CO10 2023-02-26 18:09 采纳率: 66.7%

遗传算法求解应急物流中心选址问题

• 写回答

5条回答默认 最新

• CodeBytes 2023-02-27 11:07
关注

该回答引用ChatGPT

按照你的要求修的，请测试

``````clc
clear
close all

% 常量定义
MAX_gen = 4000;           % 最大迭代步数
center.Station = [31708.622,7772.865;31705.726,7766.996;31730.340,7771.543;31709.847,7799.784;31702.607,7775.014;31700.937,7774.105];
center.chubei = [5000, 5000, 5000, 5000, 5000, 5000];
cost.construction = 2500 * 10000; % 元
cost.storage = 100;
P = 0.1; % 发生灾害的概率

% 车辆和无人机的运输速度和单位成本
vehicle_speed = 60; % km/h
vehicle_cost = 5; % 元/每单位资源/km
drone_speed = 72; % km/h
drone_cost = 7; % 元/每单位资源/km

% 需求点及其需求量
requirement.Station = [31699.8,7774.1; 31739.9,7767.4; 31702.0,7775.7; 31749.9,7777.4; 31733.2,7789.7; 31688.6,7802.1; 31710.9,7800.5; 31688.6,7823.6; 31767.7,7812.8; 31667.5,7769.1];
requirement.need = [670, 800, 800, 950, 3010, 800, 2560, 1320, 1060, 950];

% 计算车辆和无人机运输距离
vehicle_indices = 1:6;
drone_indices = 7:10;
vehicle_distances = pdist2(center.Station(vehicle_indices, :), requirement.Station);
drone_distances = pdist2(center.Station(drone_indices, :), requirement.Station);

% 初始化种群
pop_length = size(requirement.Station, 1);
pop_num = 100;
pop_choose = size(center.Station, 1);
Pcc = 0.8; % 交叉概率
Pmm = 0.05; % 变异概率
popus = init(pop_length, pop_num, pop_choose);

% 迭代优化
for gen = 1:MAX_gen
sprintf('迭代次数%d', gen)
for i = 1:size(popus, 1)
% 计算种群个体的适应度
f = fit(popus, center, requirement, cost, P);

% 更新最优解
if min(f) <= best.min_f
best.min_f = min(f);
[re, index] = min(f);
best.jieguo = popus{index(1)};
best.popus = popus;
else
popus = best.popus;
end
PPP{gen} = popus;
popus = choose(popus, f, Pcc, Pmm, center);

% 将种群中每个个体分配到车辆或无人机
vehicle_assignments = zeros(size(popus));
drone_assignments = zeros(size(popus));
for j = 1:size(popus, 1)
vehicle_indices = find(popus{j} <= 6);
drone_indices = find(popus{j} > 6);
vehicle_distance = sum(vehicle_distances(vehicle_indices, j));
drone_distance = sum(drone_distances(drone_indices, j));
vehicle_time = vehicle_distance / vehicle_speed;
drone_time = drone_distance / drone_speed;
vehicle_cost_total = sum(vehicle_cost * requirement.need(vehicle_indices) * vehicle_distances(vehicle_indices, j));
drone_cost_total = sum(drone_cost * requirement.need(drone_indices) * drone_distances(drone_indices, j));
if vehicle_time + drone_time <= 24 && vehicle_cost_total + drone_cost_total <= cost.construction
vehicle_assignments(j, vehicle_indices) = 1;
drone_assignments(j, drone_indices) = 1;
end
end

% 输出方案
for j = 1:size(vehicle_assignments, 1)
vehicle_indices = find(vehicle_assignments(j, :));
drone_indices = find(drone_assignments(j, :));
if ~isempty(vehicle_indices) && ~isempty(drone_indices)
fprintf('方案 %d: 候选点 %d 送达需求点 %s（车辆运输）和 %s（无人机运输）\n', j, i, num2str(vehicle_indices), num2str(drone_indices));
elseif ~isempty(vehicle_indices)
fprintf('方案 %d: 候选点 %d 送达需求点 %s（车辆运输）\n', j, i, num2str(vehicle_indices));
elseif ~isempty(drone_indices)
fprintf('方案 %d: 候选点 %d 送达需求点 %s（无人机运输）\n', j, i, num2str(drone_indices));
else
fprintf('方案 %d: 候选点 %d 未选取任何需求点\n', j, i);
end
end
end
end

``````
本回答被题主选为最佳回答 , 对您是否有帮助呢?
评论

• 系统已结题 3月7日
• 已采纳回答 2月27日
• 创建了问题 2月26日

悬赏问题

• ¥15 学校优化算法sbo和蚁群算法怎么结合
• ¥20 Apache poi使用问题
• ¥21 matlab怎么求时域信号的二阶导数
• ¥15 判断两个表是否完全相同
• ¥15 java map类型数据格式，如何快速通过前缀匹配元素
• ¥15 stc12c5a60s2、QMC5883L、LCD1602组合测量磁场所需程序
• ¥20 Win11测试yolov4，“找不到nvcuda.dll”怎么办？