Moncel 2023-03-15 10:07 采纳率: 86.7%
浏览 102
已结题

决策树的代码实现报错不能运行是什么原因

决策树的代码实现报错不能运行是什么原因
代码应该是没有问题的直接从网上扒的
python的版本是3.10
matplotlib的版本是3.6.2

C:\Users\Moncel\Desktop\JupyterTest\Resources\11-DTree\DTree\decisiontree\DecisionTree.py:162: MatplotlibDeprecationWarning: Support for FigureCanvases without a required_interactive_framework attribute was deprecated in Matplotlib 3.6 and will be removed two minor releases later.
  fig = plt.figure(1, facecolor='white')                                                    #创建fig
Traceback (most recent call last):
  File "C:\Users\Moncel\Desktop\JupyterTest\Resources\11-DTree\DTree\decisiontree\DecisionTree.py", line 179, in <module>
    createPlot(myTree)
  File "C:\Users\Moncel\Desktop\JupyterTest\Resources\11-DTree\DTree\decisiontree\DecisionTree.py", line 169, in createPlot
    plotTree(inTree, (0.5,1.0), '')                                                            #绘制决策树
  File "C:\Users\Moncel\Desktop\JupyterTest\Resources\11-DTree\DTree\decisiontree\DecisionTree.py", line 148, in plotTree
    plotNode(firstStr, cntrPt, parentPt, decisionNode)
  File "C:\Users\Moncel\Desktop\JupyterTest\Resources\11-DTree\DTree\decisiontree\DecisionTree.py", line 129, in plotNode
    createPlot.ax1.annotate(nodeTxt, xy=parentPt,  xycoords='axes fraction',
  File "D:\AILearning\Python3.10.4\lib\site-packages\matplotlib\axes\_axes.py", line 688, in annotate
    a = mtext.Annotation(text, xy, xytext=xytext, xycoords=xycoords,
  File "D:\AILearning\Python3.10.4\lib\site-packages\matplotlib\text.py", line 1844, in __init__
    Text.__init__(self, x, y, text, **kwargs)
  File "D:\AILearning\Python3.10.4\lib\site-packages\matplotlib\_api\deprecation.py", line 454, in wrapper
    return func(*args, **kwargs)
  File "D:\AILearning\Python3.10.4\lib\site-packages\matplotlib\text.py", line 186, in __init__
    self.update(kwargs)
  File "D:\AILearning\Python3.10.4\lib\site-packages\matplotlib\text.py", line 198, in update
    super().update(kwargs)
  File "D:\AILearning\Python3.10.4\lib\site-packages\matplotlib\artist.py", line 1176, in update
    return self._update_props(
  File "D:\AILearning\Python3.10.4\lib\site-packages\matplotlib\artist.py", line 1160, in _update_props
    raise AttributeError(
AttributeError: 'Annotation' object has no property 'FontProperties'



# -*- coding: UTF-8 -*-
from matplotlib.font_manager import FontProperties
import matplotlib.pyplot as plt
from math import log
import operator



def createDataSet():
    dataSet = [[0, 0, 0, 0, 'no'],
            [0, 0, 0, 1, 'no'],
            [0, 1, 0, 1, 'yes'],
            [0, 1, 1, 0, 'yes'],
            [0, 0, 0, 0, 'no'],
            [1, 0, 0, 0, 'no'],
            [1, 0, 0, 1, 'no'],
            [1, 1, 1, 1, 'yes'],
            [1, 0, 1, 2, 'yes'],
            [1, 0, 1, 2, 'yes'],
            [2, 0, 1, 2, 'yes'],
            [2, 0, 1, 1, 'yes'],
            [2, 1, 0, 1, 'yes'],
            [2, 1, 0, 2, 'yes'],
            [2, 0, 0, 0, 'no']]
    labels = ['F1-AGE', 'F2-WORK', 'F3-HOME', 'F4-LOAN']
    return dataSet, labels


def createTree(dataset,labels,featLabels):
    classList = [example[-1] for example in dataset]
    if classList.count(classList[0]) == len(classList):
        return classList[0]
    if len(dataset[0]) == 1:
        return majorityCnt(classList)
    bestFeat = chooseBestFeatureToSplit(dataset)
    bestFeatLabel = labels[bestFeat]
    featLabels.append(bestFeatLabel)
    myTree = {bestFeatLabel:{}}
    del labels[bestFeat]
    featValue = [example[bestFeat] for example in dataset]
    uniqueVals = set(featValue)
    for value in uniqueVals:
        sublabels = labels[:]
        myTree[bestFeatLabel][value] = createTree(splitDataSet(dataset,bestFeat,value),sublabels,featLabels)
    return myTree

def majorityCnt(classList):
    classCount={}
    for vote in classList:
        if vote not in classCount.keys():classCount[vote] = 0
        classCount[vote] += 1
    sortedclassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
    return sortedclassCount[0][0]

def chooseBestFeatureToSplit(dataset):
    numFeatures = len(dataset[0]) - 1
    baseEntropy = calcShannonEnt(dataset)
    bestInfoGain = 0
    bestFeature = -1
    for i in range(numFeatures):
        featList = [example[i] for example in dataset]
        uniqueVals = set(featList)
        newEntropy = 0
        for val in uniqueVals:
            subDataSet = splitDataSet(dataset,i,val)
            prob = len(subDataSet)/float(len(dataset))
            newEntropy += prob * calcShannonEnt(subDataSet)
        infoGain = baseEntropy - newEntropy
        if (infoGain > bestInfoGain):
            bestInfoGain = infoGain
            bestFeature = i
    return bestFeature






def splitDataSet(dataset,axis,val):
    retDataSet = []
    for featVec in dataset:
        if featVec[axis] == val:
            reducedFeatVec = featVec[:axis]
            reducedFeatVec.extend(featVec[axis+1:])
            retDataSet.append(reducedFeatVec)
    return retDataSet

def calcShannonEnt(dataset):
    numexamples = len(dataset)
    labelCounts = {}
    for featVec in dataset:
        currentlabel = featVec[-1]
        if currentlabel not in labelCounts.keys():
            labelCounts[currentlabel] = 0
        labelCounts[currentlabel] += 1

    shannonEnt = 0
    for key in labelCounts:
        prop = float(labelCounts[key])/numexamples
        shannonEnt -= prop*log(prop,2)
    return shannonEnt


def getNumLeafs(myTree):
    numLeafs = 0
    firstStr = next(iter(myTree))
    secondDict = myTree[firstStr]
    for key in secondDict.keys():
        if type(secondDict[key]).__name__=='dict':
            numLeafs += getNumLeafs(secondDict[key])
        else:   numLeafs +=1
    return numLeafs


def getTreeDepth(myTree):
    maxDepth = 0
    firstStr = next(iter(myTree))
    secondDict = myTree[firstStr]
    for key in secondDict.keys():
        if type(secondDict[key]).__name__=='dict':
            thisDepth = 1 + getTreeDepth(secondDict[key])
        else:   thisDepth = 1
        if thisDepth > maxDepth: maxDepth = thisDepth
    return maxDepth

def plotNode(nodeTxt, centerPt, parentPt, nodeType):
    arrow_args = dict(arrowstyle="<-")
    font = FontProperties(fname=r"c:\windows\fonts\simsunb.ttf", size=14)
    createPlot.ax1.annotate(nodeTxt, xy=parentPt,  xycoords='axes fraction',
        xytext=centerPt, textcoords='axes fraction',
        va="center", ha="center", bbox=nodeType, arrowprops=arrow_args, FontProperties=font)


def plotMidText(cntrPt, parentPt, txtString):
    xMid = (parentPt[0]-cntrPt[0])/2.0 + cntrPt[0]
    yMid = (parentPt[1]-cntrPt[1])/2.0 + cntrPt[1]
    createPlot.ax1.text(xMid, yMid, txtString, va="center", ha="center", rotation=30)


def plotTree(myTree, parentPt, nodeTxt):
    decisionNode = dict(boxstyle="sawtooth", fc="0.8")
    leafNode = dict(boxstyle="round4", fc="0.8")
    numLeafs = getNumLeafs(myTree)
    depth = getTreeDepth(myTree)
    firstStr = next(iter(myTree))
    cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW, plotTree.yOff)
    plotMidText(cntrPt, parentPt, nodeTxt)
    plotNode(firstStr, cntrPt, parentPt, decisionNode)
    secondDict = myTree[firstStr]
    plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD
    for key in secondDict.keys():
        if type(secondDict[key]).__name__=='dict':
            plotTree(secondDict[key],cntrPt,str(key))
        else:
            plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW
            plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
            plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))
    plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD


def createPlot(inTree):
    fig = plt.figure(1, facecolor='white')                                                    #创建fig
    fig.clf()                                                                                #清空fig
    axprops = dict(xticks=[], yticks=[])
    createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)                                #去掉x、y轴
    plotTree.totalW = float(getNumLeafs(inTree))                                            #获取决策树叶结点数目
    plotTree.totalD = float(getTreeDepth(inTree))                                            #获取决策树层数
    plotTree.xOff = -0.5/plotTree.totalW; plotTree.yOff = 1.0;                            #x偏移
    plotTree(inTree, (0.5,1.0), '')                                                            #绘制决策树
    plt.show()




if __name__ == '__main__':
    dataset, labels = createDataSet()
    featLabels = []
    myTree = createTree(dataset,labels,featLabels)
    createPlot(myTree)
















  • 写回答

3条回答 默认 最新

  • 爱晚乏客游 2023-03-15 13:08
    关注

    matplotlib这个包卸载重装,版本不兼容应该
    我的这个包版本是3.2.2可以用,你可以换这个包试试看

    pip uninstall matplotlib
    pip install matplotlib==3.2.2
    
    
    本回答被题主选为最佳回答 , 对您是否有帮助呢?
    评论
查看更多回答(2条)

报告相同问题?

问题事件

  • 系统已结题 3月30日
  • 已采纳回答 3月22日
  • 创建了问题 3月15日

悬赏问题

  • ¥15 关于#网络#的问题:网络是从楼上引一根网线下来,接了2台傻瓜交换机,也更换了ip还是不行
  • ¥15 资源泄露软件闪退怎么解决?
  • ¥15 CCF-CSP 2023 第三题 解压缩(50%)
  • ¥30 comfyui openpose报错
  • ¥20 Wpf Datarid单元格闪烁效果的实现
  • ¥15 图像分割、图像边缘提取
  • ¥15 sqlserver执行存储过程报错
  • ¥100 nuxt、uniapp、ruoyi-vue 相关发布问题
  • ¥15 浮窗和全屏应用同时存在,全屏应用输入法无法弹出
  • ¥100 matlab2009 32位一直初始化