为编译器,如果有库函数下载和使用方法。谢谢帮忙,最近做项目需要用到pic单片机,如果有库函数感觉会简单不少。

STM32F207ZGT中I2C SMBUS总线如何主模式读写?

STM32F207ZGT中I2C SMBUS总线如何主模式读写? 我需要使用STM32F207作为主模式,读电池的芯片BQ2060作为从模式走SMBUS总线,下面是我的一些基本设置和代码信息: void Battery_Init() { I2C_InitTypeDef I2C_InitStructure; Battery_LowLevel_Init(); /* I2C1 configuration: SMBus Host */ I2C_InitStructure.I2C_Mode = I2C_Mode_SMBusHost; //设置基于SMBUS的主模式 I2C_InitStructure.I2C_DutyCycle = I2C_DutyCycle_2; I2C_InitStructure.I2C_OwnAddress1 = I2C_SLAVE_ADDRESS7;//I2C_SLAVE_ADDRESS7=0x16从设备电池的地址 I2C_InitStructure.I2C_Ack = I2C_Ack_Enable; I2C_InitStructure.I2C_AcknowledgedAddress = I2C_AcknowledgedAddress_7bit; I2C_InitStructure.I2C_ClockSpeed = I2C_SPEED; //I2C_SPEED=100000 /* Apply sEE_I2C configuration after enabling it */ I2C_Init(I2C1, &I2C_InitStructure); //初始化设置 /* I2C Peripheral Enable */ I2C_Cmd(I2C1, ENABLE); //使能I2C1 } //下面是我使用STM32F207ZGT作为主模式,电池芯片bq20600作为从模式,对电池芯片的进行读,代码如下: //I2Cx I2C1 //pBuffer 接收缓存 //CommandCode 字节地址 //NumByteToRead = 2读的字节数 uint32_t I2C_BatteryMasterReadbuffer(I2C_TypeDef* I2Cx,uint8_t* pBuffer, uint8_t CommandCode, uint16_t NumByteToRead) { /*----- receiver Phase -----*/ BatteryTimeout = BATTERY_LONG_TIMEOUT; while(I2C_GetFlagStatus(I2Cx, I2C_FLAG_BUSY)) { if((BatteryTimeout--) == 0) return sEE_TIMEOUT_UserCallback(); } /* Send I2C1 START condition */ I2C_GenerateSTART(I2Cx, ENABLE); /* Test on I2C1 EV5 and clear it */ BatteryTimeout = BATTERY_FLAG_TIMEOUT; while(!I2C_CheckEvent(I2Cx, I2C_EVENT_MASTER_MODE_SELECT)) { if((BatteryTimeout--) == 0) return sEE_TIMEOUT_UserCallback(); } /* Send Slave address */ I2C_Send7bitAddress(I2Cx, SMBusDefaultHeader, I2C_Direction_Transmitter);//SMBusDefaultHeader为电池地址0x16 /* Clear EV6 by setting again the PE bit */ // I2C_Cmd(I2C1, DISABLE); /* Test on I2C1 EV6 and clear it */ while(!I2C_CheckEvent(I2Cx, I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED)) { if((BatteryTimeout--) == 0) return sEE_TIMEOUT_UserCallback(); } /* Send Command */ I2C_SendData(I2Cx, CommandCode); /*!< Test on EV8_2 and clear it */ BatteryTimeout = BATTERY_FLAG_TIMEOUT; while(!I2C_CheckEvent(I2Cx, I2C_EVENT_MASTER_BYTE_TRANSMITTED)) { if((BatteryTimeout--) == 0) return sEE_TIMEOUT_UserCallback(); } /* Send I2C1 START condition */ I2C_GenerateSTART(I2Cx, ENABLE); /*!< Test on EV5 and clear it (cleared by reading SR1 then writing to DR) */ BatteryTimeout = BATTERY_FLAG_TIMEOUT; while(!I2C_CheckEvent(I2Cx, I2C_EVENT_MASTER_MODE_SELECT)) { if((BatteryTimeout--) == 0) return sEE_TIMEOUT_UserCallback(); } /* Send Slave address */ I2C_Send7bitAddress(I2Cx, SMBusDefaultHeader, I2C_Direction_Receiver); /*!< Test on EV6 and clear it */ BatteryTimeout = BATTERY_FLAG_TIMEOUT; while(!I2C_CheckEvent(I2Cx, I2C_EVENT_MASTER_RECEIVER_MODE_SELECTED)) { if((BatteryTimeout--) == 0) return sEE_TIMEOUT_UserCallback(); } while(NumByteToRead) { if(I2C_CheckEvent(I2Cx, I2C_EVENT_MASTER_BYTE_RECEIVED)) //读取数据 { //调用库函数将数据取出到 pBuffer *pBuffer = I2C_ReceiveData(I2Cx); pBuffer++; //指针移位 NumByteToRead--;//字节数减 1 I2C_AcknowledgeConfig(I2Cx, ENABLE); /*!< Test on EV7 and clear it */ BatteryTimeout = BATTERY_FLAG_TIMEOUT; while(!I2C_CheckEvent(I2Cx, I2C_EVENT_MASTER_BYTE_RECEIVED)) { if((BatteryTimeout--) == 0) return sEE_TIMEOUT_UserCallback(); } } if ((uint16_t)(NumByteToRead) == 1) { /* Wait on ADDR flag to be set (ADDR is still not cleared at this level */ // BatteryTimeout = BATTERY_FLAG_TIMEOUT; // while(I2C_GetFlagStatus(I2Cx, I2C_FLAG_ADDR) == RESET) // { // if((BatteryTimeout--) == 0) return sEE_TIMEOUT_UserCallback(); // } /*!< Disable Acknowledgment */ I2C_AcknowledgeConfig(I2Cx, DISABLE); /* Clear ADDR register by reading SR1 then SR2 register (SR1 has already been read) */ (void)I2Cx->SR2; /*!< Send STOP Condition */ I2C_GenerateSTOP(I2Cx, ENABLE); /* Wait for the byte to be received */ while(I2C_GetFlagStatus(I2Cx, I2C_FLAG_RXNE) == RESET) { if((BatteryTimeout--) == 0) return sEE_TIMEOUT_UserCallback(); } *pBuffer = I2C_ReceiveData(I2Cx); NumByteToRead--; BatteryTimeout = BATTERY_FLAG_TIMEOUT; // while(I2Cx->CR1 & I2C_CR1_STOP) // { // if((BatteryTimeout--) == 0) return sEE_TIMEOUT_UserCallback(); // } /*!< Re-Enable Acknowledgment to be ready for another reception */ I2C_AcknowledgeConfig(I2Cx, ENABLE); return Battery_OK; } } return Battery_OK; } 其中,使用F10单步跟进, 执行完 /* Send I2C1 START condition */ I2C_GenerateSTART(I2Cx, ENABLE); I2C寄存器地址出现如下图片, 之后程序就死在了下面EV5的部分,不知道怎么解决,请求STM32高手指点: /* Test on I2C1 EV5 and clear it */ BatteryTimeout = BATTERY_FLAG_TIMEOUT; while(!I2C_CheckEvent(I2Cx, I2C_EVENT_MASTER_MODE_SELECT)) { if((BatteryTimeout--) == 0) return sEE_TIMEOUT_UserCallback(); } ![图片说明](https://img-ask.csdn.net/upload/201506/17/1434520392_849008.jpg)

4小时玩转微信小程序——基础入门与微信支付实战

这是一个门针对零基础学员学习微信小程序开发的视频教学课程。课程采用腾讯官方文档作为教程的唯一技术资料来源。杜绝网络上质量良莠不齐的资料给学员学习带来的障碍。 视频课程按照开发工具的下载、安装、使用、程序结构、视图层、逻辑层、微信小程序等几个部分组织课程,详细讲解整个小程序的开发过程

Python可以这样学(第四季:数据分析与科学计算可视化)

董付国老师系列教材《Python程序设计(第2版)》(ISBN:9787302436515)、《Python可以这样学》(ISBN:9787302456469)配套视频,在教材基础上又增加了大量内容,通过实例讲解numpy、scipy、pandas、statistics、matplotlib等标准库和扩展库用法。

组成原理课程设计(实现机器数的真值还原等功能)

实现机器数的真值还原(定点小数)、定点小数的单符号位补码加减运算、定点小数的补码乘法运算和浮点数的加减运算。

javaWeb图书馆管理系统源码mysql版本

系统介绍 图书馆管理系统主要的目的是实现图书馆的信息化管理。图书馆的主要业务就是新书的借阅和归还,因此系统最核心的功能便是实现图书的借阅和归还。此外,还需要提供图书的信息查询、读者图书借阅情况的查询等

土豆浏览器

土豆浏览器可以用来看各种搞笑、电影、电视剧视频

Java面试题大全(2020版)

发现网上很多Java面试题都没有答案,所以花了很长时间搜集整理出来了这套Java面试题大全,希望对大家有帮助哈~ 本套Java面试题大全,全的不能再全,哈哈~ 一、Java 基础 1. JDK 和 JRE 有什么区别? JDK:Java Development Kit 的简称,java 开发工具包,提供了 java 的开发环境和运行环境。 JRE:Java Runtime Environ...

Java8零基础入门视频教程

这门课程基于主流的java8平台,由浅入深的详细讲解了java SE的开发技术,可以使java方向的入门学员,快速扎实的掌握java开发技术!

Java基础知识面试题(2020最新版)

文章目录Java概述何为编程什么是Javajdk1.5之后的三大版本JVM、JRE和JDK的关系什么是跨平台性?原理是什么Java语言有哪些特点什么是字节码?采用字节码的最大好处是什么什么是Java程序的主类?应用程序和小程序的主类有何不同?Java应用程序与小程序之间有那些差别?Java和C++的区别Oracle JDK 和 OpenJDK 的对比基础语法数据类型Java有哪些数据类型switc...

TTP229触摸代码以及触摸返回值处理

自己总结的ttp229触摸代码,触摸代码以及触摸按键处理

网络工程师小白入门--【思科CCNA、华为HCNA等网络工程师认证】

本课程适合CCNA或HCNA网络小白同志,高手请绕道,可以直接学习进价课程。通过本预科课程的学习,为学习网络工程师、思科CCNA、华为HCNA这些认证打下坚实的基础! 重要!思科认证2020年2月24日起,已启用新版认证和考试,包括题库都会更新,由于疫情原因,请关注官网和本地考点信息。题库网络上很容易下载到。

深度学习原理+项目实战+算法详解+主流框架(套餐)

深度学习系列课程从深度学习基础知识点开始讲解一步步进入神经网络的世界再到卷积和递归神经网络,详解各大经典网络架构。实战部分选择当下最火爆深度学习框架PyTorch与Tensorflow/Keras,全程实战演示框架核心使用与建模方法。项目实战部分选择计算机视觉与自然语言处理领域经典项目,从零开始详解算法原理,debug模式逐行代码解读。适合准备就业和转行的同学们加入学习! 建议按照下列课程顺序来进行学习 (1)掌握深度学习必备经典网络架构 (2)深度框架实战方法 (3)计算机视觉与自然语言处理项目实战。(按照课程排列顺序即可)

java jdk 8 帮助文档 中文 文档 chm 谷歌翻译

JDK1.8 API 中文谷歌翻译版 java帮助文档 JDK API java 帮助文档 谷歌翻译 JDK1.8 API 中文 谷歌翻译版 java帮助文档 Java最新帮助文档 本帮助文档是使用谷

Ubuntu18.04安装教程

Ubuntu18.04.1安装一、准备工作1.下载Ubuntu18.04.1 LTS2.制作U盘启动盘3.准备 Ubuntu18.04.1 的硬盘空间二、安装Ubuntu18.04.1三、安装后的一些工作1.安装输入法2.更换软件源四、双系统如何卸载Ubuntu18.04.1新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列...

快速排序---(面试碰到过好几次)

原理:    快速排序,说白了就是给基准数据找其正确索引位置的过程.    如下图所示,假设最开始的基准数据为数组第一个元素23,则首先用一个临时变量去存储基准数据,即tmp=23;然后分别从数组的两端扫描数组,设两个指示标志:low指向起始位置,high指向末尾.    首先从后半部分开始,如果扫描到的值大于基准数据就让high减1,如果发现有元素比该基准数据的值小(如上图中18&amp;lt...

手把手实现Java图书管理系统(附源码)

【超实用课程内容】 本课程演示的是一套基于Java的SSM框架实现的图书管理系统,主要针对计算机相关专业的正在做毕设的学生与需要项目实战练习的java人群。详细介绍了图书管理系统的实现,包括:环境搭建、系统业务、技术实现、项目运行、功能演示、系统扩展等,以通俗易懂的方式,手把手的带你从零开始运行本套图书管理系统,该项目附带全部源码可作为毕设使用。 【课程如何观看?】 PC端:https://edu.csdn.net/course/detail/27513 移动端:CSDN 学院APP(注意不是CSDN APP哦) 本课程为录播课,课程2年有效观看时长,大家可以抓紧时间学习后一起讨论哦~ 【学员专享增值服务】 源码开放 课件、课程案例代码完全开放给你,你可以根据所学知识,自行修改、优化 下载方式:电脑登录https://edu.csdn.net/course/detail/27513,点击右下方课程资料、代码、课件等打包下载

HTML期末大作业

这是我自己做的HTML期末大作业,花了很多时间,稍加修改就可以作为自己的作业了,而且也可以作为学习参考

Python数据挖掘简易入门

&nbsp; &nbsp; &nbsp; &nbsp; 本课程为Python数据挖掘方向的入门课程,课程主要以真实数据为基础,详细介绍数据挖掘入门的流程和使用Python实现pandas与numpy在数据挖掘方向的运用,并深入学习如何运用scikit-learn调用常用的数据挖掘算法解决数据挖掘问题,为进一步深入学习数据挖掘打下扎实的基础。

极简JAVA学习营第四期(报名以后加助教微信:eduxy-1)

想学好JAVA必须要报两万的培训班吗? Java大神勿入 如果你: 零基础想学JAVA却不知道从何入手 看了一堆书和视频却还是连JAVA的环境都搭建不起来 囊中羞涩面对两万起的JAVA培训班不忍直视 在职没有每天大块的时间专门学习JAVA 那么恭喜你找到组织了,在这里有: 1. 一群志同道合立志学好JAVA的同学一起学习讨论JAVA 2. 灵活机动的学习时间完成特定学习任务+每日编程实战练习 3. 热心助人的助教和讲师及时帮你解决问题,不按时完成作业小心助教老师的家访哦 上一张图看看前辈的感悟: &nbsp; &nbsp; 大家一定迫不及待想知道什么是极简JAVA学习营了吧,下面就来给大家说道说道: 什么是极简JAVA学习营? 1. 针对Java小白或者初级Java学习者; 2. 利用9天时间,每天1个小时时间; 3.通过 每日作业 / 组队PK / 助教答疑 / 实战编程 / 项目答辩 / 社群讨论 / 趣味知识抢答等方式让学员爱上学习编程 , 最终实现能独立开发一个基于控制台的‘库存管理系统’ 的学习模式 极简JAVA学习营是怎么学习的? &nbsp; 如何报名? 只要购买了极简JAVA一:JAVA入门就算报名成功! &nbsp;本期为第四期极简JAVA学习营,我们来看看往期学员的学习状态: 作业看这里~ &nbsp; 助教的作业报告是不是很专业 不交作业打屁屁 助教答疑是不是很用心 &nbsp; 有奖抢答大家玩的很嗨啊 &nbsp; &nbsp; 项目答辩终于开始啦 &nbsp; 优秀者的获奖感言 &nbsp; 这是答辩项目的效果 &nbsp; &nbsp; 这么细致的服务,这么好的氛围,这样的学习效果,需要多少钱呢? 不要1999,不要199,不要99,只要9.9 是的你没听错,只要9.9以上所有就都属于你了 如果你: 1、&nbsp;想学JAVA没有基础 2、&nbsp;想学JAVA没有整块的时间 3、&nbsp;想学JAVA没有足够的预算 还等什么?赶紧报名吧,抓紧抢位,本期只招300人,错过只有等时间待定的下一期了 &nbsp; 报名请加小助手微信:eduxy-1 &nbsp; &nbsp;

C++语言基础视频教程

C++语言基础视频培训课程:本课与主讲者在大学开出的程序设计课程直接对接,准确把握知识点,注重教学视频与实践体系的结合,帮助初学者有效学习。本教程详细介绍C++语言中的封装、数据隐藏、继承、多态的实现等入门知识;主要包括类的声明、对象定义、构造函数和析构函数、运算符重载、继承和派生、多态性实现等。 课程需要有C语言程序设计的基础(可以利用本人开出的《C语言与程序设计》系列课学习)。学习者能够通过实践的方式,学会利用C++语言解决问题,具备进一步学习利用C++开发应用程序的基础。

UnityLicence

UnityLicence

软件测试2小时入门

本课程内容系统、全面、简洁、通俗易懂,通过2个多小时的介绍,让大家对软件测试有个系统的理解和认识,具备基本的软件测试理论基础。 主要内容分为5个部分: 1 软件测试概述,了解测试是什么、测试的对象、原则、流程、方法、模型;&nbsp; 2.常用的黑盒测试用例设计方法及示例演示;&nbsp; 3 常用白盒测试用例设计方法及示例演示;&nbsp; 4.自动化测试优缺点、使用范围及示例‘;&nbsp; 5.测试经验谈。

YOLOv3目标检测实战:训练自己的数据集

YOLOv3是一种基于深度学习的端到端实时目标检测方法,以速度快见长。本课程将手把手地教大家使用labelImg标注和使用YOLOv3训练自己的数据集。课程分为三个小项目:足球目标检测(单目标检测)、梅西目标检测(单目标检测)、足球和梅西同时目标检测(两目标检测)。 本课程的YOLOv3使用Darknet,在Ubuntu系统上做项目演示。包括:安装Darknet、给自己的数据集打标签、整理自己的数据集、修改配置文件、训练自己的数据集、测试训练出的网络模型、性能统计(mAP计算和画出PR曲线)和先验框聚类。 Darknet是使用C语言实现的轻型开源深度学习框架,依赖少,可移植性好,值得深入探究。 除本课程《YOLOv3目标检测实战:训练自己的数据集》外,本人推出了有关YOLOv3目标检测的系列课程,请持续关注该系列的其它课程视频,包括: 《YOLOv3目标检测实战:交通标志识别》 《YOLOv3目标检测:原理与源码解析》 《YOLOv3目标检测:网络模型改进方法》 敬请关注并选择学习!

Python数据分析师-实战系列

系列课程主要包括Python数据分析必备工具包,数据分析案例实战,核心算法实战与企业级数据分析与建模解决方案实战,建议大家按照系列课程阶段顺序进行学习。所有数据集均为企业收集的真实数据集,整体风格以实战为导向,通俗讲解Python数据分析核心技巧与实战解决方案。

YOLOv3目标检测实战系列课程

《YOLOv3目标检测实战系列课程》旨在帮助大家掌握YOLOv3目标检测的训练、原理、源码与网络模型改进方法。 本课程的YOLOv3使用原作darknet(c语言编写),在Ubuntu系统上做项目演示。 本系列课程包括三门课: (1)《YOLOv3目标检测实战:训练自己的数据集》 包括:安装darknet、给自己的数据集打标签、整理自己的数据集、修改配置文件、训练自己的数据集、测试训练出的网络模型、性能统计(mAP计算和画出PR曲线)和先验框聚类。 (2)《YOLOv3目标检测:原理与源码解析》讲解YOLOv1、YOLOv2、YOLOv3的原理、程序流程并解析各层的源码。 (3)《YOLOv3目标检测:网络模型改进方法》讲解YOLOv3的改进方法,包括改进1:不显示指定类别目标的方法 (增加功能) ;改进2:合并BN层到卷积层 (加快推理速度) ; 改进3:使用GIoU指标和损失函数 (提高检测精度) ;改进4:tiny YOLOv3 (简化网络模型)并介绍 AlexeyAB/darknet项目。

超详细MySQL安装及基本使用教程

一、下载MySQL 首先,去数据库的官网http://www.mysql.com下载MySQL。 点击进入后的首页如下:  然后点击downloads,community,选择MySQL Community Server。如下图:  滑到下面,找到Recommended Download,然后点击go to download page。如下图:  点击download进入下载页面选择No...

一学即懂的计算机视觉(第一季)

图像处理和计算机视觉的课程大家已经看过很多,但总有“听不透”,“用不了”的感觉。课程致力于创建人人都能听的懂的计算机视觉,通过生动、细腻的讲解配合实战演练,让学生真正学懂、用会。 【超实用课程内容】 课程内容分为三篇,包括视觉系统构成,图像处理基础,特征提取与描述,运动跟踪,位姿估计,三维重构等内容。课程理论与实战结合,注重教学内容的可视化和工程实践,为人工智能视觉研发及算法工程师等相关高薪职位就业打下坚实基础。 【课程如何观看?】 PC端:https://edu.csdn.net/course/detail/26281 移动端:CSDN 学院APP(注意不是CSDN APP哦) 本课程为录播课,课程2年有效观看时长,但是大家可以抓紧时间学习后一起讨论哦~ 【学员专享增值服务】 源码开放 课件、课程案例代码完全开放给你,你可以根据所学知识,自行修改、优化 下载方式:电脑登录https://edu.csdn.net/course/detail/26281,点击右下方课程资料、代码、课件等打包下载

董付国老师Python全栈学习优惠套餐

购买套餐的朋友可以关注微信公众号“Python小屋”,上传付款截图,然后领取董老师任意图书1本。

爬取妹子图片(简单入门)

安装第三方请求库 requests 被网站禁止了访问 原因是我们是Python过来的 重新给一段 可能还是存在用不了,使用网页的 编写代码 上面注意看匹配内容 User-Agent:请求对象 AppleWebKit:请求内核 Chrome浏览器 //请求网页 import requests import re //正则表达式 就是去不规则的网页里面提取有规律的信息 headers = { 'User-Agent':'存放浏览器里面的' } response = requests.get

web网页制作期末大作业

分享思维,改变世界. web网页制作,期末大作业. 所用技术:html css javascript 分享所学所得

技术大佬:我去,你写的 switch 语句也太老土了吧

昨天早上通过远程的方式 review 了两名新来同事的代码,大部分代码都写得很漂亮,严谨的同时注释也很到位,这令我非常满意。但当我看到他们当中有一个人写的 switch 语句时,还是忍不住破口大骂:“我擦,小王,你丫写的 switch 语句也太老土了吧!” 来看看小王写的代码吧,看完不要骂我装逼啊。 private static String createPlayer(PlayerTypes p...

相关热词 c# 局部 截图 页面 c#实现简单的文件管理器 c# where c# 取文件夹路径 c# 对比 当天 c# fir 滤波器 c# 和站 队列 c# txt 去空格 c#移除其他类事件 c# 自动截屏
立即提问