在matlab环境使用天鹰优化算法进行变形监测的数据优化时出现了报错,“对于此运算,数组的大小不兼容。
出错 (第 81 行) 误差平方和作为适应度值
出错 test2 (第 20 行) 调用自定义的适应度函数计算适应度值,并传入原始数据”
请问应该如何修改?
% 初始化全局最优解和其适应度值
globalBestFitness = Inf;
globalBestSolution = [];
popSize = 50; % 种群大小
maxIter = 100; % 最大迭代次数
yourTrueData=[0,0.2,-0.76,-0.66,-0.46,0.14,0,-0.2,-0.4,-0.2,1.1,1.3,1.4,0.8,0.9,0.8,0.7,0.6,0.7,0.5,0.7,0.4,-0.2,-0.1,-0.3,-0.2,-0.5,-0.2,-0.2,0.3,0.5,1.3,1.7,2.4,2.9,2.9,2.7,3.1,3.7,4.2,3.6,3.2,2.9,2.4,1.2,1.2,1,1,-0.2,0.1,-0.6,-1.2,-0.8,-1,-1.2];
dim = size(yourTrueData, 2); % 变量维度(假设yourTrueData是列向量或行数大于列数的矩阵)
disp(dim);
lb = -10; % 变量下界
ub = 10; % 变量上界
pop = lb + (ub - lb) * rand(popSize, dim); % 随机生成初始种群
fitness = zeros(popSize, 1); % 初始化适应度值
% 假设你的模型是一个线性模型,此处使用true_data作为训练数据
true_data = yourTrueData;
for iter = 1:maxIter
for i = 1:popSize
fitness(i) = FitnessFunction(pop(i, :), true_data); % 调用自定义的适应度函数计算适应度值,并传入原始数据
end
% 更新天鹰位置
for i = 1:popSize
% 随机选择两个不同的天鹰
idx = randperm(popSize, 2);
eagle1 = pop(idx(1), :);
eagle2 = pop(idx(2), :);
% 更新当前天鹰位置
pop(i, :) = eagle1 + rand(1, dim) .* (eagle1 - eagle2);
% 边界处理
pop(i, :) = max(pop(i, :), lb);
pop(i, :) = min(pop(i, :), ub);
end
% 计算适应度函数
for i = 1:popSize
fitness(i) = FitnessFunction(pop(i, :));
end
% 更新全局最优解
if bestFitness < globalBestFitness
globalBestFitness = bestFitness;
globalBestSolution = pop(bestIdx, :);
end
% 显示当前迭代结果
disp(['Iteration: ' num2str(iter) ', Best Fitness: ' num2str(bestFitness)]);
disp(bestSolution);
end
% 输出最终全局最优解及其对应的预测值
disp(['Global Best Fitness: ' num2str(globalBestFitness)]);
disp('Global Best Solution:');
disp(globalBestSolution);
% 使用最优参数进行预测,并与原始数据对比
X = 1:size(true_data, 1); % 假设数据索引作为特征
y_pred = YourPredictionFunction(globalBestSolution, X);% 根据你的模型定义预测函数
comparison = [true_data y_pred];
disp('Comparison of True Data and Predicted Data:');
disp(comparison);
% 可视化原始数据和预测数据
figure;
plot(true_data, '-o', 'MarkerSize', 5, 'LineWidth', 1.5, 'DisplayName', 'True Data');
hold on;
plot(y_pred, '-s', 'MarkerSize', 5, 'LineWidth', 1.5, 'DisplayName', 'Predicted Data');
legend('show');
xlabel('Data Index');
ylabel('Data Value');
function fitness = FitnessFunction(x, true_data)
% 根据已知数据进行计算,返回适应度值
% 假设我们正在寻找一个拟合true_data的最佳线性模型
model_params = reshape(x, [], 1);
y_pred = model_params(1) * (1:size(true_data, 1))' + model_params(2:end)'; % 简单线性模型预测
y_true = true_data; % 真实数据
fitness = sum((y_pred - y_true).^2); % 误差平方和作为适应度值
end
function predicted_values = YourPredictionFunction(model_params, X)
% 输入参数model_params是通过天鹰优化得到的最佳参数
% X是用于预测的数据特征(这里是数据索引)
% 使用最佳参数构建模型(这里假设是一个简单的线性模型)
model = LinearModel.fit(X, model_params(2:end)', 'Intercept', model_params(1)); % 添加截距项
% 进行预测
predicted_values = predict(model, X);
end