我在做回归任务,发现网上关于Tradaboost的实例不是很多,想请教一下,可否看看Tradaboost可否运用于回归,Tradaboost实例是什么?
1条回答 默认 最新
梦幻编织者 2023-06-08 17:07关注迁移学习Tradaboost在Python上的实现,一般需要使用机器学习库如Scikit-learn或TensorFlow等。以下是一个简单的示例代码:
from sklearn.ensemble import AdaBoostClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.datasets import make_classification from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score # 生成数据集 X, y = make_classification(n_samples=1000, n_features=10, n_informative=5, n_redundant=0, random_state=42) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 构建基分类器 base_clf = DecisionTreeClassifier(max_depth=2) # 构建传统的AdaBoost模型 ada_clf = AdaBoostClassifier(base_estimator=base_clf, n_estimators=50, random_state=42) ada_clf.fit(X_train, y_train) y_pred = ada_clf.predict(X_test) print("Accuracy score of traditional AdaBoost:", accuracy_score(y_test, y_pred)) # 构建TransferBoost模型 transfer_clf = AdaBoostClassifier(base_estimator=base_clf, n_estimators=50, random_state=42) transfer_clf.fit(X_train, y_train, sample_weight=get_sample_weights(X_train, y_train, X_test, y_test)) y_pred = transfer_clf.predict(X_test) print("Accuracy score of TransferBoost:", accuracy_score(y_test, y_pred))其中,get_sample_weights是一个用于计算样本权重的函数,可以根据不同的迁移学习方法进行修改。
本回答被题主选为最佳回答 , 对您是否有帮助呢?解决 无用评论 打赏 举报