需要一份超声波检测铁轨损伤的数据,能用elman神经网络算法仿真出来最好。(可加钱)
3条回答 默认 最新
AI迅剑 2023-05-23 06:41关注获得7.50元问题酬金 python import numpy as np import matplotlib.pyplot as plt # 激活函数 def sigmoid(x): return 1 / (1 + np.exp(-x)) # 构建Elman神经网络 def elman_net(X, T, H_nodes, O_nodes, eta, epochs): # 输入层、隐藏层、输出层的权重矩阵和阈值向量 W_input = np.random.rand(X.shape[1], H_nodes) W_hidden = np.random.rand(H_nodes, H_nodes) W_output = np.random.rand(H_nodes, O_nodes) bias_input = np.random.rand(H_nodes) bias_hidden = np.random.rand(H_nodes) bias_output = np.random.rand(O_nodes) # 训练神经网络 for i in range(epochs): # 信号前向传播 hidden_layer = sigmoid(np.dot(X, W_input) + bias_input) x_hidden = np.hstack((np.zeros((hidden_layer.shape[0], X.shape[1])), hidden_layer)) hidden_layer = sigmoid(np.dot(x_hidden[:, :-H_nodes], W_hidden) + bias_hidden) output = sigmoid(np.dot(hidden_layer, W_output) + bias_output) # 误差反向传播 E = T - output mse = E ** 2 bias_output -= eta * mse.mean(axis=0) W_output -= eta * np.dot(hidden_layer.T, E) / E.shape[0] E = (E * W_output).dot(hidden_layer * (1 - hidden_layer)) bias_hidden -= eta * E.mean(axis=0) W_hidden -= eta * np.dot(x_hidden[:, :-H_nodes].T, E) / E.shape[0] E = (E * W_hidden).dot(x_hidden[:, :-H_nodes] * (1 - x_hidden[:, :-H_nodes])) bias_input -= eta * E.mean(axis=0) W_input -= eta * np.dot(X.T, E) / E.shape[0] return W_input, W_hidden, W_output, bias_input, bias_hidden, bias_output解决 无用评论 打赏 举报