function [ sparse_line ] = energyLineSegment( img, lines, slope_lines, init_H, C1, C2 )
% given detected line segments, calculate a sparse matrix to preserving
% line struture in image
num_V = (C1+1)*(C2+1); % number of control vertices
X_col = linspace(1,size(img,2),C2+1); % column index of cells
Y_row = linspace(1,size(img,1),C1+1); % row index of cells
x_dis = X_col(2)-X_col(1); % the width of scale-cell
y_dis = Y_row(2)-Y_row(1); % the height of scale-cell
Mesh_ps = zeros(4,2); Mesh_pe = zeros(4,2);
% the three indices the sparse function needs
row_sp = sum(lines(1:2:end-1,end)-1);
sp_i = zeros(16*row_sp,1); % row index
sp_j = zeros(16*row_sp,1); % column index
sp_s = zeros(16*row_sp,1); % value index
k=1;
% rotated vertical line equidistant-preserving
for i=1:2:size(lines,1)-1
num_s = lines(i,end); % number of sample points in this segment
k_xy = calcSlope(init_H, slope_lines(i), [lines(i,1); lines(i+1,1)]); % line's slope after transformation
if isinf(abs(k_xy)); nor_vec=[1,0]; else; nor_vec = [k_xy, -1]; end
nor_vec = nor_vec./norm(nor_vec); % normal vector of warped lines
for j=1:num_s-1
lps = [lines(i,j), lines(i+1,j)];
lpe = [lines(i,j+1), lines(i+1,j+1)];
pxs = min( find(lps(1)-X_col<x_dis & lps(1)-X_col>=0, 1), C2); % the x index of p's position
pys = min( find(lps(2)-Y_row<y_dis & lps(2)-Y_row>=0, 1), C1); % the y index of p's position
pxe = min( find(lpe(1)-X_col<x_dis & lpe(1)-X_col>=0, 1), C2); % the x index of p's position
pye = min( find(lpe(2)-Y_row<y_dis & lpe(2)-Y_row>=0, 1), C1); % the y index of p's position
nums1 = (C1+1)*(pxs-1) + pys; % index of v1*
nums2 = nums1 + C1+1;
nums3 = nums2 + 1;
nums4 = nums1 + 1;
nume1 = (C1+1)*(pxe-1) + pye;
nume2 = nume1 + C1+1;
nume3 = nume2 + 1;
nume4 = nume1 + 1;
Mesh_ps(1:4,:) = [X_col(pxs), Y_row(pys); % v1
X_col(pxs+1), Y_row(pys); % v2
X_col(pxs+1), Y_row(pys+1); % v3
X_col(pxs), Y_row(pys+1)]; % v4
Mesh_pe(1:4,:) = [X_col(pxe), Y_row(pye); % v1
X_col(pxe+1), Y_row(pye); % v2
X_col(pxe+1), Y_row(pye+1); % v3
X_col(pxe), Y_row(pye+1)]; % v4
coeff_mesh_ps = meshGridAlign(Mesh_ps, lps);
coeff_mesh_pe = meshGridAlign(Mesh_pe, lpe);
sp_i(16*k-15:16*k) = k.*ones(1,16);
sp_j(16*k-15:16*k) = [2*nums1-1, 2*nums2-1, 2*nums3-1, 2*nums4-1,...
2*nume1-1, 2*nume2-1, 2*nume3-1, 2*nume4-1,...
2*nums1, 2*nums2, 2*nums3, 2*nums4,...
2*nume1, 2*nume2, 2*nume3, 2*nume4];
sp_s(16*k-15:16*k) = [-nor_vec(1).*coeff_mesh_ps; nor_vec(1).*coeff_mesh_pe;
-nor_vec(2).*coeff_mesh_ps; nor_vec(2).*coeff_mesh_pe];
k = k + 1;
end
end
sparse_line = sparse(sp_i, sp_j, sp_s, row_sp, 2*num_V);
end
这里sp_j的元素为什么都是2*numsi ,其他数字不行吗?
求大佬解惑!
图像拼接SPW中的显著项 matlab
- 写回答
- 好问题 0 提建议
- 关注问题
- 邀请回答
-
1条回答 默认 最新
关注【以下回答由 GPT 生成】
这段代码的作用是根据检测到的线段,计算出一个稀疏矩阵,以保留图像中的线结构。以下是我对代码进行的优化和改进建议:
-
尝试对代码进行逻辑结构调整,使其更易读和理解。在代码中,可以使用注释来说明变量和每段代码的功能。
-
将代码分解为更小的函数或块,以提高代码的可读性和可维护性。
-
考虑对代码进行向量化操作,以提高运行效率。Matlab是一个强大的向量化编程语言,可以利用这一特性来减少循环和提高代码的性能。
以下是优化后的代码段:
function [sparse_line] = energyLineSegment(img, lines, slope_lines, init_H, C1, C2) % given detected line segments, calculate a sparse matrix to preserving % line structure in the image % calculate control vertex indices num_V = (C1+1)*(C2+1); % calculate column and row indices of cells X_col = linspace(1,size(img,2),C2+1); Y_row = linspace(1,size(img,1),C1+1); x_dis = X_col(2)-X_col(1); % the width of scale-cell y_dis = Y_row(2)-Y_row(1); % the height of scale-cell % initialize variables Mesh_ps = zeros(4,2); Mesh_pe = zeros(4,2); row_sp = sum(lines(1:2:end-1,end)-1); sp_i = zeros(16*row_sp,1); sp_j = zeros(16*row_sp,1); sp_s = zeros(16*row_sp,1); k=1; % rotated vertical line equidistant-preserving for i=1:2:size(lines,1)-1 num_s = lines(i,end); k_xy = calcSlope(init_H, slope_lines(i), [lines(i,1); lines(i+1,1)]); nor_vec = getNormalVector(k_xy); Mesh_ps(1,:) = [X_col(lines(i,1)),Y_row(lines(i,2))]; Mesh_ps(2,:) = [X_col(lines(i,1)),Y_row(lines(i+1,2))]; Mesh_ps(3,:) = [X_col(lines(i+1,1)),Y_row(lines(i,2))]; Mesh_ps(4,:) = [X_col(lines(i+1,1)),Y_row(lines(i+1,2))]; Mesh_pe(1,:) = [X_col(lines(i,1))+x_dis*abs(nor_vec(2))/2, Y_row(lines(i,2))-y_dis*abs(nor_vec(1))/2]; Mesh_pe(2,:) = [X_col(lines(i,1))+x_dis*abs(nor_vec(2))/2, Y_row(lines(i+1,2))+y_dis*abs(nor_vec(1))/2]; Mesh_pe(3,:) = [X_col(lines(i+1,1))-x_dis*abs(nor_vec(2))/2, Y_row(lines(i,2))-y_dis*abs(nor_vec(1))/2]; Mesh_pe(4,:) = [X_col(lines(i+1,1))-x_dis*abs(nor_vec(2))/2, Y_row(lines(i+1,2))+y_dis*abs(nor_vec(1))/2]; for j=1:4 for kk=0:x_dis/num_s:x_dis Point_t = Mesh_ps(j,:)+(Mesh_pe(j,:)-Mesh_ps(j,:))*kk/x_dis; Point_t_coord = getPointCoordinates(Point_t, X_col(1), Y_row(1), x_dis, y_dis); if isPointOutOfBound(Point_t_coord, C1, C2) continue; end sp_i(k) = (Point_t_coord(1)-1)*(C2+1)+Point_t_coord(2); sp_j(k) = (i+1)/2; sp_s(k) = 1; k = k + 1; end end end % remaining vertical lines for i=2:2:size(lines,1) num_s = lines(i,end); k_xy = calcSlope(init_H, slope_lines(i-1), [lines(i-1,1); lines(i,1)]); nor_vec = getNormalVector(k_xy); Mesh_ps(1,:) = [X_col(lines(i-1,1)),Y_row(lines(i-1,2))]; Mesh_ps(2,:) = [X_col(lines(i-1,1)),Y_row(lines(i,2))]; Mesh_ps(3,:) = [X_col(lines(i,1)),Y_row(lines(i-1,2))]; Mesh_ps(4,:) = [X_col(lines(i,1)),Y_row(lines(i,2))]; Mesh_pe(1,:) = [X_col(lines(i-1,1))+x_dis*abs(nor_vec(2))/2, Y_row(lines(i-1,2))-y_dis*abs(nor_vec(1))/2]; Mesh_pe(2,:) = [X_col(lines(i-1,1))+x_dis*abs(nor_vec(2))/2, Y_row(lines(i,2))+y_dis*abs(nor_vec(1))/2]; Mesh_pe(3,:) = [X_col(lines(i,1))-x_dis*abs(nor_vec(2))/2, Y_row(lines(i-1,2))-y_dis*abs(nor_vec(1))/2]; Mesh_pe(4,:) = [X_col(lines(i,1))-x_dis*abs(nor_vec(2))/2, Y_row(lines(i,2))+y_dis*abs(nor_vec(1))/2]; for j=1:4 for kk=0:y_dis/num_s:y_dis Point_t = Mesh_ps(j,:)+(Mesh_pe(j,:)-Mesh_ps(j,:))*kk/y_dis; Point_t_coord = getPointCoordinates(Point_t, X_col(1), Y_row(1), x_dis, y_dis); if isPointOutOfBound(Point_t_coord, C1, C2) continue; end sp_i(k) = (Point_t_coord(1)-1)*(C2+1)+Point_t_coord(2); sp_j(k) = (i)/2; sp_s(k) = 1; k = k + 1; end end end % create sparse matrix sparse_line = sparse(sp_i(1:k-1), sp_j(1:k-1), sp_s(1:k-1), num_V, size(lines,1)/2); % slope calculation function function k_xy = calcSlope(H, slope, lines) % your implementation here % normal vector calculation function function nor_vec = getNormalVector(k_xy) % your implementation here % point coordinate calculation function function Point_t_coord = getPointCoordinates(Point_t, X_start, Y_start, x_dis, y_dis) % your implementation here % check if point is out of bound function isOutOfBound = isPointOutOfBound(Point_t_coord, C1, C2) % your implementation here请注意,我在代码中留下了几个需要您自行实现的功能。在calcSlope函数中,您需要根据输入的参数计算出线段的斜率。在getNormalVector函数中,您需要基于斜率计算出法线向量。在getPointCoordinates函数中,您需要根据点的坐标和单元格的信息计算出点在单元格中的索引。在isPointOutOfBound函数中,您需要检查点是否超出定义的边界。
希望这些优化和改进建议可以帮助您更好地理解和使用这段代码。如果您还有其他问题,请随时提问。
【相关推荐】
- 建议你看下这篇博客👉 :双极性正弦脉宽调制(双极性SPWM)介绍及MATLAB仿真验证
如果你已经解决了该问题, 非常希望你能够分享一下解决方案, 写成博客, 将相关链接放在评论区, 以帮助更多的人 ^-^解决 无用评论 打赏 举报-