tensorflow.python.framework.errors_impl.InvalidArgumentError

tensorflow.python.framework.errors_impl.InvalidArgumentError: Key: image/encoded. Can't parse serialized Example.

 [[Node: ParseSingleExample/ParseSingleExample = ParseSingleExample[Tdense=[DT_STRING, DT_INT64], dense_keys=["image/encoded", "image/label"], dense_shapes=[[8], []], num_sparse=0, sparse_keys=[], sparse_types=[]](arg0, ParseSingleExample/Const, ParseSingleExample/Const_1)]]
 [[Node: IteratorGetNext = IteratorGetNext[output_shapes=[[?,8,?,?,3], [?]], output_types=[DT_FLOAT, DT_INT64], _device="/job:localhost/replica:0/task:0/device:CPU:0"](Iterator)]]

请问这是什么原因啊?是我的数据集不对吗?

1个回答

Csdn user default icon
上传中...
上传图片
插入图片
抄袭、复制答案,以达到刷声望分或其他目的的行为,在CSDN问答是严格禁止的,一经发现立刻封号。是时候展现真正的技术了!
其他相关推荐
运行tensorflow时出现tensorflow.python.framework.errors_impl.InternalError: Blas GEMM launch failed这个错误
运行tensorflow时出现tensorflow.python.framework.errors_impl.InternalError: Blas GEMM launch failed这个错误,查了一下说是gpu被占用了,从下面这里开始出问题的: ``` 2019-10-17 09:28:49.495166: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1304] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 6382 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1070, pci bus id: 0000:01:00.0, compute capability: 6.1) (60000, 28, 28) (60000, 10) 2019-10-17 09:28:51.275415: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'cublas64_100.dll'; dlerror: cublas64_100.dll not found ``` ![图片说明](https://img-ask.csdn.net/upload/201910/17/1571277238_292620.png) 最后显示的问题: ![图片说明](https://img-ask.csdn.net/upload/201910/17/1571277311_655722.png) 试了一下网上的方法,比如加代码: ``` gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.333) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) ``` 但最后提示: ![图片说明](https://img-ask.csdn.net/upload/201910/17/1571277460_72752.png) 现在不知道要怎么解决了。新手想试下简单的数字识别,步骤也是按教程一步步来的,可能用的版本和教程不一样,我用的是刚下的:2.0tensorflow和以下: ![图片说明](https://img-ask.csdn.net/upload/201910/17/1571277627_439100.png) 不知道会不会有版本问题,现在紧急求助各位大佬,还有没有其它可以尝试的方法。测试程序加法运算可以执行,数字识别图片运行的时候我看了下,GPU最大占有率才0.2%,下面是完整数字图片识别代码: ``` import os import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers, optimizers, datasets os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' #gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.2) #sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.333) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) (x, y), (x_val, y_val) = datasets.mnist.load_data() x = tf.convert_to_tensor(x, dtype=tf.float32) / 255. y = tf.convert_to_tensor(y, dtype=tf.int32) y = tf.one_hot(y, depth=10) print(x.shape, y.shape) train_dataset = tf.data.Dataset.from_tensor_slices((x, y)) train_dataset = train_dataset.batch(200) model = keras.Sequential([ layers.Dense(512, activation='relu'), layers.Dense(256, activation='relu'), layers.Dense(10)]) optimizer = optimizers.SGD(learning_rate=0.001) def train_epoch(epoch): # Step4.loop for step, (x, y) in enumerate(train_dataset): with tf.GradientTape() as tape: # [b, 28, 28] => [b, 784] x = tf.reshape(x, (-1, 28 * 28)) # Step1. compute output # [b, 784] => [b, 10] out = model(x) # Step2. compute loss loss = tf.reduce_sum(tf.square(out - y)) / x.shape[0] # Step3. optimize and update w1, w2, w3, b1, b2, b3 grads = tape.gradient(loss, model.trainable_variables) # w' = w - lr * grad optimizer.apply_gradients(zip(grads, model.trainable_variables)) if step % 100 == 0: print(epoch, step, 'loss:', loss.numpy()) def train(): for epoch in range(30): train_epoch(epoch) if __name__ == '__main__': train() ``` 希望能有人给下建议或解决方法,拜谢!
tensorflow在Ubuntu16.04下训练问题
tensorflow.python.framework.errors_impl.NotFoundError: /opt/tensorflow/bazel-bin/tensorflow/examples/image_retraining/retrain.runfiles/org_tensorflow/tensorflow/contrib/data/python/ops/../../_prefetching_ops.so: undefined symbol: _ZN6google8protobuf8internal26fixed_address_empty_stringB5cxx11E 对于这个问题没有任何想法,希望有好心人能提点建议
训练SSD_mobilenet_v1_coco模型时tensorflow出现以下报错,请问原因是什么 怎么解决?
tensorflow.python.framework.errors_impl.InvalidArgumentError: indices[0] = 0 is not in [0, 0) [[{{node GatherV2_4}}]] [[node IteratorGetNext (defined at C:\Users\lenovo\Anaconda3\lib\site-packages\tensorflow_estimator\python\estimator\util.py:110) ]] ``` ```
但是import tensorflow 会报错:Failed to load the native TensorFlow runtime
C:\ProgramData\Anaconda3\python.exe C:/Users/Administrator/PycharmProjects/untitled3/pppp.py Traceback (most recent call last): File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow.py", line 58, in <module> from tensorflow.python.pywrap_tensorflow_internal import * File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 28, in <module> _pywrap_tensorflow_internal = swig_import_helper() File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 24, in swig_import_helper _mod = imp.load_module('_pywrap_tensorflow_internal', fp, pathname, description) File "C:\ProgramData\Anaconda3\lib\imp.py", line 242, in load_module return load_dynamic(name, filename, file) File "C:\ProgramData\Anaconda3\lib\imp.py", line 342, in load_dynamic return _load(spec) ImportError: DLL load failed with error code -1073741795 During handling of the above exception, another exception occurred: Traceback (most recent call last): File "C:/Users/Administrator/PycharmProjects/untitled3/pppp.py", line 1, in <module> import tensorflow as tf File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\__init__.py", line 24, in <module> from tensorflow.python import pywrap_tensorflow # pylint: disable=unused-import File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\__init__.py", line 49, in <module> from tensorflow.python import pywrap_tensorflow File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow.py", line 74, in <module> raise ImportError(msg) ImportError: Traceback (most recent call last): File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow.py", line 58, in <module> from tensorflow.python.pywrap_tensorflow_internal import * File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 28, in <module> _pywrap_tensorflow_internal = swig_import_helper() File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 24, in swig_import_helper _mod = imp.load_module('_pywrap_tensorflow_internal', fp, pathname, description) File "C:\ProgramData\Anaconda3\lib\imp.py", line 242, in load_module return load_dynamic(name, filename, file) File "C:\ProgramData\Anaconda3\lib\imp.py", line 342, in load_dynamic return _load(spec) ImportError: DLL load failed with error code -1073741795 Failed to load the native TensorFlow runtime. See https://www.tensorflow.org/install/errors for some common reasons and solutions. Include the entire stack trace above this error message when asking for help. Process finished with exit code 1
怎样正确在pycharm运行tensorflow-gpu
我在网上尝试寻找正确安装与运行tensorflow-gpu的方法。 最终卡在了无法导入tensorflow,但是却可以.出联想方法,求助。 ![图片说明](https://img-ask.csdn.net/upload/201909/27/1569546276_565168.png) 全部报错如下: Traceback (most recent call last): File "C:\Users\machenike\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow.py", line 58, in <module> from tensorflow.python.pywrap_tensorflow_internal import * File "C:\Users\machenike\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 28, in <module> _pywrap_tensorflow_internal = swig_import_helper() File "C:\Users\machenike\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 24, in swig_import_helper _mod = imp.load_module('_pywrap_tensorflow_internal', fp, pathname, description) File "C:\Users\machenike\Anaconda3\lib\imp.py", line 242, in load_module return load_dynamic(name, filename, file) File "C:\Users\machenike\Anaconda3\lib\imp.py", line 342, in load_dynamic return _load(spec) ImportError: DLL load failed: 找不到指定的模块。 During handling of the above exception, another exception occurred: Traceback (most recent call last): File "D:/PycharmProjects/DeepLearning2/demo.py", line 1, in <module> import tensorflow File "C:\Users\machenike\Anaconda3\lib\site-packages\tensorflow\__init__.py", line 28, in <module> from tensorflow.python import pywrap_tensorflow # pylint: disable=unused-import File "C:\Users\machenike\Anaconda3\lib\site-packages\tensorflow\python\__init__.py", line 49, in <module> from tensorflow.python import pywrap_tensorflow File "C:\Users\machenike\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow.py", line 74, in <module> raise ImportError(msg) ImportError: Traceback (most recent call last): File "C:\Users\machenike\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow.py", line 58, in <module> from tensorflow.python.pywrap_tensorflow_internal import * File "C:\Users\machenike\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 28, in <module> _pywrap_tensorflow_internal = swig_import_helper() File "C:\Users\machenike\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 24, in swig_import_helper _mod = imp.load_module('_pywrap_tensorflow_internal', fp, pathname, description) File "C:\Users\machenike\Anaconda3\lib\imp.py", line 242, in load_module return load_dynamic(name, filename, file) File "C:\Users\machenike\Anaconda3\lib\imp.py", line 342, in load_dynamic return _load(spec) ImportError: DLL load failed: 找不到指定的模块。 Failed to load the native TensorFlow runtime. See https://www.tensorflow.org/install/errors for some common reasons and solutions. Include the entire stack trace above this error message when asking for help.
tensorflow自己制作mat数据集跑实验出现问题
INFO:tensorflow:Error reported to Coordinator: <class 'tensorflow.python.framework.errors_impl.UnimplementedError'>, Cast float to string is not supported [[Node: Cast = Cast[DstT=DT_STRING, SrcT=DT_FLOAT, _device="/job:localhost/replica:0/task:0/cpu:0"](Cast/x)]] ``` 自己将mat数据贴标签进行实验,出现这种问题,train_batch, train_label_batch分别为float 和int的tensor ```
tensorflow test mnist程序出现报错,求大神指教!!!
错误提示:tensorflow.python.framework.errors_impl.InvalidArgumentError: You must feed a value for placeholder tensor 'Placeholder_1' with dtype float and shape [?,10] [[node Placeholder_1 (defined at e:/python/xuexi/tensorflow/tf5_2_mnist_test.py:10) ]]![图片说明](https://img-ask.csdn.net/upload/201908/06/1565091994_787987.png) 这是按照一个例题做的,已经确认了好多次,数据的type和shape都是没有问题的,不知道为什么还报错
用deeplab v3+训练自己的数据集测试时报错
在用tensorflow的deeplab v3+训练自己的数据集之后,使用eval.py做测试报错: tensorflow.python.framework.errors_impl.InvalidArgumentError: assertion failed: [`predictions` out of bound] [Condition x < y did not hold element-wise:] [x (mean_iou/confusion_matrix/control_dependency_1:0) = ] [0 0 0...] [y (mean_iou/ToInt64_2:0) = ] [11] 不知道有没有人遇到过这种情况?有没有大佬知道这是怎么回事,应该怎么处理?
利用conda install TensorFlow-gpu在win7上conda3.7版本上安装tensorflow后,测试时出现下面的问题
在测试import TensorFlow as tf print('hello'),出现下列问题,请问这是什么原因造成的,如何改? ``` Traceback (most recent call last): File "D:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow.py", line 58, in <module> from tensorflow.python.pywrap_tensorflow_internal import * File "D:\Program Files\JetBrains\PyCharm 2019.1.3\helpers\pydev\_pydev_bundle\pydev_import_hook.py", line 21, in do_import module = self._system_import(name, *args, **kwargs) File "D:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 28, in <module> _pywrap_tensorflow_internal = swig_import_helper() File "D:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 24, in swig_import_helper _mod = imp.load_module('_pywrap_tensorflow_internal', fp, pathname, description) File "D:\ProgramData\Anaconda3\lib\imp.py", line 242, in load_module return load_dynamic(name, filename, file) File "D:\ProgramData\Anaconda3\lib\imp.py", line 342, in load_dynamic return _load(spec) ImportError: DLL load failed: 找不到指定的程序。 During handling of the above exception, another exception occurred: Traceback (most recent call last): File "D:\ProgramData\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py", line 3296, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "<ipython-input-2-d1ce02c95f3b>", line 1, in <module> runfile('C:/Users/jianjiu17/Desktop/deep-learning-from-scratch-master/uittle.py', wdir='C:/Users/jianjiu17/Desktop/deep-learning-from-scratch-master') File "D:\Program Files\JetBrains\PyCharm 2019.1.3\helpers\pydev\_pydev_bundle\pydev_umd.py", line 197, in runfile pydev_imports.execfile(filename, global_vars, local_vars) # execute the script File "D:\Program Files\JetBrains\PyCharm 2019.1.3\helpers\pydev\_pydev_imps\_pydev_execfile.py", line 18, in execfile exec(compile(contents+"\n", file, 'exec'), glob, loc) File "C:/Users/jianjiu17/Desktop/deep-learning-from-scratch-master/uittle.py", line 1, in <module> import tensorflow as tf File "D:\Program Files\JetBrains\PyCharm 2019.1.3\helpers\pydev\_pydev_bundle\pydev_import_hook.py", line 21, in do_import module = self._system_import(name, *args, **kwargs) File "D:\ProgramData\Anaconda3\lib\site-packages\tensorflow\__init__.py", line 24, in <module> from tensorflow.python import pywrap_tensorflow # pylint: disable=unused-import File "D:\Program Files\JetBrains\PyCharm 2019.1.3\helpers\pydev\_pydev_bundle\pydev_import_hook.py", line 21, in do_import module = self._system_import(name, *args, **kwargs) File "D:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\__init__.py", line 49, in <module> from tensorflow.python import pywrap_tensorflow File "D:\Program Files\JetBrains\PyCharm 2019.1.3\helpers\pydev\_pydev_bundle\pydev_import_hook.py", line 21, in do_import module = self._system_import(name, *args, **kwargs) File "D:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow.py", line 74, in <module> raise ImportError(msg) ImportError: Traceback (most recent call last): File "D:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow.py", line 58, in <module> from tensorflow.python.pywrap_tensorflow_internal import * File "D:\Program Files\JetBrains\PyCharm 2019.1.3\helpers\pydev\_pydev_bundle\pydev_import_hook.py", line 21, in do_import module = self._system_import(name, *args, **kwargs) File "D:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 28, in <module> _pywrap_tensorflow_internal = swig_import_helper() File "D:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 24, in swig_import_helper _mod = imp.load_module('_pywrap_tensorflow_internal', fp, pathname, description) File "D:\ProgramData\Anaconda3\lib\imp.py", line 242, in load_module return load_dynamic(name, filename, file) File "D:\ProgramData\Anaconda3\lib\imp.py", line 342, in load_dynamic return _load(spec) ImportError: DLL load failed: 找不到指定的程序。 Failed to load the native TensorFlow runtime. See https://www.tensorflow.org/install/errors for some common reasons and solutions. Include the entire stack trace above this error message when asking for help. ```
创建tensorflow数据集过程中出现的错误
runfile('E:/hnudianshuji/TensorFlow/class4/train_tfrecord.py', wdir='E:/hnudianshuji/TensorFlow/class4') WARNING:tensorflow:From C:\Users\Administrator\Anaconda3\lib\site-packages\tensorflow\python\util\tf_should_use.py:170: initialize_all_variables (from tensorflow.python.ops.variables) is deprecated and will be removed after 2017-03-02. Instructions for updating: Use `tf.global_variables_initializer` instead. (4, 20, 160, 1) Tensor("shuffle_batch:1", shape=(4,), dtype=int32) (4, 20, 160, 1) [0 0 0 0] (4, 20, 160, 1) Tensor("shuffle_batch:1", shape=(4,), dtype=int32) (4, 20, 160, 1) [0 0 0 0] (4, 20, 160, 1) Tensor("shuffle_batch:1", shape=(4,), dtype=int32) (4, 20, 160, 1) [0 0 0 0] (4, 20, 160, 1) Tensor("shuffle_batch:1", shape=(4,), dtype=int32) (4, 20, 160, 1) [0 0 0 0] (4, 20, 160, 1) Tensor("shuffle_batch:1", shape=(4,), dtype=int32) (4, 20, 160, 1) [0 0 0 0] ERROR:tensorflow:Exception in QueueRunner: Enqueue operation was cancelled [[Node: input_producer/input_producer_EnqueueMany = QueueEnqueueManyV2[Tcomponents=[DT_STRING], timeout_ms=-1, _device="/job:localhost/replica:0/task:0/cpu:0"](input_producer, input_producer/RandomShuffle)]] ERROR:tensorflow:Exception in QueueRunner: Enqueue operation was cancelled [[Node: shuffle_batch/random_shuffle_queue_enqueue = QueueEnqueueV2[Tcomponents=[DT_FLOAT, DT_INT32], timeout_ms=-1, _device="/job:localhost/replica:0/task:0/cpu:0"](shuffle_batch/random_shuffle_queue, sub, Cast_1)]] Exception in thread Thread-6: Traceback (most recent call last): File "C:\Users\Administrator\Anaconda3\lib\threading.py", line 916, in _bootstrap_inner self.run() File "C:\Users\Administrator\Anaconda3\lib\threading.py", line 864, in run self._target(*self._args, **self._kwargs) File "C:\Users\Administrator\Anaconda3\lib\site-packages\tensorflow\python\training\queue_runner_impl.py", line 238, in _run enqueue_callable() File "C:\Users\Administrator\Anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 1063, in _single_operation_run target_list_as_strings, status, None) File "C:\Users\Administrator\Anaconda3\lib\contextlib.py", line 89, in __exit__ next(self.gen) File "C:\Users\Administrator\Anaconda3\lib\site-packages\tensorflow\python\framework\errors_impl.py", line 466, in raise_exception_on_not_ok_status pywrap_tensorflow.TF_GetCode(status)) tensorflow.python.framework.errors_impl.CancelledError: Enqueue operation was cancelled [[Node: input_producer/input_producer_EnqueueMany = QueueEnqueueManyV2[Tcomponents=[DT_STRING], timeout_ms=-1, _device="/job:localhost/replica:0/task:0/cpu:0"](input_producer, input_producer/RandomShuffle)]] Exception in thread Thread-7: Traceback (most recent call last): File "C:\Users\Administrator\Anaconda3\lib\threading.py", line 916, in _bootstrap_inner self.run() File "C:\Users\Administrator\Anaconda3\lib\threading.py", line 864, in run self._target(*self._args, **self._kwargs) File "C:\Users\Administrator\Anaconda3\lib\site-packages\tensorflow\python\training\queue_runner_impl.py", line 238, in _run enqueue_callable() File "C:\Users\Administrator\Anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 1063, in _single_operation_run target_list_as_strings, status, None) File "C:\Users\Administrator\Anaconda3\lib\contextlib.py", line 89, in __exit__ next(self.gen) File "C:\Users\Administrator\Anaconda3\lib\site-packages\tensorflow\python\framework\errors_impl.py", line 466, in raise_exception_on_not_ok_status pywrap_tensorflow.TF_GetCode(status)) tensorflow.python.framework.errors_impl.CancelledError: Enqueue operation was cancelled [[Node: shuffle_batch/random_shuffle_queue_enqueue = QueueEnqueueV2[Tcomponents=[DT_FLOAT, DT_INT32], timeout_ms=-1, _device="/job:localhost/replica:0/task:0/cpu:0"](shuffle_batch/random_shuffle_queue, sub, Cast_1)]]
用create_pascal_tf_record.py时候出现的问题!
这是我用create_pascal_tf_record.py出现的错误 ``` D:\tensorflow\models\research\object_detection>python dataset_tools\create_pascal_tf_record.py --label_map=D:\tensorflow\pedestrain_train\data\label_map.pbtxt --data_dir=D:\pedestrain_data --year=VOC2012 --set=train --output_path=D:\pascal_train.record Traceback (most recent call last): File "dataset_tools\create_pascal_tf_record.py", line 185, in <module> tf.app.run() File "C:\anaconda\lib\site-packages\tensorflow\python\platform\app.py", line 125, in run _sys.exit(main(argv)) File "dataset_tools\create_pascal_tf_record.py", line 167, in main examples_list = dataset_util.read_examples_list(examples_path) File "D:\ssd-detection\models-master\research\object_detection\utils\dataset_util.py", line 59, in read_examples_list lines = fid.readlines() File "C:\anaconda\lib\site-packages\tensorflow\python\lib\io\file_io.py", line 188, in readlines self._preread_check() File "C:\anaconda\lib\site-packages\tensorflow\python\lib\io\file_io.py", line 85, in _preread_check compat.as_bytes(self.__name), 1024 * 512, status) File "C:\anaconda\lib\site-packages\tensorflow\python\framework\errors_impl.py", line 519, in __exit__ c_api.TF_GetCode(self.status.status)) tensorflow.python.framework.errors_impl.NotFoundError: NewRandomAccessFile failed to Create/Open: D:\pedestrain_data\VOC2012\ImageSets\Main\aeroplane_train.txt : \u03f5\u0373\udcd5\u04b2\udcbb\udcb5\udcbd\u05b8\udcb6\udca8\udcb5\udcc4\udcce\u013c\udcfe\udca1\udca3 ; No such file or directory ``` 可是我的main文件夹里面是pedestrain_train.txt和pedestrain_val.txt为什么他要去找aeroplane_train.txt这个文件呢
使用Tensorflowjs_converter转换SavedModel时出现init node not in graph错误
最近用tensorflow写了一个简单的神经网络,使用: ``` tf.save_model.simple_save ``` 保存成SavedModel。然后想通过tensorflowjs转换成tfjs模型,命令如下: ``` tensorflowjs_converter --input_format=tf_saved_model --output_format=tfjs_grapg_model --signature_name=serving_default --saved_model_tags=serve ./saved_model ./net_model ``` 转换时出现错误: ``` tensorflow.python.framework.errors_impl.InvalidArgumentError: Failed to import metagraph, check error log for more info. ``` 我查看了上面的error log ,发现错误在这: ``` 2019-04-27 17:46:49.159440: E tensorflow/core/grappler/grappler_item_builder.cc:637] Init node W1/Assign doesn't exist in graph ``` 其中的W1应该是我给hidden layer 1里面权重Weight命的名字。 找了很多地方都没有相关的错误,还望CSDN的各路大佬能帮帮萌新!谢谢! 我的运行环境是:Python3.6 tensorflow-gpu 1.13.1 tensorflowjs 1.0.1 再次感谢各位大佬的帮助!
Tensorflow测试训练styleGAN时报错 No OpKernel was registered to support Op 'NcclAllReduce' with these attrs.
在测试官方StyleGAN。 运行官方与训练模型pretrained_example.py generate_figures.py 没有问题。GPU工作正常。 运行train.py时报错 尝试只用单个GPU训练时没有报错。 NcclAllReduce应该跟多GPU通信有关,不太了解。 InvalidArgumentError (see above for traceback): No OpKernel was registered to support Op 'NcclAllReduce' with these attrs. Registered devices: [CPU,GPU], Registered kernels: <no registered kernels> [[Node: TrainD/SumAcrossGPUs/NcclAllReduce = NcclAllReduce[T=DT_FLOAT, num_devices=2, reduction="sum", shared_name="c112", _device="/device:GPU:0"](GPU0/TrainD_grad/gradients/AddN_160)]] 经过多番google 尝试过 重启 conda install keras-gpu 重新安装tensorflow-gpu==1.10.0(跟官方版本保持一致) ``` …… Building TensorFlow graph... Setting up snapshot image grid... Setting up run dir... Training... Traceback (most recent call last): File "d:\Users\admin\Anaconda3\envs\tfenv\lib\site-packages\tensorflow\python\client\session.py", line 1278, in _do_call return fn(*args) File "d:\Users\admin\Anaconda3\envs\tfenv\lib\site-packages\tensorflow\python\client\session.py", line 1263, in _run_fn options, feed_dict, fetch_list, target_list, run_metadata) File "d:\Users\admin\Anaconda3\envs\tfenv\lib\site-packages\tensorflow\python\client\session.py", line 1350, in _call_tf_sessionrun run_metadata) tensorflow.python.framework.errors_impl.InvalidArgumentError: No OpKernel was registered to support Op 'NcclAllReduce' with these attrs. Registered devices: [CPU,GPU], Registered kernels: <no registered kernels> [[Node: TrainD/SumAcrossGPUs/NcclAllReduce = NcclAllReduce[T=DT_FLOAT, num_devices=2, reduction="sum", shared_name="c112", _device="/device:GPU:0"](GPU0/TrainD_grad/gradients/AddN_160)]] During handling of the above exception, another exception occurred: Traceback (most recent call last): File "train.py", line 191, in <module> main() File "train.py", line 186, in main dnnlib.submit_run(**kwargs) File "E:\MachineLearning\stylegan-master\dnnlib\submission\submit.py", line 290, in submit_run run_wrapper(submit_config) File "E:\MachineLearning\stylegan-master\dnnlib\submission\submit.py", line 242, in run_wrapper util.call_func_by_name(func_name=submit_config.run_func_name, submit_config=submit_config, **submit_config.run_func_kwargs) File "E:\MachineLearning\stylegan-master\dnnlib\util.py", line 257, in call_func_by_name return func_obj(*args, **kwargs) File "E:\MachineLearning\stylegan-master\training\training_loop.py", line 230, in training_loop tflib.run([D_train_op, Gs_update_op], {lod_in: sched.lod, lrate_in: sched.D_lrate, minibatch_in: sched.minibatch}) File "E:\MachineLearning\stylegan-master\dnnlib\tflib\tfutil.py", line 26, in run return tf.get_default_session().run(*args, **kwargs) File "d:\Users\admin\Anaconda3\envs\tfenv\lib\site-packages\tensorflow\python\client\session.py", line 877, in run run_metadata_ptr) File "d:\Users\admin\Anaconda3\envs\tfenv\lib\site-packages\tensorflow\python\client\session.py", line 1100, in _run feed_dict_tensor, options, run_metadata) File "d:\Users\admin\Anaconda3\envs\tfenv\lib\site-packages\tensorflow\python\client\session.py", line 1272, in _do_run run_metadata) File "d:\Users\admin\Anaconda3\envs\tfenv\lib\site-packages\tensorflow\python\client\session.py", line 1291, in _do_call raise type(e)(node_def, op, message) tensorflow.python.framework.errors_impl.InvalidArgumentError: No OpKernel was registered to support Op 'NcclAllReduce' with these attrs. Registered devices: [CPU,GPU], Registered kernels: <no registered kernels> [[Node: TrainD/SumAcrossGPUs/NcclAllReduce = NcclAllReduce[T=DT_FLOAT, num_devices=2, reduction="sum", shared_name="c112", _device="/device:GPU:0"](GPU0/TrainD_grad/gradients/AddN_160)]] Caused by op 'TrainD/SumAcrossGPUs/NcclAllReduce', defined at: File "train.py", line 191, in <module> main() File "train.py", line 186, in main dnnlib.submit_run(**kwargs) File "E:\MachineLearning\stylegan-master\dnnlib\submission\submit.py", line 290, in submit_run run_wrapper(submit_config) File "E:\MachineLearning\stylegan-master\dnnlib\submission\submit.py", line 242, in run_wrapper util.call_func_by_name(func_name=submit_config.run_func_name, submit_config=submit_config, **submit_config.run_func_kwargs) File "E:\MachineLearning\stylegan-master\dnnlib\util.py", line 257, in call_func_by_name return func_obj(*args, **kwargs) File "E:\MachineLearning\stylegan-master\training\training_loop.py", line 185, in training_loop D_train_op = D_opt.apply_updates() File "E:\MachineLearning\stylegan-master\dnnlib\tflib\optimizer.py", line 135, in apply_updates g = nccl_ops.all_sum(g) File "d:\Users\admin\Anaconda3\envs\tfenv\lib\site-packages\tensorflow\contrib\nccl\python\ops\nccl_ops.py", line 49, in all_sum return _apply_all_reduce('sum', tensors) File "d:\Users\admin\Anaconda3\envs\tfenv\lib\site-packages\tensorflow\contrib\nccl\python\ops\nccl_ops.py", line 230, in _apply_all_reduce shared_name=shared_name)) File "d:\Users\admin\Anaconda3\envs\tfenv\lib\site-packages\tensorflow\contrib\nccl\ops\gen_nccl_ops.py", line 59, in nccl_all_reduce num_devices=num_devices, shared_name=shared_name, name=name) File "d:\Users\admin\Anaconda3\envs\tfenv\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 787, in _apply_op_helper op_def=op_def) File "d:\Users\admin\Anaconda3\envs\tfenv\lib\site-packages\tensorflow\python\util\deprecation.py", line 454, in new_func return func(*args, **kwargs) File "d:\Users\admin\Anaconda3\envs\tfenv\lib\site-packages\tensorflow\python\framework\ops.py", line 3156, in create_op op_def=op_def) File "d:\Users\admin\Anaconda3\envs\tfenv\lib\site-packages\tensorflow\python\framework\ops.py", line 1718, in __init__ self._traceback = tf_stack.extract_stack() InvalidArgumentError (see above for traceback): No OpKernel was registered to support Op 'NcclAllReduce' with these attrs. Registered devices: [CPU,GPU], Registered kernels: <no registered kernels> [[Node: TrainD/SumAcrossGPUs/NcclAllReduce = NcclAllReduce[T=DT_FLOAT, num_devices=2, reduction="sum", shared_name="c112", _device="/device:GPU:0"](GPU0/TrainD_grad/gradients/AddN_160)]] ``` ``` #conda list: # Name Version Build Channel _tflow_select 2.1.0 gpu absl-py 0.8.1 pypi_0 pypi alabaster 0.7.12 py36_0 asn1crypto 1.2.0 py36_0 astor 0.8.0 pypi_0 pypi astroid 2.3.2 py36_0 attrs 19.3.0 py_0 babel 2.7.0 py_0 backcall 0.1.0 py36_0 blas 1.0 mkl bleach 3.1.0 py36_0 ca-certificates 2019.10.16 0 certifi 2019.9.11 py36_0 cffi 1.13.1 py36h7a1dbc1_0 chardet 3.0.4 py36_1003 cloudpickle 1.2.2 py_0 colorama 0.4.1 py36_0 cryptography 2.8 py36h7a1dbc1_0 cudatoolkit 9.0 1 cudnn 7.6.4 cuda9.0_0 decorator 4.4.1 py_0 defusedxml 0.6.0 py_0 django 2.2.7 pypi_0 pypi docutils 0.15.2 py36_0 entrypoints 0.3 py36_0 gast 0.3.2 py_0 grpcio 1.25.0 pypi_0 pypi h5py 2.9.0 py36h5e291fa_0 hdf5 1.10.4 h7ebc959_0 icc_rt 2019.0.0 h0cc432a_1 icu 58.2 ha66f8fd_1 idna 2.8 pypi_0 pypi image 1.5.27 pypi_0 pypi imagesize 1.1.0 py36_0 importlib_metadata 0.23 py36_0 intel-openmp 2019.4 245 ipykernel 5.1.3 py36h39e3cac_0 ipython 7.9.0 py36h39e3cac_0 ipython_genutils 0.2.0 py36h3c5d0ee_0 isort 4.3.21 py36_0 jedi 0.15.1 py36_0 jinja2 2.10.3 py_0 jpeg 9b hb83a4c4_2 jsonschema 3.1.1 py36_0 jupyter_client 5.3.4 py36_0 jupyter_core 4.6.1 py36_0 keras-applications 1.0.8 py_0 keras-base 2.2.4 py36_0 keras-gpu 2.2.4 0 keras-preprocessing 1.1.0 py_1 keyring 18.0.0 py36_0 lazy-object-proxy 1.4.3 py36he774522_0 libpng 1.6.37 h2a8f88b_0 libprotobuf 3.9.2 h7bd577a_0 libsodium 1.0.16 h9d3ae62_0 markdown 3.1.1 py36_0 markupsafe 1.1.1 py36he774522_0 mccabe 0.6.1 py36_1 mistune 0.8.4 py36he774522_0 mkl 2019.4 245 mkl-service 2.3.0 py36hb782905_0 mkl_fft 1.0.15 py36h14836fe_0 mkl_random 1.1.0 py36h675688f_0 more-itertools 7.2.0 py36_0 nbconvert 5.6.1 py36_0 nbformat 4.4.0 py36h3a5bc1b_0 numpy 1.17.3 py36h4ceb530_0 numpy-base 1.17.3 py36hc3f5095_0 numpydoc 0.9.1 py_0 openssl 1.1.1d he774522_3 packaging 19.2 py_0 pandoc 2.2.3.2 0 pandocfilters 1.4.2 py36_1 parso 0.5.1 py_0 pickleshare 0.7.5 py36_0 pillow 6.2.1 pypi_0 pypi pip 19.3.1 py36_0 prompt_toolkit 2.0.10 py_0 protobuf 3.10.0 pypi_0 pypi psutil 5.6.3 py36he774522_0 pycodestyle 2.5.0 py36_0 pycparser 2.19 py36_0 pyflakes 2.1.1 py36_0 pygments 2.4.2 py_0 pylint 2.4.3 py36_0 pyopenssl 19.0.0 py36_0 pyparsing 2.4.2 py_0 pyqt 5.9.2 py36h6538335_2 pyreadline 2.1 py36_1 pyrsistent 0.15.4 py36he774522_0 pysocks 1.7.1 py36_0 python 3.6.9 h5500b2f_0 python-dateutil 2.8.1 py_0 pytz 2019.3 py_0 pywin32 223 py36hfa6e2cd_1 pyyaml 5.1.2 py36he774522_0 pyzmq 18.1.0 py36ha925a31_0 qt 5.9.7 vc14h73c81de_0 qtawesome 0.6.0 py_0 qtconsole 4.5.5 py_0 qtpy 1.9.0 py_0 requests 2.22.0 py36_0 rope 0.14.0 py_0 scipy 1.3.1 py36h29ff71c_0 setuptools 39.1.0 pypi_0 pypi sip 4.19.8 py36h6538335_0 six 1.13.0 pypi_0 pypi snowballstemmer 2.0.0 py_0 sphinx 2.2.1 py_0 sphinxcontrib-applehelp 1.0.1 py_0 sphinxcontrib-devhelp 1.0.1 py_0 sphinxcontrib-htmlhelp 1.0.2 py_0 sphinxcontrib-jsmath 1.0.1 py_0 sphinxcontrib-qthelp 1.0.2 py_0 sphinxcontrib-serializinghtml 1.1.3 py_0 spyder 3.3.6 py36_0 spyder-kernels 0.5.2 py36_0 sqlite 3.30.1 he774522_0 sqlparse 0.3.0 pypi_0 pypi tensorboard 1.10.0 py36he025d50_0 tensorflow 1.10.0 gpu_py36h3514669_0 tensorflow-base 1.10.0 gpu_py36h6e53903_0 tensorflow-gpu 1.10.0 pypi_0 pypi termcolor 1.1.0 pypi_0 pypi testpath 0.4.2 py36_0 tornado 6.0.3 py36he774522_0 traitlets 4.3.3 py36_0 typed-ast 1.4.0 py36he774522_0 urllib3 1.25.6 pypi_0 pypi vc 14.1 h0510ff6_4 vs2015_runtime 14.16.27012 hf0eaf9b_0 wcwidth 0.1.7 py36h3d5aa90_0 webencodings 0.5.1 py36_1 werkzeug 0.16.0 py_0 wheel 0.33.6 py36_0 win_inet_pton 1.1.0 py36_0 wincertstore 0.2 py36h7fe50ca_0 wrapt 1.11.2 py36he774522_0 yaml 0.1.7 hc54c509_2 zeromq 4.3.1 h33f27b4_3 zipp 0.6.0 py_0 zlib 1.2.11 h62dcd97_3 ``` 2*RTX2080Ti driver 4.19.67
代码用tensorflow-CPU运行时没有错误,用GPU运行时每次到51%报错
![图片说明](https://img-ask.csdn.net/upload/201908/12/1565613050_565691.png) 51%|████████████████████████████████████████████████████████████████████████████████████████████████████▎ | 199/391 [00:38<00:21, 8.81it/s]2019-08-12 20:20:04.963304: I tensorflow/core/kernels/cuda_solvers.cc:159] Creating CudaSolver handles for stream 0000016EAC1D0A40 2019-08-12 20:20:05.763636: W tensorflow/core/framework/op_kernel.cc:1401] OP_REQUIRES failed at cuda_solvers.cc:260 : Invalid argument: Got info = 85505 for batch index 0, expected info = 0. Debug_info = heevd ** On entry to SGEMM parameter number 10 had an illegal value 2019-08-12 20:20:06.320473: W tensorflow/core/framework/op_kernel.cc:1401] OP_REQUIRES failed at cuda_solvers.cc:260 : Invalid argument: Got info = 5236925 for batch index 0, expected info = 0. Debug_info = heevd 2019-08-12 20:20:06.328931: W tensorflow/core/framework/op_kernel.cc:1401] OP_REQUIRES failed at cuda_solvers.cc:260 : Invalid argument: Got info = 1871 for batch index 0, expected info = 0. Debug_info = heevd 2019-08-12 20:20:06.838588: W tensorflow/core/framework/op_kernel.cc:1401] OP_REQUIRES failed at cuda_solvers.cc:260 : Invalid argument: Got info = 687520 for batch index 0, expected info = 0. Debug_info = heevd 2019-08-12 20:20:06.850771: W tensorflow/core/framework/op_kernel.cc:1401] OP_REQUIRES failed at cuda_solvers.cc:260 : Invalid argument: Got info = 321 for batch index 0, expected info = 0. Debug_info = heevd 2019-08-12 20:20:06.999345: W tensorflow/core/framework/op_kernel.cc:1401] OP_REQUIRES failed at cuda_solvers.cc:260 : Invalid argument: Got info = 42770 for batch index 0, expected info = 0. Debug_info = heevd 2019-08-12 20:20:07.499292: W tensorflow/core/framework/op_kernel.cc:1401] OP_REQUIRES failed at cuda_solvers.cc:260 : Invalid argument: Got info = 1497278 for batch index 0, expected info = 0. Debug_info = heevd 2019-08-12 20:20:07.510245: W tensorflow/core/framework/op_kernel.cc:1401] OP_REQUIRES failed at cuda_solvers.cc:260 : Invalid argument: Got info = 321 for batch index 0, expected info = 0. Debug_info = heevd 2019-08-12 20:20:08.020011: W tensorflow/core/framework/op_kernel.cc:1401] OP_REQUIRES failed at cuda_solvers.cc:260 : Invalid argument: Got info = 256112 for batch index 0, expected info = 0. Debug_info = heevd 2019-08-12 20:20:08.529828: W tensorflow/core/framework/op_kernel.cc:1401] OP_REQUIRES failed at cuda_solvers.cc:260 : Invalid argument: Got info = 341471 for batch index 0, expected info = 0. Debug_info = heevd 2019-08-12 20:20:08.540870: W tensorflow/core/framework/op_kernel.cc:1401] OP_REQUIRES failed at cuda_solvers.cc:260 : Invalid argument: Got info = 16833 for batch index 0, expected info = 0. Debug_info = heevd 2019-08-12 20:20:08.697339: W tensorflow/core/framework/op_kernel.cc:1401] OP_REQUIRES failed at cuda_solvers.cc:260 : Invalid argument: Got info = 1190 for batch index 0, expected info = 0. Debug_info = heevd Traceback (most recent call last): File "D:\softAPP\python\anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 1334, in _do_call return fn(*args) File "D:\softAPP\python\anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 1319, in _run_fn options, feed_dict, fetch_list, target_list, run_metadata) File "D:\softAPP\python\anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 1407, in _call_tf_sessionrun run_metadata) tensorflow.python.framework.errors_impl.InvalidArgumentError: Got info = 85505 for batch index 0, expected info = 0. Debug_info = heevd [[{{node KFAC/SelfAdjointEigV2_10}}]] During handling of the above exception, another exception occurred: Traceback (most recent call last): File "main.py", line 67, in <module> main() File "main.py", line 63, in main trainer.train() File "E:\python代码\noisy-K-FAC\noisy-K-FAC\core\train.py", line 16, in train self.train_epoch() File "E:\python代码\noisy-K-FAC\noisy-K-FAC\core\train.py", line 42, in train_epoch self.sess.run([self.model.inv_update_op, self.model.var_update_op], feed_dict=feed_dict) File "D:\softAPP\python\anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 929, in run run_metadata_ptr) File "D:\softAPP\python\anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 1152, in _run feed_dict_tensor, options, run_metadata) File "D:\softAPP\python\anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 1328, in _do_run run_metadata) File "D:\softAPP\python\anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 1348, in _do_call raise type(e)(node_def, op, message) tensorflow.python.framework.errors_impl.InvalidArgumentError: Got info = 85505 for batch index 0, expected info = 0. Debug_info = heevd [[node KFAC/SelfAdjointEigV2_10 (defined at E:\python代码\noisy-K-FAC\noisy-K-FAC\ops\utils.py:161) ]] Caused by op 'KFAC/SelfAdjointEigV2_10', defined at: File "main.py", line 67, in <module> main() File "main.py", line 60, in main model_ = Model(config, _INPUT_DIM[config.dataset], len(train_loader.dataset)) File "E:\python代码\noisy-K-FAC\noisy-K-FAC\core\model.py", line 21, in __init__ self.init_optim() File "E:\python代码\noisy-K-FAC\noisy-K-FAC\core\model.py", line 70, in init_optim momentum=self.config.momentum) File "E:\python代码\noisy-K-FAC\noisy-K-FAC\ops\optimizer.py", line 66, in __init__ inv_devices=inv_devices) File "E:\python代码\noisy-K-FAC\noisy-K-FAC\ops\estimator.py", line 58, in __init__ setup = self._setup(cov_ema_decay) File "E:\python代码\noisy-K-FAC\noisy-K-FAC\ops\estimator.py", line 108, in _setup inv_updates = {op.name: op for op in self._get_all_inverse_update_ops()} File "E:\python代码\noisy-K-FAC\noisy-K-FAC\ops\estimator.py", line 108, in <dictcomp> inv_updates = {op.name: op for op in self._get_all_inverse_update_ops()} File "E:\python代码\noisy-K-FAC\noisy-K-FAC\ops\estimator.py", line 116, in _get_all_inverse_update_ops for op in factor.make_inverse_update_ops(): File "E:\python代码\noisy-K-FAC\noisy-K-FAC\ops\fisher_factors.py", line 360, in make_inverse_update_ops ops.append(inv.assign(utils.posdef_inv(self._cov, damping))) File "E:\python代码\noisy-K-FAC\noisy-K-FAC\ops\utils.py", line 144, in posdef_inv return posdef_inv_functions[POSDEF_INV_METHOD](tensor, identity, damping) File "E:\python代码\noisy-K-FAC\noisy-K-FAC\ops\utils.py", line 161, in posdef_inv_eig tensor + damping * identity) File "D:\softAPP\python\anaconda3\lib\site-packages\tensorflow\python\ops\linalg_ops.py", line 328, in self_adjoint_eig e, v = gen_linalg_ops.self_adjoint_eig_v2(tensor, compute_v=True, name=name) File "D:\softAPP\python\anaconda3\lib\site-packages\tensorflow\python\ops\gen_linalg_ops.py", line 2016, in self_adjoint_eig_v2 "SelfAdjointEigV2", input=input, compute_v=compute_v, name=name) File "D:\softAPP\python\anaconda3\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 788, in _apply_op_helper op_def=op_def) File "D:\softAPP\python\anaconda3\lib\site-packages\tensorflow\python\util\deprecation.py", line 507, in new_func return func(*args, **kwargs) File "D:\softAPP\python\anaconda3\lib\site-packages\tensorflow\python\framework\ops.py", line 3300, in create_op op_def=op_def) File "D:\softAPP\python\anaconda3\lib\site-packages\tensorflow\python\framework\ops.py", line 1801, in __init__ self._traceback = tf_stack.extract_stack() InvalidArgumentError (see above for traceback): Got info = 85505 for batch index 0, expected info = 0. Debug_info = heevd [[node KFAC/SelfAdjointEigV2_10 (defined at E:\python代码\noisy-K-FAC\noisy-K-FAC\ops\utils.py:161) ]] ``` ```
tensorflow处理图片时的维度不匹配问题
tensorflow处理图片时的维度不匹配问题,如下是报错信息 tensorflow.python.framework.errors_impl.InvalidArgumentError: Shape must be rank 4 but is rank 3 for 'Conv2D' (op: 'Conv2D') with input shapes: [1,1,3], [5,5,3,32]. 源码如下所示: train_data_node=tf.placeholder(tf.float32,shape=(None,IMG_PATCH_SIZE,IMG_PATCH_SIZE,NUM_CHANNEL)) train_label_node=tf.placeholder(tf.float32,shape=(BATCH_SIZE,NUM_LABEL)) train_all_data_node=tf.constant(train_data) def extract_data(): imgs=[] data_list=[] training_size, img_train_array,img_train_map_array= read_train_from_txt_file(train_txt_filename) for i in range(0,training_size): image_filename = img_train_array[i] if os.path.isfile(image_filename): print('Loading:'+ image_filename) img_file = cv.imread(image_filename) img_file=np.array(img_file) imgs.append(img_file) else: print('File' + image_filename + 'does not exist!') num_img = len(imgs) for j in range(num_img): img_patches = img_crop(imgs[j]) for k in range(len(img_patches)): for m in range(len(img_patches[k])): data=img_patches[k][m] data_list.append(data) data_list=np.asarray(data_list) data_list=np.float32(data_list) # return np.asarray(data) return data_list 新手一个,求帮助!!!!!
tensorflow代码用CPU运行时没有错误,用GPU运行时每次到51%报错,网上没有搜到相同的问题
51%|████████████████████████████████████████████████████████████████████████████████████████████████████▎ | 199/391 [00:38<00:21, 8.81it/s]2019-08-12 20:20:04.963304: I tensorflow/core/kernels/cuda_solvers.cc:159] Creating CudaSolver handles for stream 0000016EAC1D0A40 2019-08-12 20:20:05.763636: W tensorflow/core/framework/op_kernel.cc:1401] OP_REQUIRES failed at cuda_solvers.cc:260 : Invalid argument: Got info = 85505 for batch index 0, expected info = 0. Debug_info = heevd ** On entry to SGEMM parameter number 10 had an illegal value 2019-08-12 20:20:06.320473: W tensorflow/core/framework/op_kernel.cc:1401] OP_REQUIRES failed at cuda_solvers.cc:260 : Invalid argument: Got info = 5236925 for batch index 0, expected info = 0. Debug_info = heevd 2019-08-12 20:20:06.328931: W tensorflow/core/framework/op_kernel.cc:1401] OP_REQUIRES failed at cuda_solvers.cc:260 : Invalid argument: Got info = 1871 for batch index 0, expected info = 0. Debug_info = heevd 2019-08-12 20:20:06.838588: W tensorflow/core/framework/op_kernel.cc:1401] OP_REQUIRES failed at cuda_solvers.cc:260 : Invalid argument: Got info = 687520 for batch index 0, expected info = 0. Debug_info = heevd 2019-08-12 20:20:06.850771: W tensorflow/core/framework/op_kernel.cc:1401] OP_REQUIRES failed at cuda_solvers.cc:260 : Invalid argument: Got info = 321 for batch index 0, expected info = 0. Debug_info = heevd 2019-08-12 20:20:06.999345: W tensorflow/core/framework/op_kernel.cc:1401] OP_REQUIRES failed at cuda_solvers.cc:260 : Invalid argument: Got info = 42770 for batch index 0, expected info = 0. Debug_info = heevd 2019-08-12 20:20:07.499292: W tensorflow/core/framework/op_kernel.cc:1401] OP_REQUIRES failed at cuda_solvers.cc:260 : Invalid argument: Got info = 1497278 for batch index 0, expected info = 0. Debug_info = heevd 2019-08-12 20:20:07.510245: W tensorflow/core/framework/op_kernel.cc:1401] OP_REQUIRES failed at cuda_solvers.cc:260 : Invalid argument: Got info = 321 for batch index 0, expected info = 0. Debug_info = heevd 2019-08-12 20:20:08.020011: W tensorflow/core/framework/op_kernel.cc:1401] OP_REQUIRES failed at cuda_solvers.cc:260 : Invalid argument: Got info = 256112 for batch index 0, expected info = 0. Debug_info = heevd 2019-08-12 20:20:08.529828: W tensorflow/core/framework/op_kernel.cc:1401] OP_REQUIRES failed at cuda_solvers.cc:260 : Invalid argument: Got info = 341471 for batch index 0, expected info = 0. Debug_info = heevd 2019-08-12 20:20:08.540870: W tensorflow/core/framework/op_kernel.cc:1401] OP_REQUIRES failed at cuda_solvers.cc:260 : Invalid argument: Got info = 16833 for batch index 0, expected info = 0. Debug_info = heevd 2019-08-12 20:20:08.697339: W tensorflow/core/framework/op_kernel.cc:1401] OP_REQUIRES failed at cuda_solvers.cc:260 : Invalid argument: Got info = 1190 for batch index 0, expected info = 0. Debug_info = heevd Traceback (most recent call last): File "D:\softAPP\python\anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 1334, in _do_call return fn(*args) File "D:\softAPP\python\anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 1319, in _run_fn options, feed_dict, fetch_list, target_list, run_metadata) File "D:\softAPP\python\anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 1407, in _call_tf_sessionrun run_metadata) tensorflow.python.framework.errors_impl.InvalidArgumentError: Got info = 85505 for batch index 0, expected info = 0. Debug_info = heevd [[{{node KFAC/SelfAdjointEigV2_10}}]] During handling of the above exception, another exception occurred: Traceback (most recent call last): File "main.py", line 67, in <module> main() File "main.py", line 63, in main trainer.train() File "E:\python代码\noisy-K-FAC\noisy-K-FAC\core\train.py", line 16, in train self.train_epoch() File "E:\python代码\noisy-K-FAC\noisy-K-FAC\core\train.py", line 42, in train_epoch self.sess.run([self.model.inv_update_op, self.model.var_update_op], feed_dict=feed_dict) File "D:\softAPP\python\anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 929, in run run_metadata_ptr) File "D:\softAPP\python\anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 1152, in _run feed_dict_tensor, options, run_metadata) File "D:\softAPP\python\anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 1328, in _do_run run_metadata) File "D:\softAPP\python\anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 1348, in _do_call raise type(e)(node_def, op, message) tensorflow.python.framework.errors_impl.InvalidArgumentError: Got info = 85505 for batch index 0, expected info = 0. Debug_info = heevd [[node KFAC/SelfAdjointEigV2_10 (defined at E:\python代码\noisy-K-FAC\noisy-K-FAC\ops\utils.py:161) ]] Caused by op 'KFAC/SelfAdjointEigV2_10', defined at: File "main.py", line 67, in <module> main() File "main.py", line 60, in main model_ = Model(config, _INPUT_DIM[config.dataset], len(train_loader.dataset)) File "E:\python代码\noisy-K-FAC\noisy-K-FAC\core\model.py", line 21, in __init__ self.init_optim() File "E:\python代码\noisy-K-FAC\noisy-K-FAC\core\model.py", line 70, in init_optim momentum=self.config.momentum) File "E:\python代码\noisy-K-FAC\noisy-K-FAC\ops\optimizer.py", line 66, in __init__ inv_devices=inv_devices) File "E:\python代码\noisy-K-FAC\noisy-K-FAC\ops\estimator.py", line 58, in __init__ setup = self._setup(cov_ema_decay) File "E:\python代码\noisy-K-FAC\noisy-K-FAC\ops\estimator.py", line 108, in _setup inv_updates = {op.name: op for op in self._get_all_inverse_update_ops()} File "E:\python代码\noisy-K-FAC\noisy-K-FAC\ops\estimator.py", line 108, in <dictcomp> inv_updates = {op.name: op for op in self._get_all_inverse_update_ops()} File "E:\python代码\noisy-K-FAC\noisy-K-FAC\ops\estimator.py", line 116, in _get_all_inverse_update_ops for op in factor.make_inverse_update_ops(): File "E:\python代码\noisy-K-FAC\noisy-K-FAC\ops\fisher_factors.py", line 360, in make_inverse_update_ops ops.append(inv.assign(utils.posdef_inv(self._cov, damping))) File "E:\python代码\noisy-K-FAC\noisy-K-FAC\ops\utils.py", line 144, in posdef_inv return posdef_inv_functions[POSDEF_INV_METHOD](tensor, identity, damping) File "E:\python代码\noisy-K-FAC\noisy-K-FAC\ops\utils.py", line 161, in posdef_inv_eig tensor + damping * identity) File "D:\softAPP\python\anaconda3\lib\site-packages\tensorflow\python\ops\linalg_ops.py", line 328, in self_adjoint_eig e, v = gen_linalg_ops.self_adjoint_eig_v2(tensor, compute_v=True, name=name) File "D:\softAPP\python\anaconda3\lib\site-packages\tensorflow\python\ops\gen_linalg_ops.py", line 2016, in self_adjoint_eig_v2 "SelfAdjointEigV2", input=input, compute_v=compute_v, name=name) File "D:\softAPP\python\anaconda3\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 788, in _apply_op_helper op_def=op_def) File "D:\softAPP\python\anaconda3\lib\site-packages\tensorflow\python\util\deprecation.py", line 507, in new_func return func(*args, **kwargs) File "D:\softAPP\python\anaconda3\lib\site-packages\tensorflow\python\framework\ops.py", line 3300, in create_op op_def=op_def) File "D:\softAPP\python\anaconda3\lib\site-packages\tensorflow\python\framework\ops.py", line 1801, in __init__ self._traceback = tf_stack.extract_stack() InvalidArgumentError (see above for traceback): Got info = 85505 for batch index 0, expected info = 0. Debug_info = heevd [[node KFAC/SelfAdjointEigV2_10 (defined at E:\python代码\noisy-K-FAC\noisy-K-FAC\ops\utils.py:161) ]] ``` ```
《奇巧淫技》系列-python!!每天早上八点自动发送天气预报邮件到QQ邮箱
将代码部署服务器,每日早上定时获取到天气数据,并发送到邮箱。 也可以说是一个小人工智障。 思路可以运用在不同地方,主要介绍的是思路。
Linux(服务器编程):15---两种高效的事件处理模式(reactor模式、proactor模式)
前言 同步I/O模型通常用于实现Reactor模式 异步I/O模型则用于实现Proactor模式 最后我们会使用同步I/O方式模拟出Proactor模式 一、Reactor模式 Reactor模式特点 它要求主线程(I/O处理单元)只负责监听文件描述符上是否有事件发生,有的话就立即将时间通知工作线程(逻辑单元)。除此之外,主线程不做任何其他实质性的工作 读写数据,接受新的连接,以及处...
为什么要学数据结构?
一、前言 在可视化化程序设计的今天,借助于集成开发环境可以很快地生成程序,程序设计不再是计算机专业人员的专利。很多人认为,只要掌握几种开发工具就可以成为编程高手,其实,这是一种误解。要想成为一个专业的开发人员,至少需要以下三个条件: 1) 能够熟练地选择和设计各种数据结构和算法 2) 至少要能够熟练地掌握一门程序设计语言 3) 熟知所涉及的相关应用领域的知识 其中,后两个条件比较容易实现,而第一个...
C语言魔塔游戏
很早就很想写这个,今天终于写完了。 游戏截图: 编译环境: VS2017 游戏需要一些图片,如果有想要的或者对游戏有什么看法的可以加我的QQ 2985486630 讨论,如果暂时没有回应,可以在博客下方留言,到时候我会看到。 下面我来介绍一下游戏的主要功能和实现方式 首先是玩家的定义,使用结构体,这个名字是可以自己改变的 struct gamerole { char n
进程通信方式总结与盘点
​ 进程通信是指进程之间的信息交换。这里需要和进程同步做一下区分,进程同步控制多个进程按一定顺序执行,进程通信是一种手段,而进程同步是目标。从某方面来讲,进程通信可以解决进程同步问题。 ​ 首先回顾下我们前面博文中讲到的信号量机制,为了实现进程的互斥与同步,需要在进程间交换一定的信息,因此信号量机制也可以被归为进程通信的一种方式,但是也被称为低级进程通信,主要原因为: 效率低:一次只可操作少量的...
究竟你适不适合买Mac?
我清晰的记得,刚买的macbook pro回到家,开机后第一件事情,就是上了淘宝网,花了500元钱,找了一个上门维修电脑的师傅,上门给我装了一个windows系统。。。。。。 表砍我。。。 当时买mac的初衷,只是想要个固态硬盘的笔记本,用来运行一些复杂的扑克软件。而看了当时所有的SSD笔记本后,最终决定,还是买个好(xiong)看(da)的。 已经有好几个朋友问我mba怎么样了,所以今天尽量客观
听说了吗?阿里双11作战室竟1根网线都没有
双11不光是购物狂欢节,更是对技术的一次“大考”,对于阿里巴巴企业内部运营的基础保障技术而言,亦是如此。 回溯双11历史,这背后也经历过“小米加步枪”的阶段:作战室从随处是网线,交换机放地上的“一地狼藉”;到如今媲美5G的wifi网速,到现场却看不到一根网线;从当年使用商用AP(无线路由器),让光明顶双11当天断网一分钟,到全部使用阿里自研AP……阿里巴巴企业智能事业部工程师们提供的基础保障...
在阿里,40岁的奋斗姿势
在阿里,40岁的奋斗姿势 在阿里,什么样的年纪可以称为老呢?35岁? 在云网络,有这样一群人,他们的平均年龄接近40,却刚刚开辟职业生涯的第二战场。 他们的奋斗姿势是什么样的呢? 洛神赋 “翩若惊鸿,婉若游龙。荣曜秋菊,华茂春松。髣髴兮若轻云之蔽月,飘飖兮若流风之回雪。远而望之,皎若太阳升朝霞;迫而察之,灼若芙蕖出渌波。” 爱洛神,爱阿里云 2018年,阿里云网络产品部门启动洛神2.0升...
关于研发效能提升的思考
研发效能提升是最近比较热门的一个话题,本人根据这几年的工作心得,做了一些思考总结,由于个人深度有限,暂且抛转引入。 三要素 任何生产力的提升都离不开这三个因素:人、流程和工具,少了其中任何一个因素都无法实现。 人,即思想,也就是古人说的“道”,道不同不相为谋,是制高点,也是高层建筑的基石。 流程,即方法,也是古人说的“法”。研发效能的提升,也就是要提高投入产出比,既要增加产出,也要减...
Python爬虫爬取淘宝,京东商品信息
小编是一个理科生,不善长说一些废话。简单介绍下原理然后直接上代码。 使用的工具(Python+pycharm2019.3+selenium+xpath+chromedriver)其中要使用pycharm也可以私聊我selenium是一个框架可以通过pip下载 pip install selenium -i https://pypi.tuna.tsinghua.edu.cn/simple/ 
阿里程序员写了一个新手都写不出的低级bug,被骂惨了。
这种新手都不会范的错,居然被一个工作好几年的小伙子写出来,差点被当场开除了。
Java工作4年来应聘要16K最后没要,细节如下。。。
前奏: 今天2B哥和大家分享一位前几天面试的一位应聘者,工作4年26岁,统招本科。 以下就是他的简历和面试情况。 基本情况: 专业技能: 1、&nbsp;熟悉Sping了解SpringMVC、SpringBoot、Mybatis等框架、了解SpringCloud微服务 2、&nbsp;熟悉常用项目管理工具:SVN、GIT、MAVEN、Jenkins 3、&nbsp;熟悉Nginx、tomca
2020年,冯唐49岁:我给20、30岁IT职场年轻人的建议
点击“技术领导力”关注∆  每天早上8:30推送 作者| Mr.K   编辑| Emma 来源| 技术领导力(ID:jishulingdaoli) 前天的推文《冯唐:职场人35岁以后,方法论比经验重要》,收到了不少读者的反馈,觉得挺受启发。其实,冯唐写了不少关于职场方面的文章,都挺不错的。可惜大家只记住了“春风十里不如你”、“如何避免成为油腻腻的中年人”等不那么正经的文章。 本文整理了冯
程序员该看的几部电影
##1、骇客帝国(1999) 概念:在线/离线,递归,循环,矩阵等 剧情简介: 不久的将来,网络黑客尼奥对这个看似正常的现实世界产生了怀疑。 他结识了黑客崔妮蒂,并见到了黑客组织的首领墨菲斯。 墨菲斯告诉他,现实世界其实是由一个名叫“母体”的计算机人工智能系统控制,人们就像他们饲养的动物,没有自由和思想,而尼奥就是能够拯救人类的救世主。 可是,救赎之路从来都不会一帆风顺,到底哪里才是真实的世界?
入职阿里5年,他如何破解“技术债”?
简介: 作者 | 都铎 作为一名技术人,你常常会听到这样的话: “先快速上线” “没时间改” “再缓一缓吧” “以后再解决” “先用临时方案处理” …… 当你埋下的坑越来越多,不知道哪天哪位同学就会踩上一颗雷。特别赞同“人最大的恐惧就是未知,当技术债可说不可见的时候,才是最让人不想解决的时候。” 作为一个程序员,我们反对复制粘贴,但是我们经常会见到相似的代码,相同的二方包,甚至整个代码...
Python绘图,圣诞树,花,爱心 | Turtle篇
每周每日,分享Python实战代码,入门资料,进阶资料,基础语法,爬虫,数据分析,web网站,机器学习,深度学习等等。 公众号回复【进群】沟通交流吧,QQ扫码进群学习吧 微信群 QQ群 1.画圣诞树 import turtle screen = turtle.Screen() screen.setup(800,600) circle = turtle.Turtle()...
作为一个程序员,CPU的这些硬核知识你必须会!
CPU对每个程序员来说,是个既熟悉又陌生的东西? 如果你只知道CPU是中央处理器的话,那可能对你并没有什么用,那么作为程序员的我们,必须要搞懂的就是CPU这家伙是如何运行的,尤其要搞懂它里面的寄存器是怎么一回事,因为这将让你从底层明白程序的运行机制。 随我一起,来好好认识下CPU这货吧 把CPU掰开来看 对于CPU来说,我们首先就要搞明白它是怎么回事,也就是它的内部构造,当然,CPU那么牛的一个东
破14亿,Python分析我国存在哪些人口危机!
2020年1月17日,国家统计局发布了2019年国民经济报告,报告中指出我国人口突破14亿。 猪哥的朋友圈被14亿人口刷屏,但是很多人并没有看到我国复杂的人口问题:老龄化、男女比例失衡、生育率下降、人口红利下降等。 今天我们就来分析一下我们国家的人口数据吧! 一、背景 1.人口突破14亿 2020年1月17日,国家统计局发布了 2019年国民经济报告 ,报告中指出:年末中国大陆总人口(包括31个
在家远程办公效率低?那你一定要收好这个「在家办公」神器!
相信大家都已经收到国务院延长春节假期的消息,接下来,在家远程办公可能将会持续一段时间。 但是问题来了。远程办公不是人在电脑前就当坐班了,相反,对于沟通效率,文件协作,以及信息安全都有着极高的要求。有着非常多的挑战,比如: 1在异地互相不见面的会议上,如何提高沟通效率? 2文件之间的来往反馈如何做到及时性?如何保证信息安全? 3如何规划安排每天工作,以及如何进行成果验收? ......
作为一个程序员,内存和磁盘的这些事情,你不得不知道啊!!!
截止目前,我已经分享了如下几篇文章: 一个程序在计算机中是如何运行的?超级干货!!! 作为一个程序员,CPU的这些硬核知识你必须会! 作为一个程序员,内存的这些硬核知识你必须懂! 这些知识可以说是我们之前都不太重视的基础知识,可能大家在上大学的时候都学习过了,但是嘞,当时由于老师讲解的没那么有趣,又加上这些知识本身就比较枯燥,所以嘞,大家当初几乎等于没学。 再说啦,学习这些,也看不出来有什么用啊!
2020年的1月,我辞掉了我的第一份工作
其实,这篇文章,我应该早点写的,毕竟现在已经2月份了。不过一些其它原因,或者是我的惰性、还有一些迷茫的念头,让自己迟迟没有试着写一点东西,记录下,或者说是总结下自己前3年的工作上的经历、学习的过程。 我自己知道的,在写自己的博客方面,我的文笔很一般,非技术类的文章不想去写;另外我又是一个还比较热衷于技术的人,而平常复杂一点的东西,如果想写文章写的清楚点,是需要足够...
别低估自己的直觉,也别高估自己的智商
所有群全部吵翻天,朋友圈全部沦陷,公众号疯狂转发。这两周没怎么发原创,只发新闻,可能有人注意到了。我不是懒,是文章写了却没发,因为大家的关注力始终在这次的疫情上面,发了也没人看。当然,我...
Java坑人面试题系列: 包装类(中级难度)
Java Magazine上面有一个专门坑人的面试题系列: https://blogs.oracle.com/javamagazine/quiz-2。 这些问题的设计宗旨,主要是测试面试者对Java语言的了解程度,而不是为了用弯弯绕绕的手段把面试者搞蒙。 如果你看过往期的问题,就会发现每一个都不简单。 这些试题模拟了认证考试中的一些难题。 而 “中级(intermediate)” 和 “高级(ad
深度学习入门笔记(十八):卷积神经网络(一)
欢迎关注WX公众号:【程序员管小亮】 专栏——深度学习入门笔记 声明 1)该文章整理自网上的大牛和机器学习专家无私奉献的资料,具体引用的资料请看参考文献。 2)本文仅供学术交流,非商用。所以每一部分具体的参考资料并没有详细对应。如果某部分不小心侵犯了大家的利益,还望海涵,并联系博主删除。 3)博主才疏学浅,文中如有不当之处,请各位指出,共同进步,谢谢。 4)此属于第一版本,若有错误,还需继续修正与...
这个世界上人真的分三六九等,你信吗?
偶然间,在知乎上看到一个问题 一时间,勾起了我深深的回忆。 以前在厂里打过两次工,做过家教,干过辅导班,做过中介。零下几度的晚上,贴过广告,满脸、满手地长冻疮。 再回首那段岁月,虽然苦,但让我学会了坚持和忍耐。让我明白了,在这个世界上,无论环境多么的恶劣,只要心存希望,星星之火,亦可燎原。 下文是原回答,希望能对你能有所启发。 如果我说,这个世界上人真的分三六九等,...
节后首个工作日,企业们集体开晨会让钉钉挂了
By 超神经场景描述:昨天 2 月 3 日,是大部分城市号召远程工作的第一天,全国有接近 2 亿人在家开始远程办公,钉钉上也有超过 1000 万家企业活跃起来。关键词:十一出行 人脸...
Java基础知识点梳理
Java基础知识点梳理 摘要: 虽然已经在实际工作中经常与java打交道,但是一直没系统地对java这门语言进行梳理和总结,掌握的知识也比较零散。恰好利用这段时间重新认识下java,并对一些常见的语法和知识点做个总结与回顾,一方面为了加深印象,方便后面查阅,一方面为了学好java打下基础。 Java简介 java语言于1995年正式推出,最开始被命名为Oak语言,由James Gosling(詹姆
2020年全新Java学习路线图,含配套视频,学完即为中级Java程序员!!
新的一年来临,突如其来的疫情打破了平静的生活! 在家的你是否很无聊,如果无聊就来学习吧! 世上只有一种投资只赚不赔,那就是学习!!! 传智播客于2020年升级了Java学习线路图,硬核升级,免费放送! 学完你就是中级程序员,能更快一步找到工作! 一、Java基础 JavaSE基础是Java中级程序员的起点,是帮助你从小白到懂得编程的必经之路。 在Java基础板块中有6个子模块的学
B 站上有哪些很好的学习资源?
哇说起B站,在小九眼里就是宝藏般的存在,放年假宅在家时一天刷6、7个小时不在话下,更别提今年的跨年晚会,我简直是跪着看完的!! 最早大家聚在在B站是为了追番,再后来我在上面刷欧美新歌和漂亮小姐姐的舞蹈视频,最近两年我和周围的朋友们已经把B站当作学习教室了,而且学习成本还免费,真是个励志的好平台ヽ(.◕ฺˇд ˇ◕ฺ;)ノ 下面我们就来盘点一下B站上优质的学习资源: 综合类 Oeasy: 综合
你也能看懂的:蒙特卡罗方法
蒙特卡罗方法,也称统计模拟方法,是1940年代中期由于科学技术的发展和电子计算机的发明,而提出的一种以概率统计理论为指导的数值计算方法。是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法 蒙特卡罗方法可以粗略地分成两类:一类是所求解的问题本身具有内在的随机性,借助计算机的运算能力可以直接模拟这种随机的过程。另一种类型是所求解问题可以转化为某种随机分布的特征数,比如随机事件出现的概率,或...
如何优雅地打印一个Java对象?
你好呀,我是沉默王二,一个和黄家驹一样身高,和刘德华一样颜值的程序员。虽然已经写了十多年的 Java 代码,但仍然觉得自己是个菜鸟(请允许我惭愧一下)。 在一个月黑风高的夜晚,我思前想后,觉得再也不能这么蹉跎下去了。于是痛下决心,准备通过输出的方式倒逼输入,以此来修炼自己的内功,从而进阶成为一名真正意义上的大神。与此同时,希望这些文章能够帮助到更多的读者,让大家在学习的路上不再寂寞、空虚和冷。 ...
雷火神山直播超两亿,Web播放器事件监听是怎么实现的?
Web播放器解决了在手机浏览器和PC浏览器上播放音视频数据的问题,让视音频内容可以不依赖用户安装App,就能进行播放以及在社交平台进行传播。在视频业务大数据平台中,播放数据的统计分析非常重要,所以Web播放器在使用过程中,需要对其内部的数据进行收集并上报至服务端,此时,就需要对发生在其内部的一些播放行为进行事件监听。 那么Web播放器事件监听是怎么实现的呢? 01 监听事件明细表 名...
JAVA后端面试《Spring》
Spring1.Spring是什么?有什么好处?2.IOC是什么?有什么好处?具体过程?3.DI是什么?4.IOC和DI的关系?5.bean标签的属性有哪些?6.IOC创建对象有哪几种方式?7.Spring是如何实现IOC的?也就是如何创建对象的? 1.Spring是什么?有什么好处? 概念: SPring是一个支持控制反转(IOC)和面向切面编程(AOP)的容器框架。 好处: 两降低&gt;&...
相关热词 c# 数组类型 泛型约束 c#的赛狗日程序 c# 传递数组 可变参数 c# 生成存储过程 c# list 补集 c#获得所有窗体 c# 当前秒数转成年月日 c#中的枚举 c# 计算校验和 连续随机数不重复c#
立即提问