m0_72338988 2023-05-16 15:44 采纳率: 0%
浏览 65
已结题

超声波铁轨检测数据.

需要一份超声波检测铁轨损伤的数据,能用elman神经网络算法仿真出来最好。(可加钱)

  • 写回答

3条回答 默认 最新

  • AI迅剑 2023-05-23 06:41
    关注
    获得7.50元问题酬金
    
    python
    import numpy as np
    import matplotlib.pyplot as plt
     
    # 激活函数
    def sigmoid(x): 
        return 1 / (1 + np.exp(-x))
     
    # 构建Elman神经网络
    def elman_net(X, T, H_nodes, O_nodes, eta, epochs):
        # 输入层、隐藏层、输出层的权重矩阵和阈值向量
        W_input = np.random.rand(X.shape[1], H_nodes) 
        W_hidden = np.random.rand(H_nodes, H_nodes)
        W_output = np.random.rand(H_nodes, O_nodes)
        bias_input = np.random.rand(H_nodes) 
        bias_hidden = np.random.rand(H_nodes) 
        bias_output = np.random.rand(O_nodes)
     
        # 训练神经网络  
        for i in range(epochs): 
            # 信号前向传播  
            hidden_layer = sigmoid(np.dot(X, W_input) + bias_input)  
            x_hidden = np.hstack((np.zeros((hidden_layer.shape[0], X.shape[1])), hidden_layer))  
            hidden_layer = sigmoid(np.dot(x_hidden[:, :-H_nodes], W_hidden) + bias_hidden)  
            output = sigmoid(np.dot(hidden_layer, W_output) + bias_output)
     
            # 误差反向传播
            E = T - output
            mse = E ** 2
            bias_output -= eta * mse.mean(axis=0)
            W_output -= eta * np.dot(hidden_layer.T, E) / E.shape[0] 
            E = (E * W_output).dot(hidden_layer * (1 - hidden_layer)) 
            bias_hidden -= eta * E.mean(axis=0)
            W_hidden -= eta * np.dot(x_hidden[:, :-H_nodes].T, E) / E.shape[0]
            E = (E * W_hidden).dot(x_hidden[:, :-H_nodes] * (1 - x_hidden[:, :-H_nodes])) 
            bias_input -= eta * E.mean(axis=0)
            W_input -= eta * np.dot(X.T, E) / E.shape[0]
        return W_input, W_hidden, W_output, bias_input, bias_hidden, bias_output 
     
    
    评论

报告相同问题?

问题事件

  • 系统已结题 5月24日
  • 创建了问题 5月16日