2301_77296916 2024-01-02 17:13 采纳率: 100%
浏览 11
已结题

在Java语言中数据压缩算法,用哈夫曼编码怎么表示

在vi终端编辑器不知怎么创文件名及书写其他代码,想了两个小时着实写不出来特来找方向一样牛人的指点

  • 写回答

1条回答 默认 最新

  • CSDN-Ada助手 CSDN-AI 官方账号 2024-01-02 20:29
    关注

    【相关推荐】



    • 你可以看下这个问题的回答https://ask.csdn.net/questions/7477075
    • 你也可以参考下这篇文章:JAVA数组的遍历 获取最大值最小值 数组的反转 数组的查找 练习 定义方法创建指定大小的数组,并添加指定元素 拼接两个数组
    • 您还可以看一下 徐无忌老师的Java进阶高手课-并发编程透彻理解课程中的 什么是多线程的上下文切换,有什么影响?如何进行优化?(二)小节, 巩固相关知识点
    • 除此之外, 这篇博客: JAVA数据结构——利用图的广度优先遍历搜索算法确定无向连通图的连通分量中的 代码实现利用广度优先遍历搜索确定无向图的连通分量:  部分也许能够解决你的问题, 你可以仔细阅读以下内容或跳转源博客中阅读:

      1. 图类型:

      package com.usts.edu.graphic;
      
      // 图的种类 有向图、有向网、无向图、无向网
      public enum GraphKind {
      	UDG, // 无向图(UnDirected Graph)
      	DG, // 有向图(Directed Graph)
      	UDN, // 无向网(UnDirected Network)
      	DN; // 有向网(Directed Network)
      }
      

      2. 图的接口 

      package com.usts.edu.graphic;
      
      //图的接口
      public interface IGraph {
      	void createGraph();//创建一个图
      
      	int getVexNum(); // 返回顶点数
      
      	int getArcNum();// 返回边数
      
      	Object getVex(int v) throws Exception;// 返回v表示结点的值, 0 <= v < vexNum
      
      	int locateVex(Object vex);// 给定顶点的值vex,返回其在图中的位置,如果图中不包含此顶点,则返回-1
      
      	int firstAdjVex(int v) throws Exception; // 返回v的第一个邻接点,若v没有邻接点,则返回-1,其中0≤v<vexNum
      
      	int nextAdjVex(int v, int w) throws Exception;// 返回v相对于w的下一个邻接点,若w是v的最后一个邻接点,则返回-1,其中0≤v, w<vexNum
      
      }
      

       3. 创建图:

      package com.usts.edu.graphic;
      
      import java.util.Scanner;
      
      
      public class MGraph implements IGraph {
      	public final static int INFINITY = Integer.MAX_VALUE;
      
      	private GraphKind kind;
      
      	private int vexNum, arcNum;
      
      	private Object[] vexs;
      
      	private int[][] arcs;
      
      	public MGraph() {
      		this(null, 0, 0, null, null);
      	}
      
      	public MGraph(GraphKind kind, int vexNum, int arcNum, Object[] vexs,
      			int[][] arcs) {
      		this.kind = kind;
      		this.vexNum = vexNum;
      		this.arcNum = arcNum;
      		this.vexs = vexs;
      		this.arcs = arcs;
      	}
      
      	public void createGraph() {
      		Scanner sc = new Scanner(System.in);
      		System.out.println("请输入图的类型");
      		GraphKind kind = GraphKind.valueOf(sc.next());
      		switch (kind) {
      		case UDG:
      			createUDG();
      			return;
      		case DG:
      			createDG();
      			return;
      		case UDN:
      			createUDN();
      			return;
      		case DN:
      			createDN();
      			return;
      		}
      	}
      
      	private void createUDG() {
      	};
      
      	private void createDG() {
      	};
      
      	private void createUDN() {
      		Scanner sc = new Scanner(System.in);
      		vexNum = sc.nextInt();
      		arcNum = sc.nextInt();
      		vexs = new Object[vexNum];
      		for (int v = 0; v < vexNum; v++)
      			vexs[v] = sc.next();
      
      		arcs = new int[vexNum][vexNum];
      		for (int v = 0; v < vexNum; v++)
      			for (int u = 0; u < vexNum; u++)
      				arcs[v][u] = INFINITY;
      
      		for (int k = 0; k < arcNum; k++) {
      			int v = locateVex(sc.next());
      			int u = locateVex(sc.next());
      			arcs[v][u] = arcs[u][v] = sc.nextInt();
      		}
      	}
      
      	private void createDN() {
      		Scanner sc = new Scanner(System.in);
      		vexNum = sc.nextInt();
      		arcNum = sc.nextInt();
      		vexs = new Object[vexNum];
      		for (int v = 0; v < vexNum; v++)
      			vexs[v] = sc.next();
      
      		arcs = new int[vexNum][vexNum];
      		for (int v = 0; v < vexNum; v++)
      			for (int u = 0; u < vexNum; u++)
      				arcs[v][u] = INFINITY;
      
      		for (int k = 0; k < arcNum; k++) {
      			int v = locateVex(sc.next());
      			int u = locateVex(sc.next());
      			arcs[v][u] = sc.nextInt();
      		}
      
      	}
      
      	public int getVexNum() {
      		return vexNum;
      	}
      
      	public int getArcNum() {
      		return arcNum;
      	}
      
      	public int locateVex(Object vex) {
      		for (int v = 0; v < vexNum; v++)
      			if (vexs[v].equals(vex))
      				return v;
      		return -1;
      	}
      
      	public Object getVex(int v) throws Exception {
      		if (v < 0 && v >= vexNum)
      			throw new Exception("第" + v + "个顶点不存在!");
      		return vexs[v];
      	}
      
      	public int firstAdjVex(int v) throws Exception {
      		if (v < 0 && v >= vexNum)
      			throw new Exception("第" + v + "个顶点不存在!");
      
      		for (int j = 0; j < vexNum; j++)
      			if (arcs[v][j] != 0 && arcs[v][j] < INFINITY)
      				return j;
      
      		return -1;
      	}
      
      	public int nextAdjVex(int v, int w) throws Exception {
      		if (v < 0 && v >= vexNum)
      			throw new Exception("第" + v + "个顶点不存在!");
      
      		for (int j = w + 1; j < vexNum; j++)
      			if (arcs[v][j] != 0 && arcs[v][j] < INFINITY)
      				return j;
      
      		return -1;
      	}
      
      	public GraphKind getKind() {
      		return kind;
      	}
      
      	public int[][] getArcs() {
      		return arcs;
      	}
      
      	public Object[] getVexs() {
      		return vexs;
      	}
      
      	public void setArcNum(int arcNum) {
      		this.arcNum = arcNum;
      	}
      
      	public void setArcs(int[][] arcs) {
      		this.arcs = arcs;
      	}
      
      	public void setKind(GraphKind kind) {
      		this.kind = kind;
      	}
      
      	public void setVexNum(int vexNum) {
      		this.vexNum = vexNum;
      	}
      
      	public void setVexs(Object[] vexs) {
      		this.vexs = vexs;
      	}
      
      }
      

      4. 实现搜索:

       

      package com.usts.edu.graphic;
      
      import com.usts.edu.Queue.LinkQueue;
      
      /**
       * Created by Guanzhong Hu
       * Date :2020/3/30
       * Description :
       * Version :1.0
       */
      public class GDSeach {
              public final static int INFINITY = Integer.MAX_VALUE;
      
              public static void CC_BFS(IGraph G) throws Exception {
                  boolean[] visited = new boolean[G.getVexNum()];
                  for (int v = 0; v < G.getVexNum(); v++)
      
                      visited[v] = false;
                  LinkQueue Q = new LinkQueue();
                  LinkQueue P = new LinkQueue();
                  int i = 0;
                  for (int v = 0; v < G.getVexNum(); v++) {
                      P.clear();
                      if (!visited[v]) {
                          visited[v] = true;
                          P.offer(G.getVex(v));
                          Q.offer(v);
                          while (!Q.isEmpty()) {
                              int u = (Integer) Q.poll();
                              for (int w = G.firstAdjVex(u); w >= 0; w = G.nextAdjVex(u,
                                      w)) {
                                  if (!visited[w]) {
                                      visited[w] = true;
                                      P.offer(G.getVex(w));
                                      Q.offer(w);
                                  }
                              }
                          }
                          System.out.println("图的第" + ++i + "个连通分量为:");
                          while (!P.isEmpty())
                              System.out.print(P.poll().toString() + " ");
                          System.out.println();
                      }
                  }
              }
      
              public static void main(String[] args) throws Exception {
                  Object vexs[] = { "A", "B", "C", "D", "E", "F", "G" };
                  int[][] arcs = { { 0, 1, INFINITY, 1, INFINITY, INFINITY, INFINITY },
                          { 1, 0, 1, INFINITY, INFINITY, INFINITY, INFINITY },
                          { INFINITY, 1, 0, 1, INFINITY, INFINITY, INFINITY },
                          { 1, INFINITY, 1, 0, INFINITY, INFINITY, INFINITY },
                          { INFINITY, INFINITY, INFINITY, INFINITY, 0, 1, INFINITY },
                          { INFINITY, INFINITY, INFINITY, INFINITY, 1, 0, 1 },
                          { INFINITY, INFINITY, INFINITY, INFINITY, INFINITY, 1, 0 }, };
                  MGraph G = new MGraph(GraphKind.UDG, 7, 6, vexs, arcs);
                  CC_BFS(G);
              }
      }
      

      无向图的连通分量搜索是一种广度优先遍历的应用,当然还有如Dijkstra单源最短路径算法和Prim最小生成树算法都采用了和宽度优先搜索类似的思想。

      源码地址:

      https://gitee.com/jockhome/data_structure

    如果你已经解决了该问题, 非常希望你能够分享一下解决方案, 写成博客, 将相关链接放在评论区, 以帮助更多的人 ^-^
    本回答被题主选为最佳回答 , 对您是否有帮助呢?
    评论

报告相同问题?

问题事件

  • 系统已结题 1月10日
  • 已采纳回答 1月2日
  • 创建了问题 1月2日

悬赏问题

  • ¥15 软件供应链安全是跟可靠性有关还是跟安全性有关?
  • ¥15 电脑蓝屏logfilessrtsrttrail问题
  • ¥20 关于wordpress建站遇到的问题!(语言-php)(相关搜索:云服务器)
  • ¥15 【求职】怎么找到一个周围人素质都很高不会欺负他人,并且未来月薪能够达到一万以上(技术岗)的工作?希望可以收到写有具体,可靠,已经实践过了的路径的回答?
  • ¥15 Java+vue部署版本反编译
  • ¥100 对反编译和ai熟悉的开发者。
  • ¥15 带序列特征的多输出预测模型
  • ¥15 Python 如何安装 distutils模块
  • ¥15 关于#网络#的问题:网络是从楼上引一根网线下来,接了2台傻瓜交换机,也更换了ip还是不行
  • ¥15 资源泄露软件闪退怎么解决?