引自免费微信小程序-皆我百晓生,希望对题主有所帮助,如有帮助,还望采纳。
使用加权最小二乘法求解手机价格指标的步骤如下:
1.导入必要的Python库:numpy和scipy.optimize。
import numpy as np
from scipy.optimize import minimize
2.定义目标函数:根据加权最小二乘法的公式,定义目标函数为加权误差的平方和。其中,p_star为待求解的手机价格指标,pi为每个型号手机的价格,wi为权重。
def objective(p_star, prices, weights):
return np.sum(weights * (p_star - prices)**2)
3.定义约束条件:由于待求解的手机价格指标p_star为非负数,定义约束条件为p_star大于等于0。
constraints = ({'type': 'ineq', 'fun': lambda p_star: p_star})
4.定义初始值:将待求解的手机价格指标p_star初始值设为0。
x0 = np.array([0.0])
5.定义已知的价格和权重数据。
prices = np.array([1105.156195, 1996.468695, 4028.7325, 2845.0695, 4510.0695, 1033.9225, 1996.468695, 8910.558, 2278.0895, 383.5275, 5606.0925, 1561.5795, 53850.47, 0.08, 0.04, 0.03, 0.03, 0.03, 0.03, 0.02, 0.02, 1996.468695, 10.02, 3315.6825, 1711.248695, 2994.738695, 4527.8675, 2139.078695, 1675.6675, 3201.59455383, 527.5335, 3315.6825, 2345.9345])
weights = np.array([0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01])
6.使用scipy.optimize中的minimize函数进行优化求解。
result = minimize(objective, x0, args=(prices, weights), constraints=constraints)
p_star = result.x[0]
7.输出求解结果。
print("手机价格指标为:", p_star)
完整代码如下:
import numpy as np
from scipy.optimize import minimize
def objective(p_star, prices, weights):
return np.sum(weights * (p_star - prices)**2)
constraints = ({'type': 'ineq', 'fun': lambda p_star: p_star})
x0 = np.array([0.0])
prices = np.array([1105.156195, 1996.468695, 4028.7325, 2845.0695, 4510.0695, 1033.9225, 1996.468695, 8910.558, 2278.0895, 383.5275, 5606.0925, 1561.5795, 53850.47, 0.08, 0.04, 0.03, 0.03, 0.03, 0.03, 0.02, 0.02, 1996.468695, 10.02, 3315.6825, 1711.248695, 2994.738695, 4527.8675, 2139.078695, 1675.6675, 3201.59455383, 527.5335, 3315.6825, 2345.9345])
weights = np.array([0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01])
result = minimize(objective, x0, args=(prices, weights), constraints=constraints)
p_star = result.x[0]
print("手机价格指标为:", p_star)
运行以上代码,即可得到手机价格指标的求解结果。