遇到一个项目:一种改进自适应M-H重采样的粒子滤波算法,希望有人能帮我看看🧐🧐。谢谢了🙏🏻🙏🏻
11条回答 默认 最新
- zuogle 2023-04-05 12:36关注
该回答引用ChatGPT GPT-4
运行结果
代码
% 参数初始化 N = 100; % 粒子数 T = 100; % 时刻数 sigma_sys = 1; % 系统噪声标准差 sigma_obs = 1; % 观测噪声标准差 % 生成真实状态序列 true_state = zeros(T, 1); for t = 2:T true_state(t) = true_state(t-1) + randn() * sigma_sys; end % 生成粒子 particles = randn(N, T) * sigma_sys; % 初始化权重 weights = ones(N, 1) / N; % 用于保存估计状态的变量 state_estimate = zeros(T, 1); % 模拟过程 for t = 1:T % 生成观测值 observation = true_state(t) + randn() * sigma_obs; % M-H算法更新粒子 for n = 1:N % 生成提议粒子 proposal_particle = particles(n, t) + randn() * sigma_sys; % 计算接受概率 likelihood_current = normpdf(observation, particles(n, t), sigma_obs); likelihood_proposal = normpdf(observation, proposal_particle, sigma_obs); acceptance_ratio = min(1, likelihood_proposal / likelihood_current); % 以接受概率更新粒子 if rand() < acceptance_ratio particles(n, t) = proposal_particle; end end % 计算权重 for n = 1:N weights(n) = normpdf(observation, particles(n, t), sigma_obs); end weights = weights / sum(weights); % 重采样 indices = randsample(1:N, N, true, weights); particles(:, t) = particles(indices, t); % 估计状态 state_estimate(t) = mean(particles(:, t)); end % 模拟过程 for t = 1:T % 生成观测值 observation = true_state(t) + randn() * sigma_obs; % 其他代码不变 end % 绘制结果图形 figure; plot(1:T, true_state, 'b', 'LineWidth', 2); % 真实状态用蓝色线表示 hold on; plot(1:T, state_estimate, 'r', 'LineWidth', 2); % 估计状态用红色线表示 scatter(1:T, observation, 'g', 'filled'); % 观测值用绿色点表示 legend('True State', 'Estimated State', 'Observations'); xlabel('Time'); ylabel('State'); title('Improved Adaptive M-H Particle Filter'); grid on;
本回答被题主选为最佳回答 , 对您是否有帮助呢?解决 1无用 1