能否利用自动机器学习技术实现对逻辑回归的调参呢?比如autogluon或者flaml。或者有什么自动的方法实现对逻辑回归模型的优化,Hyperopt也行。能否提供一个简单的代码进行参考?
6条回答 默认 最新
- DEMAXIYAZHENGYI 2023-03-15 10:01关注
from hyperopt import fmin, tpe, hp, Trials from sklearn.linear_model import LogisticRegression from sklearn.datasets import load_breast_cancer from sklearn.model_selection import cross_val_score from sklearn.metrics import accuracy_score from sklearn.datasets import make_classification # 加载数据集 data = load_breast_cancer() X = data.data y = data.target # 定义超参数搜索空间 space = { 'C': hp.loguniform('C', -5, 5), 'fit_intercept': hp.choice('fit_intercept', [True, False]), 'solver': hp.choice('solver', ['newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga']) } # 定义目标函数 def objective(params): X, y = make_classification(n_features=10, random_state=42) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) model = LogisticRegression(**params) model.fit(X_train, y_train) y_pred = model.predict(X_test) score = accuracy_score(y_test, y_pred) return -score # 使用Hyperopt进行自动调参 best = fmin(objective, space, algo=tpe.suggest, max_evals=100) print(best)
本回答被题主选为最佳回答 , 对您是否有帮助呢?解决 无用评论 打赏 举报