参考GPT和自己的思路,可以使用Elasticsearch的function_score查询来实现这个需求,function_score查询可以通过将文档的_score与用户定义的函数结果相结合来重新计算文档的_score,从而影响排序。在这个需求中,我们可以使用function_score查询来重新计算文档的_score,以根据用户的角色和价格选择适当的价格进行排序。
以下是一个可能的查询示例,它使用function_score查询和nested聚合来实现上述需求:
{
"query": {
"function_score": {
"query": {
"match_all": {}
},
"functions": [
{
"filter": {
"nested": {
"path": "unitPriceStrategyList",
"query": {
"bool": {
"must": [
{
"term": {
"unitPriceStrategyList.isEnable": true
}
},
{
"nested": {
"path": "unitPriceStrategyList.commodityMemberList",
"query": {
"bool": {
"must": [
{
"term": {
"unitPriceStrategyList.commodityMemberList.memberId": 157
}
},
{
"term": {
"unitPriceStrategyList.commodityMemberList.memberRoleId": 8
}
}
]
}
}
}
}
]
}
}
}
},
"weight": 2
},
{
"filter": {
"nested": {
"path": "unitPriceStrategyList",
"query": {
"bool": {
"must": [
{
"term": {
"unitPriceStrategyList.isEnable": true
}
},
{
"nested": {
"path": "unitPriceStrategyList.commodityMemberList",
"query": {
"bool": {
"must": [
{
"term": {
"unitPriceStrategyList.commodityMemberList.memberId": 152
}
},
{
"term": {
"unitPriceStrategyList.commodityMemberList.memberRoleId": 8
}
}
]
}
}
}
}
]
}
}
}
},
"weight": 1
}
],
"score_mode": "sum",
"boost_mode": "multiply"
}
},
"sort": [
{
"_score": {
"order": "desc"
}
},
{
"price": {
"order": "asc"
}
}
],
"aggs": {
"prices": {
"nested": {
"path": "unitPriceStrategyList"
},
"aggs": {
"price": {
"min": {
"script": "doc['price'].value"
}
}
}
}
}
}
该查询包括以下组件:
一个function_score查询,其中包括两个函数。第一个函数使用nested查询和bool查询来匹配适当的价格,并使用较高的权重来增加该价格的影响力。第二个函数使用相同的查询来匹配次佳价格,并使用较低的权重增加其影响力。两个函数的结果将相乘以影响排序顺序。
一个排序,首先按照匹配的价格降序排序,然后按照价格是否匹配以及价格值升序排序。这将使匹配的价格始终排在非匹配价格的前面,并按照价格值升序排序。
下面是一个可能的Elasticsearch查询示例,假设当前登录用户的memberId为157,memberRoleId为8:
{
"query": {
"function_score": {
"query": {
"bool": {
"should": [
{
"nested": {
"path": "unitPriceStrategyList",
"score_mode": "sum",
"query": {
"bool": {
"must": [
{
"range": {
"unitPriceStrategyList.memberPrice": {
"lte": 10000
}
}
},
{
"nested": {
"path": "unitPriceStrategyList.commodityMemberList",
"query": {
"bool": {
"must": [
{
"terms": {
"unitPriceStrategyList.commodityMemberList.memberId": [
157
]
}
},
{
"terms": {
"unitPriceStrategyList.commodityMemberList.memberRoleId": [
8
]
}
}
]
}
}
}
}
]
}
},
"boost_factor": 2
}
},
{
"nested": {
"path": "unitPriceStrategyList",
"score_mode": "sum",
"query": {
"bool": {
"must": [
{
"range": {
"unitPriceStrategyList.memberPrice": {
"lte": 10000
}
}
},
{
"nested": {
"path": "unitPriceStrategyList.commodityMemberList",
"query": {
"bool": {
"must": [
{
"terms": {
"unitPriceStrategyList.commodityMemberList.memberId": [
152
]
}
},
{
"terms": {
"unitPriceStrategyList.commodityMemberList.memberRoleId": [
8
]
}
}
]
}
}
}
}
]
}
},
"boost_factor": 0.5
}
}
]
}
},
"functions": [
{
"field_value_factor": {
"field": "unitPriceStrategyList.memberPrice",
"modifier": "log1p",
"factor": 2
}
}
],
"score_mode": "multiply"
}
},
"sort": [
{
"_score": {
"order": "desc"
}
},
{
"price": {
"order": "asc"
}
}
]
}
在这个查询中,我们添加了一个嵌套查询,用于匹配次佳价格。我们使用相同的嵌套路径和布尔查询来匹配 memberRoleId=8 和 memberId=152 的价格。我们使用了一个较低的 boost_factor 来减小次佳价格的影响力。
最后,我们将两个函数的结果相乘以影响排序顺序,然后使用 _score 和价格字段进行排序。
希望这可以帮助你解决你的问题!