使用LSTM多变量时间预测模型,实现对海洋中S、T浓度预测,在已经分好的训练集中进行超参数搜索,获取最优参数进行数据预测,数据来源:http://mds.nmdis.org.cn/pages/dataViewDetail.html?dataSetId=18
import os
import pandas as pd
#import re
path = r"C:\Users\Asus\Desktop\毕设\data\new" # 读取csv文件目录路径
# listdir()--返回path指定 的 文件夹中包含的文件或者文件夹名字 的 列表
FileNames = os.listdir(path)# 因此Filename是一个列表
df = []
for fn in FileNames:
fullfilename = os.path.join(path, fn)
df.append(pd.read_csv(fullfilename,encoding='utf-8',index_col = None))
data = pd.concat(df)
data=data[['Station', 'date', 'lat', 'lon', 'SampleDepth','T', 'S']]
data["date"] = pd.to_datetime(data["date"], format='%m/%d/%Y')
group = data.groupby(['Station'])
SAT=data['Station'].value_counts()
n_SAT=pd.DataFrame(SAT)
n_SAT=n_SAT[n_SAT['Station']>=100]
n_SAT['counts']=n_SAT['Station']
n_SAT['Station'] = n_SAT.index
n_SAT
n_data=[]
for i in n_SAT['Station']:
n_data.append(data.loc[data["Station"]==i])
data0 = pd.concat(n_data)
a = data0[['lat','lon']]
data0['location']=a.apply(lambda x: str(x['lat'])+" "+str(x['lon']),axis=1)
#准备数据
#T_data = data0[[ 'date', 'location','SampleDepth','T']]
#S_data = data0[[ 'date', 'location','SampleDepth','S']]
#T_data = T_data.groupby('date').mean()
data0 =data0.sort_values(by='date')
b = data0.groupby(['date','location']).mean()
b['indexs']=b.index
ls = list(b['indexs'])
bd = []
bl = []
for i in range(0,len(ls)):
d = ls[i]
for j in range(0,len(d)):
if j == 0:
n = str(d[j])
bd.append(n.split(' ')[0])
else:
bl.append(d[j])
b['location']=bl
b['date']=bd
T_data = b[[ 'date', 'lat','lon','SampleDepth','T']]
T_data= T_data.set_index('date')